Physics and Clinical Aspects of Brachytherapy

Part of the Medical Radiology book series (MEDRAD)


Brachytherapy was the original intensity‐modulated radiotherapy, providing the ability to deliver high doses to custom‐shaped targets while preserving normal, neighboring structures. Brachytherapy has many manifestations, for example permanent implants and treatments using high‐dose rate and remote afterloaders. The treatments may be executed by placement of needles or catheters into a tumor or placement of the sources in body cavities near the tumor. The choice of sources, approaches and techniques should be dictated by the patient’s presentation. The rate of treatment delivery affects both the biological results of the radiation and the physical facets of therapy. Biologically, low‐dose rate treatments tend to be relatively gentler to normal tissues but high‐dose rate approaches provide more stable and precise dose distributions. Most commonly, dose distribution calculations follow the protocol of Task Group 43 of the American Association of Physicists in Medicine, computing the doses or dose rates in space from each source separately and adding them together to obtain the composite. At the time of writing, commercial treatment planning systems have just begun to incorporate computational algorithms that can include the effects of tissue composition and density. Brachytherapy has moved from simple localization using planar images from radiographs that identify source positions and skeletal anatomy to volume imaging that also shows soft tissues and allows identification of target and normal tissue structures. Physiological and molecular imaging can further enhance the ability to shape target volumes, just as with external‐beam treatments. Treatment planning entails decisions on the approach to the brachytherapy. The classical systems, such as the Paris or Manchester systems, provide guidance for source or needle distributions that results in more controlled dose distributions from the modern optimization routines. These systems, along with other measures of implant quality, also serve as benchmarks for quality‐assurance evaluations of an application.


Planning Target Volume Dose Distribution Clinical Target Volume Nuclear Regulatory Commission Brachytherapy Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Anacak Y, Esassolak M, Aydm A, Aras A, Olacak I, Haydaroglu A (1997) Effect of geometrical optimization on the treatment volumes and the dose homogeneity of biplane interstitial brachytherapy implants. Radiother Oncol 45:71–76PubMedCrossRefGoogle Scholar
  2. Antipas V, Dale RG, Coles IP (2001) A theoretical investigation into the role of tumour radiosensitivity, clonogen repopulation, tumour shrinkage and radionuclide RBE in permanent brachytherapy implants of 125I and 103Pd. Phys Med Biol 46:2557–2569PubMedCrossRefGoogle Scholar
  3. Baltas D, Kolotas C, Geramani K, Mould RF, Ioannidis G, Kekchidi M, Zamboglou N (1998) A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys 40:515–524PubMedCrossRefGoogle Scholar
  4. Baltas D, Sakelliou L, Zamboglou N (2007) The physics of modern brachytherapy for oncology. Taylor and Francis Group, Boca RatonGoogle Scholar
  5. Beaulieu L, Carlsson Tedgren Å, Carrier J-F, Davis S, Mourtada F, Rivard M, Thomson R, Verhaegen F (2011) Report of AAPM TG-186 and GEC-ESTRO on model-based dose calculation techniques in brachytherapy: status and clinical requirements for implementation beyond the TG-43 formalism. (Submitted to Med Phys)Google Scholar
  6. Brenner DJ, Hall EJ, Randers-Pehrson G, Huang Y, Johnson GW, Miller RW, Wu B, Vazquez ME, Medvedovsky C, Worgul BV (1996) Quantitative comparisons of continuous and pulsed low dose rate regimens in a model late-effect system. Int J Radiat Oncol Biol Phys 34:905–910PubMedCrossRefGoogle Scholar
  7. Brenner DJ, Schiff PB, Huang Y, Hall EJ (1997) Pulsed-dose-rate brachytherapy: design of convenient (daytime-only) schedules. Int J Radiat Oncol Biol Phys 39:809–815PubMedCrossRefGoogle Scholar
  8. British committee on radiation units and measurements (BCRUM) (1984) Specification of Brachytherapy sources. Brit J Radiol 57:941-942Google Scholar
  9. Butler WM, Bice WS Jr, DeWerd LA, Hevezi JM, Huq MS, Ibbott GS, Palta JR, Rivard MJ, Seuntjens JP, Thomadsen BR (2008) Third-party brachytherapy source calibrations and physicist responsibilities: report of the AAPM low energy brachytherapy source calibration working group. Med Phys 35:3860–3865PubMedCrossRefGoogle Scholar
  10. Chen CZ, Huang Y, Hall EJ, Brenner DJ (1997) Pulsed brachytherapy as a substitute for continuous low dose rate: an in vitro study with human carcinoma cells. Int J Radiat Oncol Biol Phys 37:137–143PubMedCrossRefGoogle Scholar
  11. Chibani O, Williamson JF, Todor D (2005) Dosimetric effects of seed anisotropy and interseed attenuation for 103Pd and 125I prostate implants. Med Phys 32:2557–2566PubMedCrossRefGoogle Scholar
  12. Comité Francais Measure des Rayonnements Ionisants (CFMRI) (1983) Recommendations pour la determination des doses absorbees en curietherapie: report no. 1Google Scholar
  13. Cormack RA (2008) Quality assurance issues for computed tomography-, ultrasound–, and magnetic resonance imaging-guided brachytherapy. Int J Radiat Oncol Biol Phys 71:S136–S141PubMedCrossRefGoogle Scholar
  14. Crusinberry RA, Kramolowsky EV, Loening SA (1985) Percutaneous transperineal placement of gold 198 seeds for treatment of carcinoma of the prostate. Prostate 11:59–67CrossRefGoogle Scholar
  15. Das RK, Mishra V, Perera H, Meigooni AS, Williamson JF (1995) A secondary air kerma strength standard for Yb-169 interstitial brachytherapy sources. Phys Med Biol 40:741–756PubMedCrossRefGoogle Scholar
  16. Dawson JE, Wu T, Roy T, Gu JY, Kim H (1994) Dose effects of seeds placement deviations from pre-planned positions in ultrasound guided prostate implants. Radiother Oncol 32:268–270PubMedCrossRefGoogle Scholar
  17. DeMarco JJ, Smathers JB, Burnison CM, Ncube QK, Solberg TD (1999) CT-based dosimetry calculations for 125I prostate implants. Int J Radiat Oncol Biol Phys 45:1347–1353PubMedCrossRefGoogle Scholar
  18. Edmundson GK (1994) Geometry-based optimization: an American viewpoint. In: Mould RJ, Batterman J (eds) Brachytherapy: from radium to optimization. Nucletron, Columbia, pp 314–318Google Scholar
  19. Ezzell G, Luthmann RW (1995) Clinical implementation of dwell time optimization techniques. In: Williamson JF, Thomadsen BR, Nath R (eds) Brachytherapy Physics. Medical Physics Publishing, MadisonGoogle Scholar
  20. Ezzell G (2005) Optimization in brachytherapy. In: Thomadsen BR, Rivard MJ, Butler WM (eds) Brachytherapy physics, 2nd edn. Medical Physics Publishing, MadisonGoogle Scholar
  21. Gerbaulet A, Pötter R, Mazeron J-J, Meertens H, Van Limbergen E (2002) The GEC ESTRO Handbook of brachytherapy. ESTRO, BrusselsGoogle Scholar
  22. Hochstetler JA, Kreder KJ, Brown CK, Loening SA (1995) Survival of patients with localized prostate cancer treated with percutaneous transperineal placement of radioactive gold seeds: stages A2, B, and C. Prostate 26:316–324PubMedCrossRefGoogle Scholar
  23. International Commission on Radiation Units and Measurements (ICRU) (1985) Report 38: dose and volume specification for reporting intracavitary therapy in gynecology. International Commission on Radiation Units and Measures, BethesdaGoogle Scholar
  24. International Commission on Radiation Units and Measurements (ICRU) (1993) Report 50: prescribing, recording, and reporting photon beam therapy. International Commission on Radiation Units and Measures, BethesdaGoogle Scholar
  25. International Commission on Radiation Units and Measurements (ICRU) (1997) Report 58: dose and volume specification for reporting interstitial therapy. International Commission on Radiation Units and Measures, BethesdaGoogle Scholar
  26. Interstitial Collaborative Working Group (1990) In: Anderson LL, Nath R, Weaver K, Nori D, Phillips T, Son Y, Chiu-Tsao S-T, Meigooni A, Meli J, Smith V (eds) Interstitial brachytherapy: physical, biological and clinical considerations. New York, Raven Google Scholar
  27. Kini VR, Edmundson GK, Vicini FA, Jaffray DA, Gustafson G, Martinez AA (1999) Use of three-dimensional radiation therapy planning tools and intraoperative ultrasound to evaluate high dose rate prostate brachytherapy implants. Int J Radiat Oncol Biol Phys 43:571–578PubMedCrossRefGoogle Scholar
  28. Kubo HD, Glasgow G, Pethel T, Thomadsen B, Williamson J (1998) High dose-rate brachytherapy treatment delivery: report of the AAPM radiation therapy committee task group 59. Med Phys 25:375–403PubMedCrossRefGoogle Scholar
  29. Kutcher GJ, Coia L, Gillin M, Hanson WF, Leibel S, Morton RJ, Palta JR, Purdy JA, Reinstein LE, Svensson GK et al (1994) Comprehensive QA for radiation oncology: report of AAPM radiation therapy committee task group 40. Med Phys 21:581–618PubMedCrossRefGoogle Scholar
  30. Lahanas M, Baltas D, Giannouli S (2003) Global convergence analysis of fast multiobjective gradient-based dose optimization algorithms for high-dose-rate brachytherapy. Phys Med Biol 48:599–617PubMedCrossRefGoogle Scholar
  31. Lessard E, Pouliot J (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 28:773–779PubMedCrossRefGoogle Scholar
  32. Li Z (2005) QA review of brachytherapy treatment plans. In: Thomadsen BR, Rivard MJ, Butler WM (eds) Brachytherapy physics, 2nd edn. Medical Physics Publishing, Madison, pp 435–457Google Scholar
  33. Ling CC (1992) Permanent implants using Au-198, Pd-103 and I-125: radiobiological considerations based on the linear quadratic model. Int J Radiat Oncol Biol Phys 23:81–87PubMedCrossRefGoogle Scholar
  34. Ling CC, Li WX, Anderson LL (1995) The relative biological effectiveness of I-125 and Pd-103. Int J Radiat Oncol Biol Phys 32:373–378PubMedCrossRefGoogle Scholar
  35. Markman J, Williamson JF, Dempsey JF, Low DA (2001) On the validity of the superposition principle in dose calculations for intracavitary implants with shielded vaginal colpostats. Med Phys 28:147–155PubMedCrossRefGoogle Scholar
  36. Mason DL, Battista JJ, Barnett RB, Porter AT (1992) Ytterbium-169: calculated physical properties of a new radiation source for brachytherapy. Med Phys 19:695–703PubMedCrossRefGoogle Scholar
  37. Meigooni AS, Meli JA, Nath R (1992) Interseed effects on dose for 125I brachytherapy implants. Med Phys 19:385–390PubMedCrossRefGoogle Scholar
  38. Milickovic N, Lahanas M, Papagiannopoulo M, Zamboglou N, Baltas D (2002) Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol 47:2263–2280PubMedCrossRefGoogle Scholar
  39. Murphy MK, Piper RK, Greenwood LR, Mitch MG, Lamperti PJ, Seltzer SM, Bales MJ, Phillips MH (2004) Evaluation of the new cesium-131 seed for use in low-energy X-ray brachytherapy. Med Phys 31:1529–1538PubMedCrossRefGoogle Scholar
  40. Mutic S, Palta JR, Butker EK, Das IJ, Huq MS, Loo LND et al (2003) Quality assurance for computed-tomography simulators and the computed tomography-simulation process: report of the AAPM radiation therapy committee task group no. 66. Med Phys 30:2762–2792PubMedCrossRefGoogle Scholar
  41. Nath R, Anderson LL, Jones D, Ling C, Loevinger R, Williamson J, Hanson W (1987) Specification Brachytherapy Source Strength: report of AAPM task group 32. American Institute of Physics, College ParkGoogle Scholar
  42. Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM radiation therapy committee task group no. 43. American association of physicists in medicine. Med Phys 22:209–234PubMedCrossRefGoogle Scholar
  43. Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: report of the AAPM radiation therapy committee task group no. 56. American association of physicists in medicine. Med Phys 24:1557–1598PubMedCrossRefGoogle Scholar
  44. Nath S, Chen Z, Yue N, Trumpore S, Peschel R (2000) Dosimetric effects of needle divergence in prostate seed implant using 125I and 103Pd radioactive seeds. Med Phys 27:1058–1066PubMedCrossRefGoogle Scholar
  45. Nath R, Bongiorni P, Chen Z, Gragnano J, Rockwell S (2005) Relative biological effectiveness of 103Pd and 125I photons for continuous low-dose-rate irradiation of Chinese hamster cells. Radiat Res 163:501–509PubMedCrossRefGoogle Scholar
  46. National Council on Radiation Protection and Measurements (NCRP) (1974) Report 41: specification of gamma-ray brachytherapy sources, Washington DCGoogle Scholar
  47. Paterson R, Parker H (1934) A dosage system for gamma-ray therapy. Brit J Radiol 7:592–612CrossRefGoogle Scholar
  48. Paterson R, Parker H (1938) A dosage system for interstitial radium therapy. Brit J Radiol 11:252–266, 313–340CrossRefGoogle Scholar
  49. Perera H, Williamson JF, Li Z, Mishra V, Meigooni AS (1994) Dosimetric characteristics, air-kerma-strength calibration and verification of Monte Carlo simulation for a new Ytterbium-169 brachytherapy source. Int J Radiat Oncol Biol Phys 28:953–970PubMedCrossRefGoogle Scholar
  50. Pierquin B, Marinello G (1997) A practical manual of brachytherapy. Medical Physics Publishing, MadisonGoogle Scholar
  51. Pierquin B, Dutreix A, Paine CH, Chassagne D, Marinello G, Ash D (1978) The Paris system in interstitial radiation therapy. Acta Radiol Oncol Radiat Phys Biol 17:33–48PubMedGoogle Scholar
  52. Polo A, Salembier C, Venselaar J, Hoskin P, group of the GEC ESTRO (2010) Review of intraoperative imaging and planning techniques in permanent seed prostate brachytherapy. Radiother Oncol 94:12–23PubMedCrossRefGoogle Scholar
  53. Quimby E (1944) Dosage table for linear radium sources. Am J Roentgen 43:572–577Google Scholar
  54. Qumby EH (1952) Dosage calculations with radioactive materials. In: Glasser O, Quimby EH, Taylor LS, Weatherwax JL, Morgan RH (eds) Physical foundations of radiology, 2rd. Hoeber Medical Division, Harper & Row, New York, pp 339–372Google Scholar
  55. Radiological Physics Center (RPC) (2011) Accessed 27 June 2011
  56. Rivard MJ (2005) The TG-43 brachytherapy dose calculation formalism. In: Thomadsen BR, Rivard MJ, Butler WM (eds) Brachytherapy Physics, 2nd edn. Medical Physics Publishing for the American Association of Physicists in Medicine, Madison, pp 295–324Google Scholar
  57. Rivard MJ, Butler WM, DeWerd LA, Huq MS, Ibbott GS, Meigooni AS, Melhus CS, Mitch MG, Nath R, Williamson JF, and American Association of Physicists in Medicine (2007) Supplement to the 2004 update of the AAPM task group no. 43 report. Med Phys 34: 2187–2205Google Scholar
  58. Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Huq MS, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31:633–674PubMedCrossRefGoogle Scholar
  59. Rivard MJ, Melhus CS, Williamson JF (2009a) Brachytherapy dose calculation formalism, dataset evaluation, and treatment planning system implementation. In: Rogers DWO, Cygler JE (eds) Clinical dosimetry for radiotherapy: AAPM summer school. Medical Physics Publishing, MadisonGoogle Scholar
  60. Rivard MJ, Beaulieu L, Venselaar JLM (2009b) The evolution of brachytherapy treatment planning. Med Phys 36:2136–2153PubMedCrossRefGoogle Scholar
  61. Saw C, Suntharalingham N (1988) Reference dose rates for single- and double-plane 192Ir implants. Med Phys 15:391–396PubMedCrossRefGoogle Scholar
  62. Seltzer SM, Lamperti PJ, Loevinger R, Mitch MG, Weaver JT, Coursey BM (2003) New national air-kerma-strength standards for 125I and 103Pd brachytherapy seeds. J Res Natl Inst Stand Technol 108:337–358CrossRefGoogle Scholar
  63. Shalek RJ, Stovall M (1969) Dosimetry in implant therapy. In: Attix FH, Roesch WC, Tochilin E (eds) Radiation dosimetry, 2nd VIII. Academic Press, New York, pp 743–807Google Scholar
  64. Siebert FA, Kohr P, Kovacs G (2005) The design and testing of a solid phantom for the verification of a commercial 3D seed reconstruction algorithm. Radiother Oncol 74:169–175PubMedCrossRefGoogle Scholar
  65. Siebert FA, De Brabandere M, Kirisits C, Kovacs G, Venselaar J (2007) Phantom investigations on CT seed imaging for interstitial brachytherapy. Radiother Oncol 85:316–323PubMedCrossRefGoogle Scholar
  66. Thomadsen B (1999) Achieving quality in brachytherapy. Taylor and Francis Group, OxfordGoogle Scholar
  67. Thomadsen B, Hendee E (1999) Brachytherapy radionuclides, dosimetry, and dose distributions. In: Hendee W (ed) Biomedical uses of radiation. John Wiley, New JerseyGoogle Scholar
  68. United States Nuclear Regulatory Commission (USNRC) (2011) Accessed 29 June 2011
  69. Van der Laarse R (1994) The stepping source dosimetry system as an extension of the Paris system. In: Mould RJ, Batterman J (eds) Brachytherapy: from radium to optimization. Nucletron, Columbia, pp 352–372Google Scholar
  70. van der Laarse R, Edmundson GK, Luthmann RW, Prins TPE. (1991) Optimization of HDR brachytherapy dose distributions. Activity–the selectron user’s newsletter 5:94–101Google Scholar
  71. van’t Riet A, Mak AC, Moerland MA, Elders LH, van der Zee W (1997) A conformation number to quantify the degree of conformality in brachytherapy and external beam irradiation: application to the prostate. Int J Radiat Oncol Biol Phys 37:731–736PubMedCrossRefGoogle Scholar
  72. Venselaar J, Pérez-Calatayud J (2004) A practical guide to quality control of brachytherapy equipment. ESTRO, Brussels. Free download:
  73. Visser AG, van den Aardweg GJ, Levendag PC (1996) Pulsed dose rate and fractionated high dose rate brachytherapy: choice of brachytherapy schedules to replace low dose rate treatments. Int J Radiat Oncol Biol Phys 34:497–505PubMedCrossRefGoogle Scholar
  74. Williamson JF (1998a) Monte Carlo-based dose-rate tables for the Amersham CDCS.J, 3M model 6500 137Cs tubes. Int J Radiat Oncol Biol Phys 41:959–970CrossRefGoogle Scholar
  75. Williamson JF (1998b) Clinical brachytherapy physics. In: Perez CA, Brady LW (eds) Principles and practice of radiation oncology, 3rd edn. Lippincott Williams and Wilkins, Philadelphia, pp 405–467Google Scholar
  76. Wuu CS, Zaider M (1998) A calculation of the relative biological effectiveness of 125I and 103Pd brachytherapy sources using the concept of proximity function. Med Phys 25:2186–2189PubMedCrossRefGoogle Scholar
  77. Wuu CS, Kliauga P, Zaider M, Amols HI (1996) Microdosimetric evaluation of relative biological effectiveness for 103Pd, 125I, 241Am, and 192Ir brachytherapy sources. Int J Radiat Oncol Biol Phys 36:689–697PubMedCrossRefGoogle Scholar
  78. Yue N, Heron DE, Komanduri K, Huq MS (2005) Prescription dose in permanent 131Cs seed prostate implants. Med Phys 32:2496–2502PubMedCrossRefGoogle Scholar
  79. Zhang H, Baker C, McKinsey R, Meigooni A (2005) Dose verification with Monte Carlo technique for prostate brachytherapy implants with (125) I sources. Med Dosim 30:85–89PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Departments of Medical Physics, Engineering Physics, Biomedical Engineering and Industrial and Systems EngineeringUniversity of WisconsinMadisonUSA
  2. 2.Department of Clinical PhysicsInstitute VerbeetenTilburgThe Netherlands
  3. 3.Department of Radiation Oncology, University of Florida Proton Therapy InstituteUniversity of FloridaJacksonvilleUSA

Personalised recommendations