Use of Imaging in Radiotherapy for Head and Neck Cancer

Part of the Medical Radiology book series (MEDRAD)


Wider availability of and technical improvements in anatomic and biological imaging have facilitated the implementation of high-precision three-dimensional conformal and intensity-modulated radiotherapy (RT) in head and neck cancer. The integration of recent advances in functional and molecular imaging have already improved staging, RT delivery, response prediction, and follow-up. Rational clinical use of all modalities should be encouraged, especially in the setting of imaging-intensive investigational RT protocols such as adaptive therapy. Expanded development of imaging markers which can predict radioresistance or outcome could further customize treatment. Continued successful use of innovative imaging in routine clinical practice will ultimately depend on well-designed clinical studies with adequate follow-up.


Apparent Diffusion Coefficient Standardise Uptake Value Cone Beam Compute Tomography Simultaneous Integrate Boost Dose Painting 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams S, Baum R, Stuckensen T et al (1998) Prospective comparison of 18F-FDG PET with conventional imaging modalities (CT, MRI, US) in lymph node staging of head and neck cancer. Eur J Nucl Med 25:1255–1260PubMedCrossRefGoogle Scholar
  2. Ang K, Berkey B, Tu X et al (2002) Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62:7350–7356PubMedGoogle Scholar
  3. Balogova S, Perie S, Kerrou K, Grahek D, Montravers F, Angelard B et al (2008) Prospective comparison of FDG and FET PET/CT in patients with head and neck squamous cell carcinoma. Mol Imaging Biol 10:364–373PubMedCrossRefGoogle Scholar
  4. Barker J, Garden A, Ang K et al (2004) Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys 59:960–970PubMedCrossRefGoogle Scholar
  5. Benchaou M, Lehmann W, Slosman D et al (1996) The role of FDG-PET in the preoperative assessment of N-staging in head and neck cancer. Acta Otolaryngol 116:332–335PubMedCrossRefGoogle Scholar
  6. Bhide S, Kazi R, Newbold K, Harrington K, Nutting C (2010) The role of intensity-modulated radiotherapy in head and neck cancer. Ind J Cancer 47:267–273CrossRefGoogle Scholar
  7. Brink I, Kleznr T, Krause T et al (2002) Lymph node staging in extracranial head and neck cancer with FDG PET-appropriate uptake period and size-dependence of the results. Nuklearmedizin 41:108–113PubMedGoogle Scholar
  8. Buck A, Halter G, Schirrmeister H et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431PubMedGoogle Scholar
  9. Burri R, Rangaswamy B, Kostakoglu L, Hoch B, Genden E, Som P, Kao J (2008) Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 71:682–688PubMedCrossRefGoogle Scholar
  10. Bussink J, van Herpen C, Kaanders J, Oyen W (2010) PET-CT for response assessment and treatment adaptation in head and neck cancer. Lancet Oncol 11:661–669PubMedCrossRefGoogle Scholar
  11. Castadot P, Lee J, Geets X, Gregoire V (2010) Adaptive radiotherapy of head and neck cancer. Semin Radiat Oncol 20:84–93PubMedCrossRefGoogle Scholar
  12. Chao C, Bosch W, Mutic S et al (2001) A novel approach to overcome hypoxic tumor resistance: Cu-ATSM-guided intensity-modulated radiation therapy. Int J Radiat Oncol Biol Phys 49:1171–1182PubMedCrossRefGoogle Scholar
  13. Chao C, Wippold F, Ozyigit G et al (2002) Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT. Int J Radiat Oncol Biol Phys 53:1174–1184PubMedCrossRefGoogle Scholar
  14. Chapman J, Baer K, Lee J (1983) Characteristics of the metabolism-induced binding of misonidazole to hypoxic mammalian cells. Cancer Res 43:1523–1528PubMedGoogle Scholar
  15. Chapman J, Bradley J, Eary J et al (2003) Molecular (functional) imaging for radiotherapy applications: an RTOG symposium. Int J Radiat Oncol Biol Phys 55:294–301PubMedCrossRefGoogle Scholar
  16. Chu H, Kim J, Yoon D, Hwang H, Rho Y (2009) Additional diagnostic value of (18)F-FDG PET in detecting retropharyngeal nodal metastases. Otolaryngol Head Neck Surg 141:633–638PubMedCrossRefGoogle Scholar
  17. Cobben D, van der Laan B, Maas B et al (2004) 18F-FLT PET for visualization of laryngeal cancer: comparison with 18F-FDG PET. J Nucl Med 45:226–231PubMedGoogle Scholar
  18. Daisne J, Sibomana M, Bol A et al (2003) Evaluation of a multimodality image (CT, MRI and PET) coregistration procedure on phantom and head and neck cancer patients: accuracy, reproducibility and consistency. Radiother Oncol 69:237–245PubMedCrossRefGoogle Scholar
  19. Daisne J, Duprez T, Weynant B et al (2004) Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 233:93–100PubMedCrossRefGoogle Scholar
  20. Dancey J (2004) Epidermal growth factor receptor inhibitors in clinical development. Int J Radiat Oncol Biol Phys 58:1003–1007PubMedCrossRefGoogle Scholar
  21. Dandekar P, Partridge M, Kazi R, Nutting C, Harrington K, Newbold K (2010) Challenges in integrating 18FDG PET-CT into radiotherapy planning of head and neck cancer. Ind J Cancer 47:260–266CrossRefGoogle Scholar
  22. Dirix P, De Keyzer F, Vandecaveye V, Stroobants S, Hermans R, Nuyts S (2008) Diffusion-weighted magnetic resonance imaging to evaluate major salivary gland function before and after radiotherapy. Int J Radiat Oncol Biol Phys 71:1365–1371PubMedCrossRefGoogle Scholar
  23. Dirix P, Vandecaveye V, De Keyzer F, Stroobants S, Hermans R, Nuyts S (2009) Dose-painting in radiotherapy for head and neck squamous cell carcinoma: value of repeated functional imaging with (18)F-FDG PET, (18)F-fluoromisonidazole PET, diffusion-weighted MRI and dynamic contrast-enhanced MRI. J Nucl Med 50:1020–1027PubMedCrossRefGoogle Scholar
  24. Eisbruch A, Foote R, O’Sullivan B et al (2002) Intensity-modulated radiation therapy for head and neck cancer: emphasis on the selection and delineation of the targets. Semin Radiat Oncol 12:238–249PubMedCrossRefGoogle Scholar
  25. Enami B, Sethi A, Petruzelli GJ (2003) Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 57:481–488CrossRefGoogle Scholar
  26. Eschmann S, Paulsen F, Reimold M et al (2005) Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non small lung cancer and head and neck cancer before radiotherapy. J Nucl Med 46:253–260PubMedGoogle Scholar
  27. Farrag A, Ceulemans G, Voordeckers M, Everaert H, Storme G (2010) Can 18F-FDG-PET response during radiotherapy be used as a predictive factor for the outcome of head and neck cancer patients? Nucl Med Commun 31:495–501PubMedGoogle Scholar
  28. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42(suppl 5):1S–93SPubMedGoogle Scholar
  29. Geets X, Daisne J, Gregoire V et al (2004) Role of 11-C-methionine positron emission tomography for the delineation of the tumor volume in pharyngo-laryngeal squamous cell carcinoma: comparison with FDG-PET and CT. Radiother Oncol 71:267–273PubMedCrossRefGoogle Scholar
  30. Geets X, Tomsej M, Lee J, Duprez T, Coche E, Cosnard G et al (2007) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumours: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85:105–115PubMedCrossRefGoogle Scholar
  31. Ghilezan M, Yan D, Liang J et al (2004) Online image-guided intensity-modulated radiotherapy for prostate cancer: how much improvement can we expect? A theoretical assessment of clinical benefits and potential dose escalation by improving precision and accuracy of radiation delivery. Int J Radiat Oncol Biol Phys 60:1602–1610PubMedCrossRefGoogle Scholar
  32. Glastonbury C, Parker E, Hoang J (2010) The postradiation neck: evaluation response to treatment and recognizing complications. Am J Radiol 195:W164–W171Google Scholar
  33. Grandis J, Melhem M, Barnes E et al (1996) Quantitative immunohistochemical analysis of transforming growth factor-alpha and epidermal growth factor receptor in patients with squamous cell carcinoma of the head and neck. Cancer 78:1284–1292CrossRefGoogle Scholar
  34. Green A, Steinmetz N (2002) Monitoring apoptosis in real time. Cancer J 8:82–92PubMedCrossRefGoogle Scholar
  35. Gregoire V, Levendag P, Ang K et al (2003) CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC, RTOG consensus guidelines. Radiother Oncol 69:227–236PubMedCrossRefGoogle Scholar
  36. Haerle S, Strobel K, Hany T, Sidler D, Stoeckli S (2010) 18F-FDG-PET/CT versus panendoscopy for the detection of synchronous second primary tumours in patients with head and neck squamous cell carcinoma. Head Neck 32:319–325PubMedGoogle Scholar
  37. Han C, Chen Y, Lui A et al (2008) Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys 70:1256–1262PubMedCrossRefGoogle Scholar
  38. Hatakenaka M, Nakamura K, Yabuuchi H, Shioyama Y, Matsuo Y, Ohnishi K et al (2010) Pretreatment apparent diffusion coefficient of the primary lesion correlates with local failure in head and neck cancer treated with chemoradiotherapy or radiotherapy. Int J Radiat Oncol Biol Phys, doi: 10.1016/j.ijrobp.2010.05.051 (Epub ahead of print)
  39. Hentschel M, Appold S, Schreiber A, Abramyuk A, Abolmaali N, Kotzerke J et al (2009) Serial FDG-PET on patients with head and neck cancer: implications for radiation therapy. Int J Radiat Biol 85:796–804PubMedCrossRefGoogle Scholar
  40. Hermans R, Feron M, Bellon E et al (1998) Laryngeal tumor volume measurements determined with CT: a study on intra- and interobserver variability. Int J Radiat Oncol Biol Phys 40:553–557PubMedCrossRefGoogle Scholar
  41. Hermans R, Meijerink M, Van den Bogaert W et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57:1351–1356PubMedCrossRefGoogle Scholar
  42. Hustinx R, Lucignani G (2010) PET/CT in head and neck cancer: an update. Eur J Nucl Med Mol Imaging 37:645–651PubMedCrossRefGoogle Scholar
  43. Hwang H, Perez D, Orloff L (2009) Comparison of positron emission tomography/computed tomography imaging and ultrasound in staging and surveillance of head and neck and thyroid cancer. Laryngoscope 119:1958–1965PubMedCrossRefGoogle Scholar
  44. Jansen J, Schoder H, Lee N, Wang Y, Pfister D, Fury M, Stambuk H, Humm J, Koutcher J, Shukla-Dave A (2010) Noninvasive assessment of tumour microenvironment using dynamic contrast-enhanced magnetic resonance imaging and (18)F-fluoro-misonidazole positron emission tomography imaging in neck nodal metastases. Int J Radiat Oncol Biol Phys 77:1403–1410PubMedCrossRefGoogle Scholar
  45. Kam M, Leung S, Zee B, Chau R, Suen J, Mo F et al (2007) Prospective randomized study of intensity-modulated radiotherapy on salivary gland function in early-stage nasopharyngeal cancer patients. J Clin Oncol 25:4873–4879PubMedCrossRefGoogle Scholar
  46. Kim S, Loevner L, Quon H et al (2009) Diffusion-weighted magnetic resonance imaging for predicting and detecting of early response to chemoradiation therapy of squamous cell carcinoma of the head and neck. Clin Cancer Res 15:986–994PubMedCrossRefGoogle Scholar
  47. Koh W, Rasey J, Evans M et al (1992) Imaging of hypoxia in human tumors with [F-18] fluoromisonidazole. Int J Radiat Oncol Biol Phys 22:199-212PubMedCrossRefGoogle Scholar
  48. Koshy M, Paulino A, Howell R, Schuster D, Halkar R, Davis L (2005) F-18 FDG PET-CT fusion in radiotherapy treatment planning for head and neck cancer. Head Neck 27:494–502PubMedCrossRefGoogle Scholar
  49. Kubota R, Kubota K, Yamada S et al (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492PubMedGoogle Scholar
  50. Kyzas P, Evangelou E, Denaxa-Kyza D, Ioannidis J (2008) 18F-Fluorodeoxyglucose positron emission tomography to evaluate cervical node metastases in patients with head and neck squamous cell carcinoma: a meta-analysis. JNCI 100:712–720PubMedGoogle Scholar
  51. Laudenbacher C, Saumweber D, Wagner-Manslau C et al (1995) Comparison of fluorine-18-deoxyglucose PET, MRI and endoscopy for staging head and neck squamous-cell carcinomas. J Nucl Med 36:1747–1757Google Scholar
  52. Lee N, Nehmeh S, Schoder H, Fury M, Chan K, Ling C et al (2009) Prospective trial incorporating pre-/mid-treatment (18F)-misonidazole positron emission tomography for head and neck cancer patients undergoing concurrent chemoradiotherapy. Int J Radiat Oncol Biol Phys 75:101–108PubMedCrossRefGoogle Scholar
  53. Lehtio K, Oikonen V, Gronroos T et al (2001) Imaging of blood flow and hypoxia in head and neck cancer: initial evaluation with 15OH2O and 18F fluoroerythonitroimidazole PET. J Nucl Med 42:1643–1652PubMedGoogle Scholar
  54. Ling CC, Humn J, Larson S et al (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560PubMedCrossRefGoogle Scholar
  55. Mahfouz M, Rodrigo J, Takes R, Elsheikh M, Rinaldo A, Brakenhoff R, Ferlito A (2010) Current potential and limitations of molecular diagnostic methods in head and neck cancer. Eur Arch Otorhin 267:851–860CrossRefGoogle Scholar
  56. Manikantan K, Khode S, Dwivedi R, Palav R, Nutting C, Rhys-Evans P, Harrington K, Kazi R (2009) Making sense of post-treatment surveillance in head and neck cancer: when and what of follow-up. Cancer Treat Rev 35:744–753PubMedCrossRefGoogle Scholar
  57. Moeller B, Rana V, Cannon B, Williams M, Sturgis E, Ginsberg L et al (2010) Prospective imaging assessment of mortality risk after head and neck radiotherapy. Int J Radiat Oncol Biol Phys 78:667–674PubMedCrossRefGoogle Scholar
  58. Murphy J, La T, Chu K, Quon A, Fischbein N, Maxim P, Graves E, Loo B, Le Q-T (2010) Postradiation metabolic tumour volume predicts outcome in head and neck cancer. Int J Radiat Oncol Biol Phys, doi: 10.1016/j.ijrobp.2010.01.057 (Epub ahead of print)
  59. Nishioka T, Shiga T, Shirato H et al (2002) Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 53:1051–1057PubMedCrossRefGoogle Scholar
  60. Nordsmark M, Overgaard J (2004) Tumor hypoxia is independent of hemoglobin and prognostic for loco-regional tumor control after primary radiotherapy in advanced head and neck cancer. Acta Oncol 43:396–403PubMedCrossRefGoogle Scholar
  61. Paulino A, Koshy M, Howell R et al (2005) Comparison of CT- and FDG-PET-defined gross tumor volume in intensity-modulated radiotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 61:1385–1392PubMedCrossRefGoogle Scholar
  62. Pouliot J, Xia P, Langen K et al. (2003) Dose-guided radiation therapy using low-dose megavoltage con-beam CT. In: 44th annual AAPM annual meeting, San Diego, Med PhysGoogle Scholar
  63. Pow E, Kwong D, McMillan A, Wong M, Sham J, Leung L et al (2006) Xerostomia and quality of life after intensity-modulated radiotherapy vs. conventional radiotherapy for early-stage nasopharyngeal carcinoma: initial report on a randomized controlled clinical trial. Int J Radiat Oncol Biol Phys 66:981–991PubMedCrossRefGoogle Scholar
  64. Rasey J, Hofstrand P, Chin L et al (1999) Characterization of 18F fluoroetanidazole, a new radiopharmaceutical for detecting tumor hypoxia. J Nucl Med 40:1072–1079PubMedGoogle Scholar
  65. Rash C, Keus R, Pameijer F et al (1997) The potential impact of CT-MRI matching on tumor volume delineation in advanced head and neck cancer. Int J Radiat Oncol Biol Phys 39:841–848CrossRefGoogle Scholar
  66. Rodrigues R, Bozza F, Christian P, Hoffman J, Butterfield R, Christensen C et al (2009) Comparison of whole-body FDG-PET/CT, dedicated high-resolution head and neck FDG-PET/CT, and contrast-enhanced CT in preoperative staging of clinically M0 squamous cell carcinoma of the head and neck. J Nucl Med 50:1205–1213PubMedCrossRefGoogle Scholar
  67. Scarfone C, Lavely W, Cmelak A et al (2004) Prospective feasibility trial of radiotherapy target definition for head and neck cancer using 3-dimensional PET and CT imaging. J Nucl Med 45:543–552PubMedGoogle Scholar
  68. Schinagl D, Hoffmann A, Vogel W, van Dalen J, Verstappen S, Oyen W et al (2009) Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head and neck cancer? Radiother Oncol 91:95–100PubMedCrossRefGoogle Scholar
  69. Senft A, de Bree R, Hoekstra O, Kuik D, Golding R, Oyen W et al (2008) Screening for distant metastases in head and neck cancer patients by chest CT or whole body FDG-PET: a prospective multicentre trial. Radiother Oncol 87:221–229PubMedCrossRefGoogle Scholar
  70. Shields A, Grierson J, Dohmen B et al (1998) Imaging proliferation in vivo with 18F FLT and positron emission tomography. Nat Med 4:1334–1336PubMedCrossRefGoogle Scholar
  71. Stoeckli S, Steinert H, Pfaltz M et al (2002) Is there a role for positron emission tomography with 18F-fluorodeoxyglucose in the initial staging of nodal negative oral and oropharyngeal squamous cell carcinoma. Head Neck 24:345–349PubMedCrossRefGoogle Scholar
  72. Syed R, Bomanji J, Nagabhushan N et al (2005) Impact of combined 18F-FDG PET/CT in head and neck tumours. Br J Cancer 92:1046–1050PubMedCrossRefGoogle Scholar
  73. Thoeny HC, De Keyzer F, Claus FG, Sunaert S, Hermans R (2005) Gustatory stimulation changes the apparent diffusion coefficient of salivary glands: initial experience. Radiology 235:629–634PubMedCrossRefGoogle Scholar
  74. Troost E, Schinagl D, Bussink J, Oyen W, Kaanders W (2010a) Clinical evidence on PET-CT for radiation therapy planning in head and neck tumours. Radiother Oncol 96:328–334PubMedCrossRefGoogle Scholar
  75. Troost E, Bussink J, Hoffmann A, Boerman O, Oyen W, Kaanders J (2010b) 18F-FLT PET/CT for early response monitoring and dose escalation in oropharyngeal tumours. J Nucl Med 51:866–874PubMedCrossRefGoogle Scholar
  76. Van de Wiele C, Lahorte C, Vermeersch H et al (2003) Quantitative tumor apoptosis imaging using Technetium-99m-HYNIC Annexin V single photon emission computed tomography. J Clin Oncol 21:3483–3487PubMedCrossRefGoogle Scholar
  77. Vandecaveye V, De Keyzer F, Nuyts S et al (2007) Detection of head and neck squamous cell carcinoma with diffusion weighted MRI after (chemo)radiotherapy: correlation between radiologic and histopathologic findings. Int J Radiat Oncol Biol Phys 67:960–971PubMedCrossRefGoogle Scholar
  78. Vandecaveye V, De Keyzer F, Vander Poorten V et al (2009) Head and neck squamous cell carcinoma: value of diffusion-weighted MR imaging for nodal staging. Radiol 251:134–146CrossRefGoogle Scholar
  79. Welsh J, Patel R, Ritter M et al (2002) Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat 1:311–316PubMedGoogle Scholar
  80. Yang D, Wallace S, Cherif A et al (1995) Development of F-18-labeled fluoroerythonitroimidazole as a PET agent for imaging tumor hypoxia. Radiology 194:795–800PubMedGoogle Scholar
  81. Yu H, Caldwell C, Mah K, Poon I, Balogh J, MacKenzie R et al (2009) Automated radiation targeting in head and neck cancer using region-based texture analysis of PET and CT images. Int J Radiat Oncol Biol Phys 75:618–625PubMedCrossRefGoogle Scholar
  82. Ziemer L, Evans S, Kachur A et al (2003) Noninvasive imaging of tumor hypoxia in rats using 2-nitroimidazole 18F-EF5. Eur J Nucl Med Mol Imaging 30:259–266PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Hospital GasthuisbergLeuvenBelgium
  2. 2.Department of Radiation OncologyCross Cancer InstituteEdmontonCanada

Personalised recommendations