MR Contrast Agents for Cardiac Imaging

  • Yicheng Ni
Part of the Medical Radiology book series (MEDRAD)


Thanks to the ever-advancing technologies, cardiac magnetic resonance imaging (MRI) has become a major diagnostic tool in clinical cardiology for acquisition of morphological, functional and metabolic information. However, it is of no doubt that only when complemented with the use of contrast agents, can cardiac MRI fully play its pivotal roles in clinical diagnosis and therapeutic decision-making. In particular, MR coronary angiography, perfusion mapping, and cellular membrane integrity or myocardial viability assessment rely more on the use of appropriate contrast agents. The current chapter aims to provide an overview on the main topics related to MRI contrast agents including the mechanisms of MRI contrast and contrast agents, classification of both commercially available and preclinically investigational contrast agents useful for cardiac MRI, as well as the general scope of contrast agent applications in relevant clinical practice and experimental research.


Magnetic Resonance Imaging Contrast Agent Cardiac Magnetic Resonance Imaging Magnetic Resonance Imaging Contrast Magnetic Resonance Imaging Signal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adzamli IK, Blau M, Pfeffer MA, Davis MA (1993) Phosphonate-modified Gd-DTPA complexes. III: The detection of myocardial infarction by MRI. Magn Reson Med 29:505–511PubMedCrossRefGoogle Scholar
  2. Ahlstrom KH, Johansson LO, Rodenburg JB, Ragnarsson AS, Akeson P, Borseth A (1999) Pulmonary MR angiography with ultrasmall superparamagnetic iron oxide particles as a blood pool agent and a navigator echo for respiratory gating: pilot study. Radiology 211:865–869PubMedGoogle Scholar
  3. Almen T (1994) The etiology of contrast medium reactions. Invest Radiol 29(suppl 1):S37–S45PubMedCrossRefGoogle Scholar
  4. Ardenkjaer-Larsen JH, Fridlund B, Gram A et al (2003) Increase in signal-to-noise ratio of >10, 000 times in liquid-state NMR Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A 100:10158–10163PubMedCrossRefGoogle Scholar
  5. Atkins H, Som LP, Fairchild RG et al (1979) Myocardial positron tomography with manganese-52 m. Radiology 133(3 Pt 1):769–774PubMedGoogle Scholar
  6. Barkhausen J, Ebert W, Debatin JF, Weinmann HJ (2002) Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 39(8):1392–1398PubMedCrossRefGoogle Scholar
  7. Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ (2003) Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 108(5):605–609PubMedCrossRefGoogle Scholar
  8. Bhattacharya P, Ross BD, Bunger R (2009) Cardiovascular applications of hyperpolarized contrast media and metabolic tracers. Exp Biol Med (Maywood) 234:1395–1416CrossRefGoogle Scholar
  9. Bianco JA, Kemper AJ, Taylor A, Lazewatsky J, Tow DE, Khuri SF (1983) Technetium-99m(Sn2+)pyrophosphate in ischemic and infarcted dog myocardium in early stages of acute coronary occlusion: histochemical and tissue-counting comparisons. J Nucl Med 24:485–491PubMedGoogle Scholar
  10. Bockhorst K, Hohn-Berlage M et al (1990) Proton relaxation enhancement in experimental brain tumors–in vivo NMR study of manganese(III)TPPS in rat brain gliomas. Magn Reson Imaging 8(4):499–504PubMedCrossRefGoogle Scholar
  11. Bogdanov AA Jr, Weissleder R, Frank HW et al (1993) A new macromolecule as a contrast agent for MR angiography: preparation, properties, and animal studies. Radiology 187:701–706PubMedGoogle Scholar
  12. Brasch RC (1991) Rationale and applications for macromolecular Gd-based contrast agents. Magn Reson Med 22:282–287 discussion 300–303PubMedCrossRefGoogle Scholar
  13. Bremerich J, Saeed M, Arheden H, Higgins CB, Wendland MF (2000) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530PubMedGoogle Scholar
  14. Brurok H, Ardenkjaer-Larsen JH, Hansson G et al (1999) Manganese dipyridoxyl diphosphate: MRI contrast agent with antioxidative and cardioprotective properties? Biochem Biophys Res Commun 254:768–772PubMedCrossRefGoogle Scholar
  15. Cannon PJ, Maudsley AA, Hilal SK, Simon HE, Cassidy F (1986) Sodium nuclear magnetic resonance imaging of myocardial tissue of dogs after coronary artery occlusion and reperfusion. J Am Coll Cardiol 7:573–579PubMedCrossRefGoogle Scholar
  16. Cavagna FM, Maggioni F, Castelli PM et al (1997) Gadolinium chelates with weak binding to serum proteins. A new class of high-efficiency, general purpose contrast agents for magnetic resonance imaging. Invest Radiol 32:780–796PubMedCrossRefGoogle Scholar
  17. Chambon C, Clement O, Le Blanche A, Schouman-Claeys E, Frija G (1993) Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging 11:509–519PubMedCrossRefGoogle Scholar
  18. Chauncey DM Jr, Schelbert HR, Halpern SE et al (1977) Tissue distribution studies with radioactive manganese: a potential agent for myocardial imaging. J Nucl Med 18:933–936PubMedGoogle Scholar
  19. Chen IY, Wu JC (2011) Cardiovascular molecular imaging: focus on clinical translation. Circulation 123:425–443PubMedCrossRefGoogle Scholar
  20. Chen CW, Cohen JS, Myers CE, Sohn M (1984) Paramagnetic metalloporphyrins as potential contrast agents in NMR imaging. FEBS Lett 168:70–74PubMedCrossRefGoogle Scholar
  21. Chiu CW, So NM, Lam WW, Chan KY, Sanderson JE (2003) Combined first-pass perfusion and viability study at MR imaging in patients with non-ST segment-elevation acute coronary syndromes: feasibility study. Radiology 226:717–722PubMedCrossRefGoogle Scholar
  22. Choi C (2002) Contrast washout by MRI identifies stunned myocardium in patients after reperfused myocardial infarction. J Cardiovasc Mag Res 4:19 (Abstract)Google Scholar
  23. Choi SI, Choi SH, Kim ST et al (2000) Irreversibly damaged myocardium at MR imaging with a necrotic tissue-specific contrast agent in a cat model. Radiology 215:863–868PubMedGoogle Scholar
  24. Cresens E, Ni Y et al (2001). Substituted bis-indole derivatives useful as contrast agents, pharmaceutical compositions containing them and intermediates for producing them. Patent Application number PCT/BE01/00192, USA patent 7081472Google Scholar
  25. de Haen C, Morisetti A, Bertani F, Tirone P (1994) The factor time in acute intravenous toxicity studies of contrast media. Invest Radiol 29(suppl 2):S108–S110PubMedGoogle Scholar
  26. Ebert E, Hofmann S (1992) Metallopophyrins: tumor-specific contrast agents? European Magnetic Resonance Forum Foundation. Hamburg, GermanyGoogle Scholar
  27. Elizondo G, Fretz CJ, Stark DD et al (1991) Preclinical evaluation of MnDPDP: new paramagnetic hepatobiliary contrast agent for MR imaging. Radiology 178:73–78PubMedGoogle Scholar
  28. Fayad ZA (2003) MR imaging for the noninvasive assessment of atherothrombotic plaques. Magn Reson Imaging Clin N Am 11:101–113PubMedCrossRefGoogle Scholar
  29. Fiel RJ, Musser DA, Mark EH, Mazurchuk R, Alletto JJ (1990) A comparative study of manganese meso-sulfonatophenyl porphyrins: contrast-enhancing agents for tumors. Magn Reson Imaging 8:255–259PubMedCrossRefGoogle Scholar
  30. Fishman JE, Joseph PM, Floyd TF, Mukherji B, Sloviter HA (1987) Oxygen-sensitive 19F NMR imaging of the vascular system in vivo. Magn Reson Imaging 5:279–285PubMedCrossRefGoogle Scholar
  31. Flacke S, Fischer S, Scott MJ et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104:1280–1285PubMedCrossRefGoogle Scholar
  32. Flacke S, Allen JS, Chia JM et al (2003) Characterization of viable and nonviable myocardium at MR imaging: comparison of gadolinium-based extracellular and blood pool contrast materials versus manganese-based contrast materials in a rat myocardial infarction model. Radiology 226:731–738PubMedCrossRefGoogle Scholar
  33. Fonge H, Vunckx K, Wang H et al (2008) Non-invasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I]iodohypericin microSPECT. Eur Heart J 29:260–269PubMedCrossRefGoogle Scholar
  34. Friedrich J, Apstein CS, Ingwall JS (1995) 31P nuclear magnetic resonance spectroscopic imaging of regions of remodeled myocardium in the infarcted rat heart. Circulation 92:3527–3538PubMedGoogle Scholar
  35. Furmanski P, Longley C (1988) Metalloporphyrin enhancement of magnetic resonance imaging of human tumor xenografts in nude mice. Cancer Res 48:4604–4610PubMedGoogle Scholar
  36. Golman K, Ardenkjaer-Larsen JH, Petersson J, Mansson S, Leunbach SI (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci U S A 100:10435–10439PubMedCrossRefGoogle Scholar
  37. Gomer CJ (1989) Photodynamic therapy in the treatment of malignancies. Semin Hematol 26:27–34PubMedGoogle Scholar
  38. Gore J (2003) Out of the shadows—MRI and the Nobel Prize. N Engl J Med 349:2290–2292PubMedCrossRefGoogle Scholar
  39. Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002) Evans blue dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200(Pt 1):69–79PubMedCrossRefGoogle Scholar
  40. Hawighorst H, Knapstein PG, Knopp MV, Vaupel P, van Kaick G (1999) Cervical carcinoma: standard and pharmacokinetic analysis of time-intensity curves for assessment of tumor angiogenesis and patient survival. Magma 8:55–62PubMedGoogle Scholar
  41. Herijgers P, Laycock SK, Ni Y et al (1997) Localization and determination of infarct size by Gd-Mesoporphyrin enhanced MRI in dogs. Int J Card Imaging 13:499–507PubMedCrossRefGoogle Scholar
  42. Heywang SH, Wolf A, Pruss E, Hilbertz T, Eiermann W, Permanetter W (1989) MR imaging of the breast with Gd-DTPA: use and limitations. Radiology 171:95–103PubMedGoogle Scholar
  43. Hindre F, Le Plouzennec M, de Certaines JD, Foultier M, Patrice TT, Simonneaux G (1993) Tetra-p-aminophenylporphyrin conjugated with Gd-DTPA: tumor-specific contrast agent for MR imaging. J Magn Reson Imaging 3:59–65PubMedCrossRefGoogle Scholar
  44. Hofmann B, Bogdanov A Jr, Marecos E, Ebert W, Semmler W, Weissleder R (1999) Mechanism of gadophrin-2 accumulation in tumor necrosis. J Magn Reson Imaging 9:336–341PubMedCrossRefGoogle Scholar
  45. Hunold P, Schlosser T, Vogt FM et al (2005) Myocardial late enhancement in contrast-enhanced cardiac MRI: distinction between infarction scar and non-infarction-related disease. AJR Am J Roentgenol 184:1420–1426PubMedGoogle Scholar
  46. Hustvedt SO, Grant D, Southon TE, Zech K (1997) Plasma pharmacokinetics, tissue distribution and excretion of MnDPDP in the rat and dog after intravenous administration. Acta Radiol 38(4 Pt 2):690–699PubMedGoogle Scholar
  47. Jaffer FA, Weissleder R (2004) Seeing within: molecular imaging of the cardiovascular system. Circ Res 94:433–435PubMedCrossRefGoogle Scholar
  48. Jeong AK, Choi SI, Kim DH et al (2001) Evaluation by contrast-enhanced MR imaging of the lateral border zone in reperfused myocardial infarction in a cat model. Korean J Radiol 2:21–27PubMedCrossRefGoogle Scholar
  49. Jin J, Teng G, Feng Y et al (2007) Magnetic resonance imaging of acute reperfused myocardial infarction: intraindividual comparison of ECIII-60 and Gd-DTPA in a swine model. Cardiovasc Intervent Radiol 30:248–256PubMedCrossRefGoogle Scholar
  50. Johansson LO, Bjornerud A, Ahlstrom HK, Ladd DL, Fujii DK (2001) A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J Magn Reson Imaging 13:615–618PubMedCrossRefGoogle Scholar
  51. Judd RM, Kim RJ (2002) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 106 (e6) author reply e6Google Scholar
  52. Kaiser WA, Zeitler E (1989) MR imaging of the breast: fast imaging sequences with and without Gd-DTPA. Preliminary observations. Radiology 170(3 Pt 1):681–686PubMedGoogle Scholar
  53. Karlsson JO, Brurok H, Eriksen M et al (2001) Cardioprotective effects of the MR contrast agent MnDPDP and its metabolite MnPLED upon reperfusion of the ischemic porcine myocardium. Acta Radiol 42:540–547PubMedCrossRefGoogle Scholar
  54. Kessel D (1984) Porphyrin localization: a new modality for detection and therapy of tumors. Biochem Pharmacol 33:1389–1393PubMedCrossRefGoogle Scholar
  55. Khaw BA, Strauss HW, Moore R et al (1987) Myocardial damage delineated by indium-111 antimyosin Fab and technetium-99m pyrophosphate. J Nucl Med 28:76–82PubMedGoogle Scholar
  56. Kim RJ, Lima JA, Chen EL et al (1997) Fast 23Na magnetic resonance imaging of acute reperfused myocardial infarction. Potential to assess myocardial viability. Circulation 95:1877–1885PubMedGoogle Scholar
  57. Kim RJ, Judd RM, Chen EL, Fieno DS, Parrish TB, Lima JA (1999) Relationship of elevated 23Na magnetic resonance image intensity to infarct size after acute reperfused myocardial infarction. Circulation 100:185–192PubMedGoogle Scholar
  58. Kim RJ, Wu E, Rafael A et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  59. Kooi ME, Cappendijk VC, Cleutjens KB et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107:2453–2458PubMedCrossRefGoogle Scholar
  60. Kraitchman DL, Heldman AW, Atalar E et al (2003) In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107:2290–2293PubMedCrossRefGoogle Scholar
  61. Krombach GA, Higgins CB, Gunther RW, Kuhne T, Saeed M (2002) MR contrast media for cardiovascular imaging. Rofo 174:819–829PubMedCrossRefGoogle Scholar
  62. Krombach GA, Saeed M, Higgins CB, Novikov V, Wendland MF (2004) Contrast-enhanced MR delineation of stunned myocardium with administration of MnCl(2) in rats. Radiology 230:183–190PubMedCrossRefGoogle Scholar
  63. Kuhl HP, Spuentrup E, Wall A et al (2004) Assessment of myocardial function with interactive non-breath-hold real-time MR imaging: comparison with echocardiography and breath-hold Cine MR imaging. Radiology 231:198–207PubMedCrossRefGoogle Scholar
  64. La Noce A, Stoelben S, Scheffler K et al (2002) B22956/1, a new intravascular contrast agent for MRI: first administration to humans—preliminary results. Acad Radiol 9(suppl 2):S404–S406PubMedCrossRefGoogle Scholar
  65. Lauffer RB (1991) Targeted relaxation enhancement agents for MRI. Magn Reson Med 22:339–342 (discussion 343–346)PubMedCrossRefGoogle Scholar
  66. Lauffer RB, Parmelee DJ, Dunham SU et al (1998) MS-325: albumin-targeted contrast agent for MR angiography. Radiology 207:529–538PubMedGoogle Scholar
  67. Lauterbur P, Mendonca Dias H, Rudin A (1978) Augmentation of tissue proton spin-lattice relaxation rates by in vivo addition of paramagnetic ions. In: LJ Dutton PO, Scarpa A (eds) Frontiers of biological energetics. Academic Press, New York, pp 752–759Google Scholar
  68. Li J, Sun Z, Zhang J, et al (2011) A dual targeting anticancer approach: soil and seed principle. Radiology, published online before print on June 28, doi:10.1148Google Scholar
  69. Lim TH, Choi SI (1999) MRI of myocardial infarction. J Magn Reson Imaging 10:686–693PubMedCrossRefGoogle Scholar
  70. Lund GK, Higgins CB, Wendland MF, Watzinger N, Weinmann HJ, Saeed M (2001) Assessment of nicorandil therapy in ischemic myocardial injury by using contrast-enhanced and functional MR imaging. Radiology 221:676–682PubMedCrossRefGoogle Scholar
  71. Manka R, Paetsch I, Schnackenburg B, Gebker R, Fleck E, Jahnke C (2010) BOLD cardiovascular magnetic resonance at 3.0 tesla in myocardial ischemia. J Cardiovasc Magn Reson 12:54PubMedCrossRefGoogle Scholar
  72. Marchal G and Ni Y (2000) Use of porphyrin-complex or expanded porphyrin-complex as an infarction localization diagnosticum. US patent No. 6,013,241Google Scholar
  73. Marchal G, Ni Y, Herijgers P et al (1996) Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by MRI. Eur Radiol 6:2–8PubMedCrossRefGoogle Scholar
  74. Marchal G, Verbruggen A, Ni Y, Adriaens P, Cresens E (1999) Non-porphyrin compounds for use as a diagnosticum and/or pharmaceutical, Belgium, International application No. PCT/BE99/00104Google Scholar
  75. Mayo-Smith WW, Saini S, Slater G, Kaufman JA, Sharma P, Hahn PF (1996) MR contrast material for vascular enhancement: value of superparamagnetic iron oxide. Am J Roentgenol 166:73–77Google Scholar
  76. Misselwitz B, Schmitt-Willich H, Ebert W, Frenzel T, Weinmann HJ (2001) Pharmacokinetics of Gadomer-17, a new dendritic magnetic resonance contrast agent. Magma 12:128–134PubMedCrossRefGoogle Scholar
  77. Nelson JA, Schmiedl U (1991) Porphyrins as contrast media. Magn Reson Med 22:366–371 (discussion 378)PubMedCrossRefGoogle Scholar
  78. Nelson JA, Schmiedl U, Shankland EG (1990) Metalloporphyrins as tumor-seeking MRI contrast media and as potential selective treatment sensitizers. Invest Radiol 25(suppl 1):S71–S73PubMedGoogle Scholar
  79. Ni Y (1998) Myocardial viability. In: Bogaert JDA, Rademakers FE (eds) Magnetic resonance of the heart and great vessels: clinical applications. Medical Radiology—diagnostic imaging and radiation oncology. Springer, Berlin, pp 113–132Google Scholar
  80. Ni Y (2008) Metalloporphyrins and functional analogues as MRI contrast agents. Curr Med Imaging Rev 4:96–112CrossRefGoogle Scholar
  81. Ni Y, Marchal G, van Damme B et al (1992) Magnetic resonance imaging, microangiography, and histology in a rat model of primary liver cancer. Invest Radiol 27:689–697PubMedCrossRefGoogle Scholar
  82. Ni Y, Marchal G, Petré C et al (1994) Metalloporphyrin enhanced magnetic resonance imaging of acute myocardial infarction (abstract). Circulation 90:I–468Google Scholar
  83. Ni Y, Marchal G, Yu J et al (1995) Localization of metalloporphyrin-induced “specific” enhancement in experimental liver tumors: comparison of magnetic resonance imaging, microangiographic, and histologic findings. Acad Radiol 2:687–699PubMedCrossRefGoogle Scholar
  84. Ni Y, Marchal G, Herijgers P et al (1996) Paramagnetic metalloporphyrins: from enhancers of malignant tumors to markers of myocardial infarcts. Acad Radiol 3(suppl 2):S395–S397PubMedCrossRefGoogle Scholar
  85. Ni Y, Miao Y, Bosmans H et al (1997a) Evaluation of interventional liver tumor ablation with Gd-mesoporphyrin enhanced magnetic resonance imaging (abstract). Radiology 205(P):319Google Scholar
  86. Ni Y, Petre C, Miao Y et al (1997b) Magnetic resonance imaging-histomorphologic correlation studies on paramagnetic metalloporphyrins in rat models of necrosis. Invest Radiol 32:770–779PubMedCrossRefGoogle Scholar
  87. Ni Y, Pislaru C, Bosmans H et al (1998) Validation of intracoronary delivery of metalloporphyrin as an in vivo “histochemical staining” for myocardial infarction with MR imaging. Acad Radiol suppl 5(1):S37–S41 (discussion S45–S46)Google Scholar
  88. Ni Y, Miao Y, Cresens E et al (1999) Paramagnetic metalloporphyrins: there exist necrosis-avid and non-avid species. 7th Annual Scientific Meeting for ISMRM, Philadelphia, Pennsylvania, USAGoogle Scholar
  89. Ni Y, Adzamli K, Miao Y et al (2001a) MRI contrast enhancement of necrosis by MP-2269 and gadophrin-2 in a rat model of liver infarction. Invest Radiol 36:97–103PubMedCrossRefGoogle Scholar
  90. Ni Y, Pislaru C, Bosmans H et al (2001b) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11:876–883PubMedCrossRefGoogle Scholar
  91. Ni Y, Cresens E, Adriaens P et al (2002a) Necrosis-avid contrast agents: introducing nonporphyrin species. Acad Radiol 9(suppl 1):S98–S101PubMedCrossRefGoogle Scholar
  92. Ni Y, Cresens E, Adriaens P et al (2002b) Exploring multifunctional features of necrosis avid contrast agents. Acad Radiol 9(suppl 2):S488–S490PubMedCrossRefGoogle Scholar
  93. Ni Y, Dymarkowski S, Chen F, Bogaert J, Marchal G (2002c) Occlusive myocardial infarction enhanced or not enhanced with necrosis-avid contrast agents at MR imaging. Radiology 225:603–605PubMedCrossRefGoogle Scholar
  94. Ni Y, Bormans G, Chen F et al (2005a) Necrosis avid contrast agents: functional similarity versus structural diversity. Invest Radiol 40:526–535PubMedCrossRefGoogle Scholar
  95. Ni Y, Huyghe D, Chen F, Bormans G, Verbruggen G, Marchal G (2005b) Research on necrosis avid contrast agents: further expansion of scope. Acad Radiol 12(suppl 5):55–56CrossRefGoogle Scholar
  96. Ni Y, Mulier S, Miao Y, Michel L, Marchal G (2005c) A review of the general aspects of radiofrequency ablation. Abdom Imaging 30:381–400PubMedCrossRefGoogle Scholar
  97. Ni Y, Chen F, Mulier S et al (2006a) Magnetic resonance imaging after radiofrequency ablation in a rodent model of liver tumor: tissue characterization using a novel necrosis-avid contrast agent. Eur Radiol 16:1031–1040PubMedCrossRefGoogle Scholar
  98. Ni Y, Huyghe D, Verbeke K et al (2006b) First preclinical evaluation of mono-[123I]iodohypericin as a necrosis-avid tracer agent. Eur J Nucl Med Mol Imaging 33:595–601PubMedCrossRefGoogle Scholar
  99. Ni Y, Van de Putte M, de Witte P, Verbruggen A, Marchal G, Sun Z (2007a) Targeted radiotherapy. Patent application PCT/BE2008/000099Google Scholar
  100. Ni Y, Van de Putte M, Fonge H, Verbruggen A, de Witte P, Marchal G (2007b) Necrosis avid contrast agents (NACAs): evidence in favour of hypothetical mechanisms and new potential applications. Contrast Media Mol Imaging 2:276CrossRefGoogle Scholar
  101. Ogan MD, Revel D, Brasch RC (1987) Metalloporphyrin contrast enhancement of tumors in magnetic resonance imaging. A study of human carcinoma, lymphoma, and fibrosarcoma in mice. Invest Radiol 22:822–828PubMedCrossRefGoogle Scholar
  102. Orlandi C, Crane PD, Edwards DS et al (1991) Early scintigraphic detection of experimental myocardial infarction in dogs with technetium-99 m-glucaric acid. J Nucl Med 32:263–268PubMedGoogle Scholar
  103. Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842PubMedCrossRefGoogle Scholar
  104. Ouwerkerk R, Bottomley PA, Solaiyappan M et al (2008) Tissue sodium concentration in myocardial infarction in humans: a quantitative 23Na MR imaging study. Radiology 248:88–96PubMedCrossRefGoogle Scholar
  105. Padhani A (2010) Science to practice: what does MR oxygenation imaging tell us about human breast cancer hypoxia? Radiology 254:1–3PubMedCrossRefGoogle Scholar
  106. Pass HI (1993) Photodynamic therapy in oncology: mechanisms and clinical use. J Natl Cancer Inst 85:443–456PubMedCrossRefGoogle Scholar
  107. Perazella MA (2007) Nephrogenic systemic fibrosis, kidney disease, and gadolinium: is there a link? Clin J Am Soc Nephrol 2:200–202PubMedCrossRefGoogle Scholar
  108. Pereira RS, Wisenberg G, Prato FS, Yvorchuk K (2000) Clinical assessment of myocardial viability using MRI during a constant infusion of Gd-DTPA. MAGMA 11:104–113PubMedCrossRefGoogle Scholar
  109. Pereira RS, Prato FS, Wisenberg G, Sykes J, Yvorchuk KJ (2001) The use of Gd-DTPA as a marker of myocardial viability in reperfused acute myocardial infarction. Int J Cardiovasc Imaging 17:395–404PubMedCrossRefGoogle Scholar
  110. Pislaru SV, Ni Y, Pislaru C et al (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99:690–696PubMedGoogle Scholar
  111. Place DA, Faustino PJ, Berghmans KK, van Zijl PC, Chesnick AS, Cohen JS (1992) MRI contrast-dose relationship of manganese(III)tetra(4-sulfonatophenyl) porphyrin with human xenograft tumors in nude mice at 2.0 T. Magn Reson Imaging 10:919–928PubMedCrossRefGoogle Scholar
  112. Port M, Corot C, Rousseaux O et al (2001) P792: a rapid clearance blood pool agent for magnetic resonance imaging: preliminary results. MAGMA 12:121–127PubMedCrossRefGoogle Scholar
  113. Ramani K, Judd RM, Holly TA et al (1998) Contrast magnetic resonance imaging in the assessment of myocardial viability in patients with stable coronary artery disease and left ventricular dysfunction. Circulation 98:2687–2694PubMedGoogle Scholar
  114. Roberts R (1989) Serendipity: accidental discoveries in science. Wiley, New YorkGoogle Scholar
  115. Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103:415–422PubMedGoogle Scholar
  116. Saeed M, Bremerich J, Wendland MF, Wyttenbach R, Weinmann HJ, Higgins CB (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257PubMedGoogle Scholar
  117. Saeed M, Lund G, Wendland MF, Bremerich J, Weinmann H, Higgins CB (2001) Magnetic resonance characterization of the peri-infarction zone of reperfused myocardial infarction with necrosis-specific and extracellular nonspecific contrast media. Circulation 103:871–876PubMedGoogle Scholar
  118. Saeed M, Wendland MF, Bremerich GL, Weinmann HJ, Higgins CB (2002) Assessment of myocardial viability using standard extracellular and necrosis specific MR contrast media. Acad Radiol 9(suppl 1):S84–S87PubMedCrossRefGoogle Scholar
  119. Saini SK, Jena A, Dey J, Sharma AK, Singh R (1995) MnPcS4: a new MRI contrast enhancing agent for tumor localisation in mice. Magn Reson Imaging 13:985–990PubMedCrossRefGoogle Scholar
  120. Schalla S, Wendland MF, Higgins CB, Ebert W, Saeed M (2004) Accentuation of high susceptibility of hypertrophied myocardium to ischemia: complementary assessment of Gadophrin-enhancement and left ventricular function with MRI. Magn Reson Med 51:552–558PubMedCrossRefGoogle Scholar
  121. Schellenberger EA, Bogdanov A Jr, Hogemann D, Tait J, Weissleder R, Josephson L (2002) Annexin V-CLIO: a nanoparticle for detecting apoptosis by MRI. Mol Imaging 1:102–107PubMedCrossRefGoogle Scholar
  122. Schmitz SA, Coupland SE, Gust R et al (2000) Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest Radiol 35:460–471PubMedCrossRefGoogle Scholar
  123. Schneider G, Hayd C, Mühler A et al (1995) Contrast enhanced MRI of experimentally induced brain infarctions in rabbits using Bis-Gd-MP as MR contrast agent. 3rd Annual Scientific Meeting. Society of Magnetic Resonance, Nice, France. Society of Magnetic Resonance, p 1144Google Scholar
  124. Schoeder H, Friedrich M, Topp H et al (1993) Myocardial viability: what do we need? Eur J Nucl Med 20:792–803PubMedCrossRefGoogle Scholar
  125. Spokojny AM, Serur JR, Skillman J, Spears JR (1986) Uptake of hematoporphyrin derivative by atheromatous plaques: studies in human in vitro and rabbit in vivo. J Am Coll Cardiol 8:1387–1392PubMedCrossRefGoogle Scholar
  126. Stillman AE, Wilke N, Li D, Haacke M, McLachlan S (1996) Ultrasmall superparamagnetic iron oxide to enhance MRA of the renal and coronary arteries: studies in human patients. J Comput Assist Tomogr 20:51–55PubMedCrossRefGoogle Scholar
  127. Stillman AE, Wilke N, Jerosch-Herold M (1999) Myocardial viability. Radiol Clin North Am 37:361–378 viPubMedCrossRefGoogle Scholar
  128. Storey P, Danias PG, Post M et al (2003) Preliminary evaluation of EVP 1001–1: a new cardiac-specific magnetic resonance contrast agent with kinetics suitable for steady-state imaging of the ischemic heart. Invest Radiol 38:642–652PubMedCrossRefGoogle Scholar
  129. Svensson J, Mansson S, Johansson E, Petersson JS, Olsson LE (2003) Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med 50:256–262PubMedCrossRefGoogle Scholar
  130. Taupitz M, Schnorr J, Wagner S et al (2001) Coronary magnetic resonance angiography: experimental evaluation of the new rapid clearance blood pool contrast medium P792. Magn Reson Med 46:932–938PubMedCrossRefGoogle Scholar
  131. Turner R (1997) Signal sources in bold contrast fMRI. Adv Exp Med Biol 413:19–25PubMedGoogle Scholar
  132. Van de Putte M, Wang H, Chen F, de Witte PA, Ni Y (2008a) Hypericin as a marker for determination of tissue viability after intratumoral ethanol injection in a murine liver tumor model. Acad Radiol 15:107–113PubMedCrossRefGoogle Scholar
  133. Van de Putte M, Wang H, Chen F, de Witte PA, Ni Y (2008b) Hypericin as a marker for determination of tissue viability after radiofrequency ablation in a murine liver tumor model. Oncol Rep 19:927–932PubMedGoogle Scholar
  134. van der Wall EE, Vliegen HW, de Roos A, Bruschke AV (1996) Magnetic resonance techniques for assessment of myocardial viability. J Cardiovasc Pharmacol 28(suppl 1):S37–S44PubMedGoogle Scholar
  135. van Zijl PC, Place DA, Cohen JS, Faustino PJ, Lyon RC, Patronas NJ (1990) Metalloporphyrin magnetic resonance contrast agents. Feasibility of tumor-specific magnetic resonance imaging. Acta Radiol (suppl) 374:75–79Google Scholar
  136. Vever-Bizet C, L’Epine Y, Delettre E et al (1989) Photofrin II uptake by atheroma in atherosclerotic rabbits. Fluorescence and high performance liquid chromatographic analysis on post-mortem aorta. Photochem Photobiol 49:731–737PubMedCrossRefGoogle Scholar
  137. Villringer A, Rosen BR, Belliveau JW et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174PubMedCrossRefGoogle Scholar
  138. Wallace RA, Haar JP Jr, Miller DB et al (1998) Synthesis and preliminary evaluation of MP-2269: a novel, nonaromatic small-molecule blood-pool MR contrast agent. Magn Reson Med 40:733–739PubMedCrossRefGoogle Scholar
  139. Wang H, Miranda Cona M, Chen F et al (2011a) Comparison between nonspecific and necrosis-avid gadolinium contrast agents in vascular disrupting agent-induced necrosis of rodent tumors at 3.0T. Invest Radiol May 13. (Epub ahead of print). PMID: 21577133Google Scholar
  140. Wang Y, Alkasab TK, Narin O et al (2011b) Incidence of nephrogenic systemic fibrosis after adoption of restrictive gadolinium-based contrast agent guidelines. Radiology 260:105–111CrossRefGoogle Scholar
  141. Weinmann HJ, Ebert W, Misselwitz B, Schmitt-Willich H (2003) Tissue-specific MR contrast agents. Eur J Radiol 46:33–44PubMedCrossRefGoogle Scholar
  142. Weissleder R, Lee AS, Khaw BA, Shen T, Brady TJ (1992) Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182:381–385PubMedGoogle Scholar
  143. Wendland MF, Saeed M, Lund G, Higgins CB (1999) Contrast-enhanced MRI for quantification of myocardial viability. J Magn Reson Imaging 10:694–702PubMedCrossRefGoogle Scholar
  144. Winter PM, Morawski AM, Caruthers SD et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108:2270–2274PubMedCrossRefGoogle Scholar
  145. Woodburn KW, Fan Q, Kessel D et al (1996) Phototherapy of cancer and atheromatous plaque with texaphyrins. J Clin Laser Med Surg 14:343–348PubMedGoogle Scholar
  146. Yang X (2010) Interventional molecular imaging. Radiology 254:651–654PubMedCrossRefGoogle Scholar
  147. Young SW, Sidhu MK, Qing F et al (1994) Preclinical evaluation of gadolinium (III) texaphyrin complex. A new paramagnetic contrast agent for magnetic resonance imaging. Invest Radiol 29:330–338PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of RadiologyGasthuisberg University HospitalLeuvenBelgium

Personalised recommendations