Skip to main content

Heart Muscle Diseases

  • Chapter
Clinical Cardiac MRI

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 4119 Accesses

Abstract

Heart muscle diseases or cardiomyopathies represent an important and heterogeneous group of cardiac diseases. Imaging is an essential pillar in assessment of the phenotypic expression of this group of diseases, indispensable for disease classification, obligatory to evaluate the degree of dysfunction, and appealing for risk stratification. This chapter focuses on the emerging role of MRI to assess this complex group of diseases. Since MRI provides unique information on myocardial tissue characteristics and functional properties, the focus is not only on the diagnosis, differential diagnosis, follow-up of disease progression, and evaluation of response to treatment of cardiomyopathies but this technique is increasingly being used for risk stratification of potential harmful complications, such as cardiac arrhythmias, heart failure, and sudden cardiac death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abarra S, Migrino RQ, Sosnovik D, Leichter JA, Brady TJ, Holmvang G (2004) Value of fat suppression in the MRI evaluation of suspected arrhythmogenic right ventricular dysplasia. AJR 182:587–591

    Google Scholar 

  • Abdel-Aty H, Boyé P, Zagrosek A et al (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis. Comparison of different approaches. J Am Coll Cardiol 45:1815–1822

    Article  PubMed  Google Scholar 

  • Abdel-Aty H, Siegle N, Natusch A et al (2008) Myocardial tissue characterization in systemic lupus erythematosus: value of a comprehensive cardiovascular magnetic resonance approach. Lupus 17:561–567

    Article  PubMed  CAS  Google Scholar 

  • Abe Y, Kondo M (2002) Apical ballooning of the left ventricle: a distinct entity? Heart 89:974–976

    Article  Google Scholar 

  • Abe Y, Kondo M, Matsuoka R, Araki M, Dohyama K, Tanio H (2003) Assessment of clinical features in transient left ventricular apical ballooning. J Am Coll Cardiol 41:737–742

    Article  PubMed  Google Scholar 

  • Abelmann WH, Lorell BH (1989) The challenge of cardiomyopathy. J Am Coll Cardiol 13:1219–1239

    Article  PubMed  CAS  Google Scholar 

  • Adabag AS, Maron BJ, Appelbaum E et al (2008) Occurrence and frequency of arrhythmias in hypertrophic cardiomyopathy in relation to delayed enhancement on cardiovascular magnetic resonance. J Am Coll Cardiol 51:1369–1374

    Article  PubMed  Google Scholar 

  • Akashi Y, Nakazawa K, Sakakibara M, Miyake F, Sasaka (2002) Reversible left ventricular dysfunction “Takotsubo” cardiomyopathy related to catecholamine cardiotoxicity. J Electrocardiol 35:351–356

    Google Scholar 

  • Ako J, Kozaki K, Yoshizumi M, Ouchi Y (2002) Transient left ventricular apical ballooning without coronary artery stenosis: a form of stunning-like phenomenon? J Am Coll Cardiol 39:741–742

    Article  PubMed  Google Scholar 

  • Aletras AH, Tilak GS, Hsu LY, Arai AE (2011) Heterogeneity of intramural function in hypertrophic cardiomyopathy: mechanistic insights from late gadolinium enhancement and high-resolution DENSE strain maps. Circ Cardiovasc Imaging 4:425–434

    Article  PubMed  Google Scholar 

  • Allenore Y, Vignaux O, Arnaud L et al (2006) Effects of corticosteroids and immunosuppressors on idiopathic inflammatory myopathy related myocarditis evaluated by magnetic resonance imaging. Ann Rheum Dis 65:249–252

    Article  Google Scholar 

  • Alsaileek AA, Syed I, Seward JB, Julsrud P (2008) Myocardial fibrosis of left ventricle: magnetic resonance imaging in noncompaction. J Magn Reson Imaging 27:621–624

    Article  PubMed  Google Scholar 

  • Anderson RH (2008) Ventricular non-compaction—a frequently ignored finding? Eur Heart J 29:10–11

    Article  PubMed  Google Scholar 

  • Anderson LJ, Holden S, Davis B et al (2001) Cardiovascular T2-star (T2*) magnetic resonance for the early diagnosis of myocardial iron overload. Eur Heart J 22:2171–2179

    Article  PubMed  CAS  Google Scholar 

  • Angelini A, Melacini P, Barbero F, Thiene G (1999) Evolutionary persistence of spongy myocardium in humans. Circulation 99:2475

    PubMed  CAS  Google Scholar 

  • Aretz HT, Billingham ME, Edwards WD et al (1986) Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol 1:3–14

    Google Scholar 

  • Arrivé L, Assayag P, Russ G, Najmark D, Brochet E, Nahum H (1994) MRI and cine MRI of asymmetric septal hypertrophic cardiomyopathy. J Comput Assist Tomogr 18:376–382

    Article  PubMed  Google Scholar 

  • Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985

    Article  PubMed  Google Scholar 

  • Assomull RG, Lyne JC, Keenan N et al (2007) The role of cardiovascular magnetic resonance in patients presenting with chest pain, raised Troponin, and unobstructed coronary arteries. Eur Heart J 28:1242–1249

    Article  PubMed  CAS  Google Scholar 

  • Austin BA, Tang WH, Rodriguez ER et al (2009) Delayed hyper-enhancement magnetic resonance imaging provides incremental diagnostic and prognostic utility in suspected cardiac amyloidosis. J Am Coll Cardiol Img 2:1369–1377

    Google Scholar 

  • Awtry EH, Philippides GJ (2010) Alcohol and cocaine-associated cardiomyopathies. Prog Cardiovasc Dis 52:289–299

    Article  PubMed  Google Scholar 

  • Baccouche H, Mahrholdt H, Meinhardt G et al (2009) Diagnostic synergy of non-invasive cardiovascular magnetic resonance and invasive endomyocardial biopsy in troponin-positive patients without coronary artery disease. Eur Heart J 30:2869–2879

    Article  PubMed  CAS  Google Scholar 

  • Baruteau AE, Leurent G, Martins RP et al (2010) Peripartum cardiomyopathy in the era of cardiac magnetic resonance imaging: first results and perspectives. Int J Cardiol 144:143–145

    Article  PubMed  Google Scholar 

  • Basavarajaiah S, Boraita A, Whyte G, Wilson M, Carby L, Shah A, Sharma S (2008a) Ethnic differences in left ventricular remodeling in highly-trained athletes. J Am Coll Cardiol 51:2256–2262

    Article  PubMed  Google Scholar 

  • Basavarajaiah S, Wilson M, Whyte G, Shah A, McKenna W, Sharma S (2008b) Prevalence of hypertrophic cardiomyopathy in highly trained athletes. J Am Coll Cardiol 51:1033–1039

    Article  PubMed  Google Scholar 

  • Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A (2000) Hypertrophic cardiomyopathy and sudden cardiac death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998

    Article  PubMed  CAS  Google Scholar 

  • Basso C, Corrado D, Marcus FI, Nava A, Thiene G (2009) Arrhythmogenic right ventricular dysplasia. Lancet 373:1289–1300

    Article  PubMed  Google Scholar 

  • Beer M, Weidemann F, Breunig F, Knoll A et al (2006) Impact of enzyme replacement therapy on cardiac morphology and function and late enhancement in Fabry’s cardiomyopathy. Am J Cardiol 97:1515–1518

    Article  PubMed  CAS  Google Scholar 

  • Belanger AR, Miller MA, Donthireddi UR, Najovits AJ, Goldman ME (2008) New classification scheme of left ventricular noncompaction and correlation with ventricular performance. Am J Cardiol 102:92–96

    Article  PubMed  Google Scholar 

  • Belenkov Y, Vikhert OA, Belichenko OI, Arabidze GG (1992) Magnetic resonance imaging of cardiac hypertrophy in malignant arterial hypertension. Am J Hypertens 5:195S–199S

    PubMed  CAS  Google Scholar 

  • Bellenger NG, Davies LC, Francis JM, Coats AJS, Pennell DJ (2000) Reduction in sample size for studies of remodeling in heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278

    Article  PubMed  CAS  Google Scholar 

  • Bello D, Shah DJ, Farah GM (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing β-blocker therapy. Circulation 108:1945–1953

    Article  PubMed  CAS  Google Scholar 

  • Bellotti G, Bocchi EA, de Moreas A et al (1996) In vivo detection of Trypanosoma cruzi antigens in hearts of patients with chronic Chagas’ heart disease. Am Heart J 131:301–317

    Article  PubMed  CAS  Google Scholar 

  • Beltrami CA, Finato N, Rocco M et al (1995) The cellular basis of dilated cardiomyopathy in humans. J Mol Cell Cardiol 27:291–305

    Article  PubMed  CAS  Google Scholar 

  • Benson L, Liu P, Olivieri N, Rose V, Freedom R (1989) Left ventricular function in young adults with thalassemia. Circulation 80:274

    Google Scholar 

  • Bergler KJ, Sochor H, Stanek G, Globits S, Ullrich R, Glogar D (1993) Indium 111-monoclonal antimyosin antibody and magnetic resonance imaging in the diagnosis of acute Lyme myopericarditis. Arch Intern Med 153:2696–2700

    Article  Google Scholar 

  • Berkowitz SJ, Macedo R, Malayeri AA et al (2009) Axial black blood turbo spin echo imaging of the right ventricle. Magn Reson Med 61:307–314

    Article  PubMed  Google Scholar 

  • Bhatia SR, Tu JV, Lee DS et al (2006) Outcome of heart failure with preserved ejection fraction in a population-based study. N Engl J Med 355:260–269

    Article  PubMed  CAS  Google Scholar 

  • Biondi B, Kahaly GJ (2010) Cardiovascular involvement in patients with different causes of hyperthyroidism. Nat Rev Endocrinol 6:431–443

    Article  PubMed  Google Scholar 

  • Bleyer WA (1990) The impact of childhood cancer on the United States and the world. CA Cancer J Clin 40:355–367

    Article  PubMed  CAS  Google Scholar 

  • Bluemke DA, Kronmal RA, Lima JAC, Liu K, Olson J, Burke GL, Folsom AR (2008) The relationship of left ventricular mass and geometry to incident cardiovascular events. J Am Coll Cardiol 52:2148–2155

    Article  PubMed  Google Scholar 

  • Bogaert J, Francone M (2009) Cardiovascular magnetic resonance in pericardial diseases. J Cardiovasc Magn Reson 11:14

    Article  PubMed  Google Scholar 

  • Bogaert J, Goldstein M, Tannouri F, Golzarian J, Dymarkowski S (2003) Late myocardial enhancement in hypertrophic cardiomyopathy using contrast-enhanced magnetic resonance imaging. Am J Roentgenol AJR 180:981–985

    Google Scholar 

  • Bogaert J, Taylor AM, Van Kerckhove F, Dymarkowski S (2004) Use of inversion-recovery contrast-enhanced MRI technique for cardiac imaging: spectrum of diseases. Am J Roentgenol AJR 182:609–615

    Google Scholar 

  • Bogun FM, Desjardins B, Good E et al (2009) Delayed-enhanced magnetic resonance imaging in nonischemic cardiomyopathy. Utility for identifying the ventricular arrhythmia substrate. J Am Coll Cardiol 53:1138–1145

    Article  PubMed  Google Scholar 

  • Borreguero LJJ, Corti R, de Soria RF, Osende JI, Fuster V, Badimon JJ (2004) Diagnosis of isolated noncompaction of the myocardium by magnetic resonance imaging. Circulation 105:e177–e178

    Google Scholar 

  • Boudina S, Abel ED (2010) Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord 11:31–39

    Article  PubMed  Google Scholar 

  • Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 66:1146–1156

    Article  PubMed  CAS  Google Scholar 

  • Brigden W (1957) The noncoronary cardiomyopathies. Lancet II:1179–1243

    Article  Google Scholar 

  • Bruder O, Schneider S, Nothnagel D et al (2009) EuroCMR (European Cardiovascular Magnetic Resonance) registry: result of the German pilot phase. J Am Coll Cardiol 54:147–1466

    Article  Google Scholar 

  • Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887

    Article  PubMed  Google Scholar 

  • Bulkley BH, Weisfeldt ML, Hutchins GM (1977) Asymmetric septal hypertrophy and myocardial fiber disarray. Features of normal, developing and malformed hearts. Circulation 56:292–298

    PubMed  CAS  Google Scholar 

  • Bulut A, Rav-Acha M, Aydin O et al (2009) “Inverted Tako-Tsubo”: transient apical-sparing cardiomyopathy. Int J Cardiol 134:e35–e38

    Article  PubMed  Google Scholar 

  • Burke AP, Farb A, Tashko G, Virmani R (1998) Arrhythmogenic right ventricular cardiomyopathy and fatty replacement of the right ventricular myocardium. Are they different diseases? Circulation 97:1571–1580

    PubMed  CAS  Google Scholar 

  • Buser PT, Wagner S, Auffermann W et al (1990) Three-dimensional analysis of the regional contractility of the normal and the cardiomyopathic left ventricle using cine-magnetic resonance imaging (in German). Z Kardiol 79:573–579

    PubMed  CAS  Google Scholar 

  • Captur G, Nihoyannopoulos P (2010) Left ventricular non-compaction: genetic heterogeneity, diagnosis and clinical course. Int J Cardiol 140:145–153

    Article  PubMed  Google Scholar 

  • Carlson MD, White RD, Trohman RG et al (1994) Right ventricular outflow tract ventricular tachycardia: detection of previously unrecognized anatomic abnormalities using cine magnetic resonance imaging. J Am Coll Cardiol 24:720–727

    Article  PubMed  CAS  Google Scholar 

  • Carpenter JP, He T, Kirk P et al (2011) On T2* magnetic resonance and cardiac iron. Circulation 123:1519–1528

    Article  PubMed  Google Scholar 

  • Casolo GC, Poggesi L, Boddi M et al (1987) ECG-gated magnetic resonance imaging in right ventricular dysplasia. Am Heart J 113:1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Casolo GC, Trotta F, Rostagno C et al (1989) Detection of apical hypertrophic cardiomyopathy by magnetic resonance imaging. Am Heart J 117:468–472

    Article  PubMed  CAS  Google Scholar 

  • Castillo E, Tandri H, Rodriguez R et al (2004) Arrhythmogenic right ventricular dysplasia: ex vivo and in vivo fat detection with black-blood MR imaging. Radiology 232:38–48

    Article  PubMed  Google Scholar 

  • Chan PCK, Liu P, Cronin C, Heathcote J, Uldall R (1992) The use of nuclear magnetic resonance imaging in monitoring total body iron in hemodialysis patients with hemosiderosis treated with erythropoietin and phlebotomy. Am J Kidney Dis 19:484–489

    PubMed  CAS  Google Scholar 

  • Chandra M, Silverman ME, Oshinski J, Pettigrew R (1996a) Diagnosis of cardiac sarcoidosis aided by MRI. Chest 110:562–565

    Article  PubMed  CAS  Google Scholar 

  • Chandra M, Pettigrew RI, Eley JW, Oshinski JN, Guyton RA (1996b) Cine-MRI-aided endomyocardectomy in idiopathic hypereosinophilic syndrome. Ann Thorac Surg 62:1856–1858

    Article  PubMed  CAS  Google Scholar 

  • Charron P, Arad M, Arbustini E et al (2010) Genetic counseling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 31:2715–2726

    Article  PubMed  Google Scholar 

  • Cheong BYC, Muthupillai R, Nemeth M et al (2009) The utility of delayed-enhancement magnetic resonance imaging for identifying nonischemic myocardial fibrosis in asymptomatic patients with biopsy-proven systemic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 26:39–46

    PubMed  CAS  Google Scholar 

  • Choudbury L, Mahrholdt H, Wagner A et al (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  Google Scholar 

  • Coelho-Filho OR, Mongeon F-P, Mitchell RN et al (2010) Löffler endocarditis presenting with recurrent polymorphic ventricular tachycardia diagnosed by cardiac magnetic resonanc imaging. Circulation 122:96–99

    Article  PubMed  Google Scholar 

  • Cooper LT (2009) Myocarditis. N Engl J Med 360:1526–1538

    Article  PubMed  CAS  Google Scholar 

  • Cooper LT, Baughman KL, Feldman AM et al (2007) The role of endomyocardial biopsy in the management of cardiovascular disease. A scientific statement from the American Heart Association, the American College of Cardiology, and the European Society of Cardiology. Circulation 116:2216–2233

    Article  PubMed  Google Scholar 

  • Corrado D, Fontaine G, Marcus FI et al (2000) Arrhythmogenic right ventricular dysplasia/cardiomyopathy. Need for an international registry. Circulation 101:e101–e106

    PubMed  CAS  Google Scholar 

  • Crilley JG, Boehm EA, Blair E et al (2003) Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J Am Coll Cardiol 41:1776–1782

    Article  PubMed  CAS  Google Scholar 

  • Cuspidi C, Lonati L, Sampieri L, Leonetti G, Zanchetti A (1997) Physiological versus pathological hypertrophy. The athlete and the hypertensive. In: Zanchetti A et al (eds) Hypertension and the heart. Plenum Press, New York, pp 145–158

    Chapter  Google Scholar 

  • D’Silva SA, Kohli A, Dalvi BV, Kale PA (1992) MRI in right ventricular endomyocardial fibrosis. Am Heart J 123:1390–1392

    Article  PubMed  Google Scholar 

  • Dalal D, Tandri H, Judge DP et al (2009) Morphologic variants of familial arrhythmogenic right ventricular dysplasia/cardiomyopathy. A genetics-magnetic resonance imaging correlation study. J Am Coll Cardiol 53:1289–1299

    Article  PubMed  Google Scholar 

  • Davlouros PA, Danias PG, Karatza AA, Kiaffas MG, Alexopoulos D (2009) Saw-tooth cardiomyopathy. J Cardiovasc Magn Reson 16:54

    Article  Google Scholar 

  • Dawson DK, Maceira AM, Raj VJ, Graham C, Pennell DJ, Kilner PJ (2011) Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ Cardiovasc Imaging 4:139–146

    Article  PubMed  Google Scholar 

  • De Cobelli F, Pieroni M, Esposito A et al (2006) Delayed gadolinium-enhanced cardiac magnetic resonance in patients with chronic myocarditis presenting with heart failure or recurrent arrhythmias. J Am Coll Cardiol 47:1649–1654

    Article  PubMed  Google Scholar 

  • de Souza F, Altenburg R, Curi Gismondi O, Cunha Neto SH, de Mattos MA (2008) Tako-tsubo-like cardiomyopathy and extra-adrenal pheochromocytoma: case report and literature review. Clin Res Cardiol 97:397–401

    Article  PubMed  Google Scholar 

  • Debl K, Djavidani B, Buchner S et al (2006) Delayed hyperenhancement in magnetic resonance imaging of left ventricular hypertrophy caused by aortic stenosis and hypertrophic cardiomyopathy: visualization of focal fibrosis. Heart 92:1447–1451

    Article  PubMed  CAS  Google Scholar 

  • Dec GW, Fuster V (1994) Idiopathic dilated cardiomyopathy. N Engl J Med 331:1564–1574

    Article  PubMed  CAS  Google Scholar 

  • Dennert RM, van Paassen P, Schalla S et al (2010) Cardiac involvement in Churg-Strauss syndrome. Arthritis Rheum 62:627–634

    PubMed  Google Scholar 

  • Desmet WJR, Adriaenssens BFM, Dens JAY (2003) Apical ballooning of the left ventricle: first series in white patients. Eur Heart J 89:1027–1031

    CAS  Google Scholar 

  • Dewey FE, Rosenthal D, Murphy DJ, Froelicher VF, Ashley EA (2008) Does size matter. Clinical applications of scaling cardiac size and function for body size. Circulation 117:2279–2287

    Article  PubMed  Google Scholar 

  • Di Bella G, Masci PG, Ganame J, Dymarkowski S, Bogaert J (2008) Liquefaction necrosis of the mitral annulus calcification: detection and characterization with cardiac magnetic resonance imaging. Circulation 117:e292–e294

    Article  PubMed  Google Scholar 

  • Di Bella G, Minutoli F, Mazzeo A et al (2010) MRI of cardiac involvement in transthyretin familial amyloid polyneuropathy. AJR 195:W394–W399

    Article  PubMed  Google Scholar 

  • Dodd JD, Holmvang G, Hoffmann U et al (2008) Quantification of left ventricular noncompaction and trabecular delayed hyperenhancement with cardiac MRI: correlation with clinical severity. AJR 189:974–980

    Article  Google Scholar 

  • Dong SJ, MacGregor JH, Crawley AP et al (1994) Left ventricular wall thickness and regional systolic function in patients with hypertrophic cardiomyopathy. Circulation 90:1200–1209

    PubMed  CAS  Google Scholar 

  • Dorn GWII (2007) The fuzzy logic of physiological cardiac hypertrophy. Hypertension 49:962–970

    Article  PubMed  CAS  Google Scholar 

  • Durand E, Mousseaux E, Coste P et al (2008) Non-surgical septal myocardial reduction by coil embolization for hypertrophic obstructive cardiomyopathy: early and 6 months follow-up. Eur Heart J 29:348–355

    Article  PubMed  Google Scholar 

  • Edwards NC, Ferro CJ, Townend JN, Steeds RP (2007) Myocardial disease in systemic vasculitis and autoimmune disease detected by cardiovascular magnetic resonance. Rheumatology 46:1208–1209

    Article  PubMed  CAS  Google Scholar 

  • Eidem BW (2008) Identification of anthracycline cardiotoxicity: left ventricular ejection fraction is not enough. J Am Soc Echocardiogr 21:1290–1292

    Article  PubMed  Google Scholar 

  • Eitel I, Behrendt F, Schindler K et al (2008) Differential diagnosis of suspected apical ballooning syndrome using contrast-enhanced magnetic resonance imaging. Eur Heart J 29:2651–2659

    Article  PubMed  Google Scholar 

  • Eitel I, Lücke C, Grothoff M et al (2010) Inflammation in takotsubo cardiomyopathy: insights form cardiovascular magnetic resonance imaging. Eur Radiol 20:422–431

    Article  PubMed  Google Scholar 

  • Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P et al (2011) Clinical characteristics and cardiovascular magnetic resonance findings in stress (Takotsubo) cardiomyopathy. JAMA 306:277–286

    Article  PubMed  CAS  Google Scholar 

  • Elkayam U, Akhter MW, Singh H et al (2005) Pregnancy-associated cardiomyopathy. Clinical characteristics and a comparison between early and late presentation. Circulation 111:2050–2055

    Article  PubMed  Google Scholar 

  • Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  • Elshershari H, Okutan V, Celiker A (2001) Isolated noncompaction of the ventricular myocardium. Cardiol Young 11:472–475

    Article  PubMed  CAS  Google Scholar 

  • Esposito A, De Cobelli F, Perseghin G et al (2008) Impaired left ventricular energy metabolism in patients with hypertrophic cardiomyopathy is related to the extension of fibrosis at delayed gadolinium-enhanced magnetic resonance imaging. Heart 95:228–233

    Article  PubMed  Google Scholar 

  • Falk RH, Dubrey SW (2010) Amyloid heart disease. Prog Cardiovasc Dis 52:347–361

    Article  PubMed  Google Scholar 

  • Feldman AM, McNamara D (2000) Myocarditis. N Engl J Med 343:1388–1398

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Golfin C, Pachon M, Corros C et al (2009) Left ventricular trabeculae: quantification in different cardiac diseases and impact on left ventricular morphological and functional parameters assessed with cardiac magnetic resonance. J Cardiovasc Med 10:827–833

    Article  Google Scholar 

  • Finsterer J, Stöllberger C (2008) Primary myopathies and the heart. Scand Cardiovasc J 42:9–24

    Article  PubMed  Google Scholar 

  • Finsterer J, Stöllberger C, Feichtinger H (2002) Histological appearance of left ventricular hypertrabeculation/noncompaction. Cardiology 98:162–164

    Article  PubMed  Google Scholar 

  • Flett AS, Hayward MP, Ashworth MT et al (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis. Preliminary validation in humans. Circulation 122:138–144

    Article  PubMed  Google Scholar 

  • Fontaine G, Fontaliran F, Frank R (1998) Arrhythmogenic right ventricular cardiomyopathies. Clinical forms and main differential diagnoses. Circulation 97:1532–1535

    PubMed  CAS  Google Scholar 

  • Forstot JZ, Overlie PA, Neufeld GK, Harmon CE, Forstot SL (1980) Cardiac complications of Wegener’s granulomatosis: a case report of complete heart block and review of the literature. Semin Arthritis Rheum 10:148–154

    Article  PubMed  CAS  Google Scholar 

  • Francone M, Iacucci I, Mangia M, Carbone I (2010) Endomyocardial disease related to idiopathic hypereosinophilic syndrome: a cardiac magnetic resonance evaluation. Pediatr Cardiol 31:921–922

    Article  PubMed  Google Scholar 

  • Frey N, Katus HA, Olson EN, Hill JA (2004) Hypertrophy of the heart. A new therapeutic target? Circulation 109:1580–1589

    Article  PubMed  Google Scholar 

  • Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R (1998) Contrast-enhanced magnetic resonance imaging visualizes changes in the course of viral myocarditis. Circulation 97:1802–1809

    PubMed  CAS  Google Scholar 

  • Friedrich MG, Sechtem I, Schulz-Menger J et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53:1475–1487

    Article  PubMed  Google Scholar 

  • Frishman WH, Del Vecchio A, Sanal S, Ismail A (2003a) Cardiovascular manifestations of substance abuse part 1: cocaine. Heart 5:187–201

    CAS  Google Scholar 

  • Frishman WH, Del Vecchio A, Sanal S, Ismail A (2003b) Cardiovascular manifestations of substance abuse part 2: alcohol, amphetamines, heroin, cannibs, and caffeine. Heart 5:253–271

    Google Scholar 

  • Fritz J, Solaiyappan M, Tandri H et al (2005) Right ventricle shape and contraction patterns and relation to magnetic resonance imaging findings. J Comput Assist Tomogr 29:725–733

    Article  PubMed  Google Scholar 

  • Fujita N, Duerinckx AJ, Higgins CB (1993) Variation in left ventricular regional wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J 125:1337–1345

    Article  PubMed  CAS  Google Scholar 

  • Gagliardi MG, Bevilacqua M, Di Renzi P, Picardo S, Passariello R, Marcelletti C (1991) Usefulness of magnetic resonance imaging for diagnosis of acute myocarditis in infants and children, and comparison with endomyocardial biopsy. Am J Cardiol 68:1089–1091

    Article  PubMed  CAS  Google Scholar 

  • Galiuto L, Ranieri De Caterina A, Porfidia A et al (2010) Reversible coronary microvascular dysfunction: a common pathogenetic mechanism in apical ballooning or Tako-Tsubo syndrome. Eur Heart J 31:1319–1327

    Article  PubMed  Google Scholar 

  • Ganau A, Devereux RB, Roman MJ (1992) Patterns of left ventricular hypertrophy and geometric remodeling in essential hypertension. J Am Coll Cardiol 19:1550–1558

    Article  PubMed  CAS  Google Scholar 

  • Gatzka CD (2002) Left ventricular hypertrophy, cardiac imaging and cardiac electric activity. J Hypertens 20:2153–2156

    Article  PubMed  CAS  Google Scholar 

  • Gaudio C, Tanzilli G, Mazzarotto P et al (1991) Comparison of left ventricular ejection fraction by magnetic resonance imaging and radionuclide ventriculography in idiopathic dilated cardiomyopathy. Am J Cardiol 67:411–415

    Article  PubMed  CAS  Google Scholar 

  • Gaudio C, Pelliccia F, Tanzilli G, Mazzarotto P, Cianfrocca C, Marino B (1992) Magnetic resonance imaging for assessment of apical hypertrophy in hypertrophic cardiomyopathy. Clin Cardiol 15:164–168

    Article  PubMed  CAS  Google Scholar 

  • Germans T, Wilde AAM, Dijkmans PA et al (2006) Structural abnormalities of the inferoseptal left ventricular wall detected by cardiac magnetic resonance imaging in carriers of hypertrophic cardiomyopathy mutations. J Am Coll Cardiol 48:2518–2523

    Article  PubMed  Google Scholar 

  • Glanzmann C, Kaufmann P, Jenni R et al (1998) Cardiac risk after mediastinal irradiation for Hodgkin’s disease. Radiother Oncol 46:51–62

    Article  PubMed  CAS  Google Scholar 

  • Globits S, Bergler KJ, Stanek G, Ullrich R, Glogar D (1994) Magnetic resonance imaging in the diagnosis of acute Lyme carditis. Cardiology 85:415–417

    Article  PubMed  CAS  Google Scholar 

  • Globits S, Kreiner G, Frank H et al (1997) Significance of morphological abnormalities detected by MRI in patients undergoing successful ablation of right ventricular outflow tract tachycardia. Circulation 96:2633–2640

    PubMed  CAS  Google Scholar 

  • Goodfield NER, Bhandari S, Plant WD, Morley-Davies A, Sutherland GR (1995) Cardiac involvement in Wegener’s granulomatosis. Br Heart J 73:110–115

    Article  PubMed  CAS  Google Scholar 

  • Grant SCD, Levy RD, Venning MC, Ward C, Brooks NH (1994) Wegener’s granulomatosis and the heart. Br Heart J 71:82–86

    Article  PubMed  CAS  Google Scholar 

  • Gropler RJ, Beanlands RSB, Dilsizian V et al (2010) Imaging myocardial metabolic remodeling. J Nucl Med 51:88S–101S

    Article  PubMed  CAS  Google Scholar 

  • Gujja P, Rosing DR, Tripodi DJ, Shizukuda Y (2010) Iron overload cardiomyopathy. Better understanding of an increasing disorder. J Am Coll Cardiol 56:1001–1012

    Article  PubMed  CAS  Google Scholar 

  • Gutberlet M, Spors B, Thoma T et al (2008) Suspected chronic myocarditis at cardiac MR: diagnostic accuracy and association with immunohistologically detected inflammation and viral persistence. Radiology 246:401–409

    Article  PubMed  Google Scholar 

  • Hachulla AL, Launay D, Gaxotte V et al (2009) Cardiac magnetic imaging in systemic sclerosis: a cross-sectional observational study of 52 patients. Ann Rheum Dis 68:1878–1884

    Article  PubMed  Google Scholar 

  • Haghi D, Athanasiadis A, Papavassiliu T et al (2006) Right ventricular involvement in Takotsubo cardiomyopathy. Eur Heart J 27:2433–2439

    Article  PubMed  Google Scholar 

  • Han Y, Peters DC, Dokhan B, Manning WJ (2009) Shorter difference between myocardium and blood optimal inversion time suggests diffuse fibrosis in dilated cardiomyopathy. J Magn Reson Imaging 30:967–972

    Article  PubMed  Google Scholar 

  • Hansch A, Pfeil A, Rzanny R, Neumann T, Kaiser WA (2009) First-pass myocardial perfusion abnormalities in Churg-Strauss syndrome with cardiac involvement. Int J Cardiovasc Imaging 25:501–510

    Article  PubMed  Google Scholar 

  • Hardy P, Henkelman RM (1989) Transverse relaxation rate enhancement caused by magnetic particles. Magn Reson Imaging 7:265–275

    Article  PubMed  CAS  Google Scholar 

  • Harrigan CJ, Appelbaum E, Maron BJ et al (2008) Significance of papillary muscle abnormalities identified by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 101:668–673

    Article  PubMed  Google Scholar 

  • Harrigan CJ, Peters DC, Gibson CM et al (2011) Hypertrophic cardiomyopathy: quantification of late gadolinium enhancement with contrast-enhanced cardiovascular MR imaging. Radiology 258:128–133

    Article  PubMed  Google Scholar 

  • Harris KM, Spirito P, Maron MS et al (2006) Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage of hypertrophic cardiomyopathy. Circulation 114:216–225

    Article  PubMed  Google Scholar 

  • Harvey WP, Segal JP, Gurel T (1964) The spectrum of primary myocardial disease. Prog Cardiovasc Dis 7:17–42

    Article  PubMed  CAS  Google Scholar 

  • Hausse AO, Aggoun Y, Bonnet D et al (2002) Idebenone and reduced cardiac hypertrophy in Friedreich’s ataxia. Heart 87:346–349

    Article  PubMed  CAS  Google Scholar 

  • He T, Kirk P, Firmin DN et al (2008) Multi-center transferability of a breath-hold T2 technqiue for myocardial iron assessment. J Cardiovasc Magn Reson 10:11

    Article  PubMed  CAS  Google Scholar 

  • Heckbert SR, Post W, Pearson GDN et al (2006) Traditional cardiovascular risk factors in relation to left ventricular mass, volume, and systolic function by cardiac magnetic resonance imaging. J Am Coll Cardiol 48:2285–2292

    Article  PubMed  Google Scholar 

  • Heidenreich PA, Hancock SL, Vagelos RH, Lee BK, Schnittger I (2005) Diastolic dysfunction after mediastinal irradiation. Am Heart J 150:977–982

    Article  PubMed  Google Scholar 

  • Hill JA, Olson EN (2007) Cardiac plasticity. Mechanisms of disease. N Engl J Med 358:1370–1380

    Article  Google Scholar 

  • Ho CY, López B, Coelho-Filho OR (2010) Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N Engl J Med 363:552–563

    Article  PubMed  CAS  Google Scholar 

  • Hoedemaekers YM, Caliskan K, Majoor-Krakauer D et al (2007) Cardiac B-myosin heavy chain defects in two families with non-compaction cardiomyopathy: linking non-compaction to hypertrophic, restrictive, and dilated cardiomyopathies. Eur Heart J 28:2732–2737

    Article  PubMed  CAS  Google Scholar 

  • HombachV MerkleN, Torzewski J et al (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30:2011–2018

    Article  Google Scholar 

  • Huffman C, Wagman G, Fudim M et al (2010) Reversible cardiomyopathies—a review. Transplant Proc 42:3673–3678

    Article  PubMed  CAS  Google Scholar 

  • Hughes SE, McKenna WJ (2005) New insights into the pathology of inherited cardiomyopathy. Heart 91:257–264

    Article  PubMed  Google Scholar 

  • Hunold P, Wieneke H, Bruder O et al (2005) Late enhancement: a new feature in MRI of arrhythmogenic right ventricular cardiomyopathy. J Cardiovasc Magn Reson 7:649–655

    PubMed  Google Scholar 

  • Huong DL, Wechsler B, Papo T et al (1997) Endomyocardial fibrosis in Behçet’s disease. Ann Rheum Dis 56:205–208

    Article  PubMed  CAS  Google Scholar 

  • Hurst RT, Askew JW, Reuss CS et al (2006) Transient midventricular ballooning syndrome. A new variant. J Am Coll Cardiol 48:579–583

    Article  PubMed  Google Scholar 

  • Ichinose A, Otani H, Oikawa M et al (2008) MRI of cardiac sarcoidosis: basal and subepicardial localization of myocardial lesions and their effect on left ventricular function. AJR Am J Roentgenol 191:862–869

    Article  PubMed  Google Scholar 

  • Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580

    Article  PubMed  Google Scholar 

  • Imai H, Kumai T, Sekiya M et al (1992) Left ventricular trabeculae evaluated with MRI in dilated cardiomyopathy and old myocardial infarction. J Cardiol 22:83–90

    PubMed  CAS  Google Scholar 

  • Jacquier A, Thuny F, Jop B et al (2010) Measurement of trabeculated left ventricular mass using cardiac magnetic resonance imaging in the diagnosis of left ventricular non-compaction. Eur Heart J 31:1098–1104

    Article  PubMed  Google Scholar 

  • Jain A, Shehata ML, Stuber M et al (2010) Prevalence of left ventricular regional dysfunction in arrhythmogenic right ventricular dysplasia. A tagged MRI study. Circ Cardiovasc Imaging 3:290–297

    Article  PubMed  Google Scholar 

  • Jefferies JL, Towbin JA (2010) Dilated cardiomyopathy. Lancet 375:752–762

    Article  PubMed  Google Scholar 

  • Jellis C, Martin J, Narula J, Marwick TH (2010) Assessment of nonischemic myocardial fibrosis. J Am Coll Cardiol 56:89–97

    Article  PubMed  CAS  Google Scholar 

  • Jensen PD, Jensen FT, Christensen T, Heickendorff L, Jensen LG, Ellegaard J (2001) Indirect evidence for the potential ability of magnetic resonance imaging to evaluate the myocardial iron content in patients with transfusional iron overload. MAGMA 12:153–166

    Article  PubMed  CAS  Google Scholar 

  • Jensen PD, Jensen FT, Christensen T, Eiskjaer H, Baandrup U, Nielsen JL (2003) Evaluation of myocardial iron by magnetic resonance imaging during iron chelation therapy with deferrioxamine: indication of close relation between myocardial iron content and chelatable iron pool. Blood 101:4632–4639

    Article  PubMed  CAS  Google Scholar 

  • Jerosch-Herold M, Sheridan DC, Kushner JD et al (2008) Cardiac magnetic resonance imaging of myocardial contrast uptake and blood flow in patients affected with idiopathic or familial dilated cardiomyopathy. Am J Physiol Heart Circ Physiol 295:H1234–H1242

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Maceira AM, Babu-Narayan SV, Moon JC, Pennell DJ, Kilner PJ (2007) Clefts can be seen in the basal inferior wall of the left ventricle and the interventricular septum in healthy volunteers as well as patients by cardiovascular magnetic resonance. J Am Coll Cardiol 50:1294–1297

    Article  PubMed  Google Scholar 

  • Jurcut R, Wildiers H, Ganame J, D’hooge J, Paridaens R, Voigt JU (2008) Detection and monitoring of cardiotoxicity-what does modern cardiology offer? Support Care Cancer 16:437–445

    Article  PubMed  Google Scholar 

  • Kahan A, Allanore Y (2006) Primary myocardial involvement in systemic sclerosis. Rheumatology 45:iv14–iv17

    Google Scholar 

  • Kalil-Filho R, de Albuquerque CP (1995) Magnetic resonance imaging in Chagas’ heart disease. Rev Paul Med 113:880–883

    CAS  Google Scholar 

  • Kane GC, Keogh KA (2009) Involvement of the heart by small and medium vessel vasculitis. Curr Opin Rheumatol 21:29–34

    Article  PubMed  Google Scholar 

  • Kang YJ (2003) New understanding in cardiotoxicity. Curr Opin Drug Discov Devel 6:110–116

    PubMed  CAS  Google Scholar 

  • Kawada N, Sakuma H, Yamakado T et al (1999) Hypertrophic cardiomyopathy: MR measurement of coronary blood flow and vasodilator flow reserve in patients and healthy subjects. Radiology 21:129–135

    Google Scholar 

  • Kellman P, Hernando D, Shah S et al (2009) Multiecho Dixon fat and water separation method for detecting fibrofatty infiltration in the myocardium. Magn Reson Med 61:215–221

    Article  PubMed  CAS  Google Scholar 

  • Keren A, Syrris P, McKenna WJ (2008) Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat Clin Pract Cardiovasc Med 5:158–168

    Article  PubMed  CAS  Google Scholar 

  • Khavandi K, Khavandi A, Asghar O et al (2009) Diabetic cardiomyopathy—a distinct disease? Best Pract Res Clin Endocrinol Metab 23:347–360

    Article  PubMed  Google Scholar 

  • Kimura F, Matsuo Y, Nakajima T et al (2010) Myocardial fat at cardiac imaging: how can we differentiate pathologic form physiologic fatty infiltration. Radiographics 30:1587–1602

    Article  PubMed  Google Scholar 

  • Kindermann I, Kindermann M, Kandolf R et al (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648

    Article  PubMed  Google Scholar 

  • Kirk P, Roughton M, Porter JB et al (2009) Cardiac T2* magnetic resonance for prediction of cardiac complications in thalassemia major. Circulation 120:1961–1968

    Article  PubMed  CAS  Google Scholar 

  • Kloner RA, Rezkalla SH (2003) Cocaine and the heart. N Engl J Med 348:487–488

    Article  PubMed  Google Scholar 

  • Klues HG, Schiffers A, Maron BJ (1995) Phenotypic spectrum and patterns of left ventricular hypertrophy in hypertophic cardiomyopathy: morphologic observations and significance as assessed by two-dimensional echocardiography in 600 patients. J Am Coll Cardiol 26:1699–1708

    Article  PubMed  CAS  Google Scholar 

  • Knaapen P, Götte MJW, Paulus WJ et al (2006) Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology 240:380–388

    Article  PubMed  Google Scholar 

  • Knaapen P, Germans T, Camici PG et al (2008) Determinants of coronary microvascular dysfunction in symptomatic hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 294:H986–H993

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi H, Yokoe I, Hirano M et al (2008) Cardiac magnetic resonance imaging with pharmacological stress perfusion and delayed enhancement in asymptomatic patients with systemic sclerosis. J Rheumatol 36:106–112

    Google Scholar 

  • Kohli SK, Pantazis AA, Shah JS et al (2008) Diagnosis of left-ventricular non-compaction in patients with left-ventricular systolic dysfunction: time for a reappraisal of diagnostic criteria. Eur Heart J 29:89–95

    Article  PubMed  Google Scholar 

  • Koito H, Suzuki J, Ohkubo N, Ishiguro Y, Iwasaka T, Inada M (1996) Gadolinium-diethylenetriamine pentaacetic acid enhanced magnetic resonance imaging of dilated cardiomyopathy: clinical significance of abnormally high signal intensity of left ventricular myocardium. J Cardiol 28:41–49

    PubMed  CAS  Google Scholar 

  • Kosovsky PA, Ehlers KH, Rafal RB, Williams WM, O’Loughlin JE, Markisz JA (1991) MR imaging of cardiac mass in Wegener granulomatosis. J Comput Assist Tomogr 15:1028–1030

    Article  PubMed  CAS  Google Scholar 

  • Koyama J, Ray-Sequin PA, Falk RH et al (2003) Longitudinal myocardial function assessed by tissue velocity, strain, and strain rate tissue Doppler echocardiography in patients with AL (primary) cardiac amyloidosis. Circulation 107:2446–2452

    Article  PubMed  Google Scholar 

  • Kramer CM, Reichek N, Ferrari VA, Theobald T, Dawson J, Axel L (1994) Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 90:186–194

    PubMed  CAS  Google Scholar 

  • Kubo T, Gimeno JR, Bahl A et al (2007) Prevalence, clinical significance, and genetic basis of hypertrophic cardiomyopathy with restrictive phenotype. J Am Coll Cardiol 49:2419–2426

    Article  PubMed  CAS  Google Scholar 

  • Kushwaha SS, Fallon JT, Fuster V (1997) Restrictive cardiomyopathy. N Engl J Med 336:267–276

    Article  PubMed  CAS  Google Scholar 

  • Kwon DH, Setser RM, Thamilarasan M et al (2008) Abnormal papillary muscle morphology is independently associated with increased left ventricular outflow tract obstruction in hypertrophy cardiomyopathy. Heart 94:1295–1301

    Article  PubMed  CAS  Google Scholar 

  • Kwon DH, Smedira NG, Rodriguez ER et al (2009) Cardiac magnetic resonance detection of myocardial scarring in hypertrophic cardiomyopathy. Correlation with histopathology and prevalence of ventricular tachycardia. J Am Coll Cardiol 54:242–249

    Article  PubMed  Google Scholar 

  • Laissy JP, Messin B, Varenne O et al (2002) MRI of acute myocarditis: a comprehensive approach based on various imaging sequences. Chest 122:1638–1648

    Article  PubMed  Google Scholar 

  • Lakdawala NK, Givertz MM (2010) Dilated cardiomyopathy with conduction disease and arrhythmia. Circulation 122:527–534

    Article  PubMed  Google Scholar 

  • Lamb HJ, Beyerbacht HP, van der Laarse A et al (1999) Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. Circulation 99:2261–2267

    PubMed  CAS  Google Scholar 

  • Lauschke J, Maisch B (2008) Athlete’s heart of hypertrophic cardiomyopathy? Clin Res Cardiol 98:80–88

    Article  PubMed  CAS  Google Scholar 

  • Leonardi S, Raineri C, De Ferrari GM et al (2009) Usefulness of cardiac magnetic resonance in assessing the risk of ventricular arrhythmias and sudden death in patients with hypertrophic cardiomyopathy. Eur Heart J 30:2003–2010

    Article  PubMed  Google Scholar 

  • Lesnefsky EJ, Allen KG, Carrea FP, Horwitz LD (1992) Iron-cjatalyzed reactions cause lipid peroxidation in the intact heart. J Mol Cell Cardiol 24:1031–1038

    Article  PubMed  CAS  Google Scholar 

  • Lieberman EB, Hutchins GM, Herskowitz A, Rose NR, Baughman KL (1991) Clinicopathologic description of myocarditis. J Am Coll Cardiol 18:1616–1626

    Google Scholar 

  • Lightfoot JC, D’Agostino RB, Hamilton CA et al (2010) Novel approach to early detection of doxorubicin cardiotoxicity by gadolinium-enhanced cardiovascular magnetic resonance imaging in an experimental model. Circ Cardiovasc Imaging 3:550–558

    Article  PubMed  Google Scholar 

  • Lipshultz SE, Colan SD, Gelber RD et al (1991) Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. N Engl J Med 324:808–815

    Article  PubMed  CAS  Google Scholar 

  • Liu P, Olivieri N (1994) Iron overload cardiomyopathies: new insights into an old disease. Cardiovasc Drugs Ther 8:101–110

    Article  PubMed  CAS  Google Scholar 

  • Lofiego C, Biagini E, Pasquale F et al (2007) Wide spectrum of presentation and variable outcomes of isolated left ventricular non-compaction. Heart 93:65–71

    Article  PubMed  CAS  Google Scholar 

  • Lombardi C, Rusconi C, Faggiano P, Lanzani G, Campana C, Arbustini E (1995) Successful reduction of endomyocardial fibrosis in a patient with idiopathic hypereosinophilic syndrome. A case report. Angiology 46:345–351

    Article  PubMed  CAS  Google Scholar 

  • Lund MB, Ihlen H, Voss BM et al (1996) Increased risk of heart valve regurgitation after mediastinal radiation for Hodgkin’s disease: an echocardiographic study. Heart 75:591–595

    Article  PubMed  CAS  Google Scholar 

  • Maceira AM, Joshi J, Prasad SK et al (2005) Cardiovascular magnetic resonance in cardiac amyloidosis. Circulation 111:186–193

    Article  PubMed  Google Scholar 

  • Maceira AM, Prasad SK, Pennell DJ, Mohiaddin RH (2008a) Integrated evaluation of the hypertensive patient with cardiovascular magnetic resonance. Int J Cardiol 125:383–390

    Article  PubMed  Google Scholar 

  • Maceira AM, Prasad SK, Hawkins PN, Roughton M, Pennell DJ (2008b) Cardiovascular magnetic resonance and prognosis in cardiac amyloidosis. J Cardiovasc Magn Reson 10:54–64

    Article  PubMed  Google Scholar 

  • MacGowan GA, Shapiro EP, Azhari H et al (1997) Shortening in the fiber and cross-fiber directions in the normal human left ventricle and in idiopathic dilated cardiomyopathy. Circulation 96:535–541

    PubMed  CAS  Google Scholar 

  • Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis. A comparison to histology and molecular biology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  • Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ (2005) Delayed enhancement cardiovascular magnetic resonance assessment of non-ischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  • Mahrholdt H, Wagner A, Deluigi C et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  • Maier SE, Fischer SE, McKinnon GC, Hess OM, Kraeyenbuehl HP, Boesiger P (1992) Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 86:1919–1928

    PubMed  CAS  Google Scholar 

  • Manins V, Habersberger J, Pfluger H, Taylor AJ (2009) Cardiac magnetic resonance imaging in the evaluation of cardiac sarcoidosis: an Australian single-center experience. Int J Med 39:77–82

    Article  CAS  Google Scholar 

  • Marcu CB, beek AM, van Rossum AC (2007) Chagas’ heart disease diagnosed on MRI: the importance of patient “geographic” history. Int J Cardiol 1147:e58–e60

    Article  Google Scholar 

  • Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dyplasia. Proposed modification of the task force criteria. Circulation 121:1533–1541

    Article  PubMed  Google Scholar 

  • Mark PB, Johnston N, Groenning BA et al (2006) Redefinition of uremic cardiomyopathy by contrast-enhanced cardiac magnetic resonance imaging. Kidney Int 69:1839–1845

    Article  PubMed  CAS  Google Scholar 

  • Marmursztejn J, Vignaux O, Cohen P et al (2009) Impact of cardiac magnetic resonance imaging for assessment of Churg-Strauss syndrome: a cross-sectional study in 20 patients. Clin Exp Rheumatol 27:S70–S76

    PubMed  CAS  Google Scholar 

  • Marmursztejn J, Cohen P, Duboc D et al (2010) Cardiac magnetic resonance imaging in Churg-Strauss-syndrome. Impact of immunosuppressants on outcome assessed in a prospective study on 8 patients. Clin Exp Rheumatol 28(1 Suppl 57):8–13

    PubMed  Google Scholar 

  • Maron BJ (2003) Sudden death in young athletes. N Engl J Med 349:1064–1075

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Pelliccia A (2006) The heart of trained athletes. Cardiac remodeling and the risk of sports, including sudden death. Circulation 114:1633–1644

    Article  PubMed  Google Scholar 

  • Maron BJ, Anan TJ, Roberts WC (1981) Quantitative analysis of the distribution of cardiac muscle cell disorganization in the left ventricular wall of patients with hypertrophic cardiomyopathy. Circulation 63:882–894

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Bonow RO, Cannon ROI, Leon MB (1987) Hypertrophic cardiomyopathy: interrelations of clinical manifestations, pathophysiology, and therapy. N Engl J Med 316:780–789

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Pelliccia A, Spirito P (1995) Cardiac disease in young trained athletes. Insight into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation 91:1596–1602

    PubMed  CAS  Google Scholar 

  • Maron BJ, McKenna WJ, Danielson GK et al (2003a) American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. J Am Coll Cardiol 42:1687–1713

    Article  PubMed  Google Scholar 

  • Maron MS, Olivotto I, Betocchi S et al (2003b) Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophy cardiomyopathy. N Engl J Med 348:295–303

    Article  PubMed  Google Scholar 

  • Maron BJ, Towbin JA, Thiene G et al (2006a) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  • Maron MS, Olvitoo I, Zenovich AG et al (2006b) Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation 114:2232–2239

    Article  PubMed  Google Scholar 

  • Maron MS, Hauser TH, Dubrow E et al (2007) Right ventricular involvement in hypertrophic cardiomyopathy. Am J Cardiol 100:1293–1298

    Article  PubMed  Google Scholar 

  • Maron MS, Finley JJ, Bos M et al (2008a) Prevalence, clinical significance, and natural history of left ventricular apical aneurysms in hypertrophic cardiomyopathy. Circulation 118:1541–1549

    Article  PubMed  Google Scholar 

  • Maron MS, Appelbaum E, Harrigan CJ et al (2008b) Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail 1:184–191

    Article  PubMed  Google Scholar 

  • Maron MS, Maron BJ, Harrigan C et al (2009) Hypertrophic cardiomyopathy phenotype revisited after 50 years with cardiovascular magnetic resonance. J Am Coll Cardiol 54:220–228

    Article  PubMed  Google Scholar 

  • Maron MS, Olivotto I, Harrigan C et al (2011) Mitral valve abnormalities identified by cardiovascular magnetic resonance represent a primary phenotypic expression of hypertrophic cardiomyopathy. Circulation 124:40–47

    Article  PubMed  CAS  Google Scholar 

  • Masci PG, Marinelli M, Piacenti M et al (2010a) Myocardial structural, perfusion, and metabolic correlates of left bundle branch block mechanical derangement in patients with dilated cardiomyopathy. A tagged cardiac magnetic resonance and positron emission tomography study. Circ Cardiovasc Imaging 3:482–490

    Article  PubMed  Google Scholar 

  • Masci PG, Francone M, Desmet W et al (2010b) Right ventricular ischemic injury in patients with acute ST-segment elevation myocardial infarction. Characterization with cardiovascular magnetic resonance. Circulation 122:1405–1412

    Article  PubMed  Google Scholar 

  • Matoh F, Satoh H, Shiraki K et al (2007) Usefulness of delayed enhancement magnetic resonance imaging to differentiate dilated phase of hypertrophic cardiomyopathy and dilated cardiomyopathy. J Cardiac Fail 13:372–379

    Article  Google Scholar 

  • Matoh F, Satoh H, Shiraki K et al (2008) The usefulness of delayed enhancement magnetic resonance imaging for diagnosis and evaluation of cardiac function in patients with cardiac sarcoidosis. J Cardiol 51:179–188

    Article  PubMed  Google Scholar 

  • Matsuki M, Matsuo M (2000) MR findings of myocardial sarcoidosis. Clin Radiol 55:323–325

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka H, Hamada M, Honda T et al (1993) Precise assessment of myocardial damage associated with secondary cardiomyopathies by use of Gd-DTPA-enhanced magnetic resonance imaging. Angiology 44:945–950

    Article  PubMed  CAS  Google Scholar 

  • Mavrogeni S, Gotsis E, Verganelakis D et al (2009) Effect of iron overload on exercise capacity in thalassemic patients with heart failure. Int J Cardiovasc Imaging 25:777–783

    Article  PubMed  Google Scholar 

  • Maya L, Villarreal FJ (2010) Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Moll Cell Cardiology 48:524–529

    Article  CAS  Google Scholar 

  • Mazur W, Nagueh SF, Lakkis NM et al (2001) Regression of left ventricular hypertrophy after nonsurgical septal reduction therapy for hypertrophic obstructive cardiomyopathy. Circulation 103:1492–1496

    PubMed  CAS  Google Scholar 

  • McCann GP, Van Dockum WG, Beek AM et al (2007) Extent of myocardial infarction and reverse remodeling assessed by cardiac magnetic resonance in patients with and without right bundle branch block following alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Am J Cardiol 99:563–567

    Article  PubMed  Google Scholar 

  • McCrohon JA, Richmond DR, Pennell DJ, Mohiaddin RH (2002) Isolated noncompaction of the myocardium. A rarity or missed diagnosis? Circulation 106:e22–e23

    Article  PubMed  CAS  Google Scholar 

  • McCrohon JA, Moon JCC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59

    Article  PubMed  CAS  Google Scholar 

  • McKenna WJ, Thiene G, Nava A et al (1994) Diagnosis of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Br Heart J 71:215–218

    Article  PubMed  CAS  Google Scholar 

  • Meijs MFL, Bots ML, Vonken E-JA et al (2007) Rationale and design of the SMART Heart study. A prediction model for left ventricular hypertrophy in hypertension. Neth Heart J 15:295–298

    Article  PubMed  CAS  Google Scholar 

  • Mekinian A, Lions C, Leleu X et al (2010) Prognosis assessment of cardiac involvement in systemic AL amyloidosis by magnetic resonance imaging. Am J Med 123:864–868

    Article  PubMed  Google Scholar 

  • Melacini P, Basso C, Angelini A et al (2010) Clinicopathological profiles of progressive heart failure in hypertrophic cardiomyopathy. Eur Heart J 31:2111–2123

    Article  PubMed  Google Scholar 

  • Meyer C, Schmid G, Görlitz S et al (2007) Cardiomyopathy in Friedreich’s ataxia—assessment by cardiac MRI. Mov Disord 22:1615–1622

    Article  PubMed  Google Scholar 

  • Migrino RQ, Christenson R, Szabo A, Bright M, Truran S, Hari P (2009) Prognostic implication of late gadolinium enhancement on cardiac MRI in light chain (AL) amyloidosis on long term follow-up. BMC Med Phys 9:5–11

    Article  PubMed  CAS  Google Scholar 

  • Miller MA, Gomes JA, Fuster V (2007) Risk stratification of sudden cardiac death in hypertrophic cardiomyopathy. Nat Clin Pract Cardiovasc Med 4:667–676

    Article  PubMed  Google Scholar 

  • Minami Y, Kajimoto K, Terajima Y et al (2011) Clinical implications of midventricular obstruction in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 57:2346–2355

    Article  PubMed  Google Scholar 

  • Mocumbi AO, Ferreira MB, Sidi D, Yacoub MH (2008) A population study of endomyocardial fibrosis in a rural area of Mozambique. N Engl J Med 359:43–49

    Article  PubMed  CAS  Google Scholar 

  • Mollet NR, Dymarkowski S, Volders W et al (2002) Visualization of ventricular thrombi with contrast-enhanced MRI in patients with ischemic heart disease. Circulation 106:2873–2876

    Article  PubMed  Google Scholar 

  • Moon JCC, McKenna WJ, McCrohon JA, Elliot PM, Smith GC, Pennell DJ (2003a) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    Article  PubMed  Google Scholar 

  • Moon JCC, Mundy HR, Lee PJ, Mohiaddin RH, Pennell DJ (2003b) Myocardial fibrosis in glycogen storage disease type III. Circulation 107:e47

    Article  PubMed  Google Scholar 

  • Moon JCC, Sachdev B, Elkington AG et al (2003c) Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J 24:2151–2155

    Article  PubMed  Google Scholar 

  • Moon JC, Fisher NG, McKenna WJ, Pennell DJ (2004a) Detection of apical hypertrophic cardiomyopathy by cardiovascular magnetic resonance in patients with non-diagnostic echocardiography. Heart 90:645–649

    Article  PubMed  CAS  Google Scholar 

  • Moon JC, Reed E, Sheppard MN et al (2004b) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 43:2260–2264

    Article  PubMed  Google Scholar 

  • Moon JC, Sheppard M, Reed E et al (2006) The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson 8:479–482

    Article  PubMed  Google Scholar 

  • Moreo A, Ambrosio G, De Chiara B et al (2009) Influence of myocardial fibrosis on left ventricular diastolic function. Noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2:437–443

    Article  PubMed  Google Scholar 

  • Morganroth J, Maron BJ, Henry WL, Epstein SE (1975) Comparative left ventricular dimensions in trained athletes. Ann Intern Med 82:521–524

    PubMed  CAS  Google Scholar 

  • Motoyasu M, Kurita T, Onishi K et al (2008) Correlation between late gadolinium enhancement and diastolic function in hypertrophic cardiomyopathy assessed by magnetic resonance imaging. Circ J 72:378–383

    Article  PubMed  Google Scholar 

  • Munk PS, ∅rn S, Larsen AI (2007) Lyme carditis: persistent local delayed enhancement by cardiac magnetic resonance imaging. Int J Cardiol 115:e108–e110

    Article  PubMed  Google Scholar 

  • Myrehaug S, Pintelie M, Yun L et al (2010) A population-based study of cardiac morbidity among Hodgkin lymphoma patients with preexisting heart disease. Blood 116:2237–2240

    Article  PubMed  CAS  Google Scholar 

  • Nagueh SF, Mahmarian JJ (2006) Noninvasive cardiac imaging in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 48:2410–2422

    Article  PubMed  Google Scholar 

  • Naik M, Kim D, O’Brien F, Axel L, Srichai MB (2008) Images in cardiovascular medicine. Lyme carditis. Circulation 118:1881–1884

    Article  PubMed  Google Scholar 

  • Nassenstein K, Breuckmann F, Huger M et al (2008) Detection of myocardial fibrosis in systemic sclerosis by contrast-enhanced magnetic resonance imaging. Rofo 180:1054–1060

    Article  PubMed  CAS  Google Scholar 

  • Nathwani D, Hamlet N, Walker E (1990) Lyme disease: a review. Br J Gen Pract 40:72–74 (see comments)

    PubMed  CAS  Google Scholar 

  • Naylor LH, George K, O’Driscoll G, Green DJ (2008) The athlete’s heart: a contemporary appraisal of the ‘Morganroth hypothesis’. Sports Med 38:69–90

    Article  PubMed  Google Scholar 

  • Nazarian S, Bluemke DA, Lardo AC et al (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112:2821–2825

    Article  PubMed  Google Scholar 

  • Neumann T, Manger B, Schmid M et al (2009) Cardiac involvement in Churg-Strauss syndrome: impact of endomyocarditis. Medicine (Baltimore) 88:236–243

    Article  Google Scholar 

  • Ng AC, Delgado V, Bertini M et al (2010) Myocardial steatosis and biventricular strain and strain rate imaging in patients with type 2 diabetes mellitus. Circulation 122:2538–2544

    Article  PubMed  Google Scholar 

  • Nihoyannopoulos P, Dawson D (2009) Restrictive cardiomyopathies. Eur J Echocardio 10:iii23–iii33

    Article  Google Scholar 

  • Niida T, Isoda K, Sasaki M et al (2008) Late gadolinium enhanced high resolution magnetic resonance imaging reveals pathophysiological condition of cardiac sarcoidosis. Int Heart J 50:263–266

    Article  Google Scholar 

  • Norman M, Simpson M, Mogensen J et al (2005) Novel mutation in desmoplakin causes arrhythmogenic left ventricular cardiomyopathy. Circulation 112:636–642

    Article  PubMed  CAS  Google Scholar 

  • Nucifora G, Aquaro GD, Pingitore A, Masci PG, Lombardi M (2011) Myocardial fibrosis in isolated left ventricular non-compaction and its relation to disease severity. Eur J Heart Failure 13:170–176

    Article  Google Scholar 

  • O’Hanlon R, Grasso A, Roughton M et al (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol 56:867–874

    Article  PubMed  Google Scholar 

  • O’Neill SG, Woldman S, Bailliard F et al (2009) Cardiac magnetic resonance imaging in patients with systemic lupus erythematosus. Ann Rheum Dis 68(9):1478–1481

    Article  PubMed  Google Scholar 

  • Oechslin E, Jenni R (2011) Left ventricular non-compaction revisited: a distinct phenotype with genetic heterogeneity? Eur Heart J 32:1446–1456

    Article  PubMed  Google Scholar 

  • Oechslin EN, Attenhofer Jost CH, Rojas JR et al (2000) Long-term follow-up of 34 adults with isolated left ventricular noncompaction: a distinct cardiomyopathy with poor prognosis. J Am Coll Cardiol 36:493–500

    Article  PubMed  CAS  Google Scholar 

  • Ohira H, Tsujino I, Ishimaru S (2008) Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging 35:933–941

    Article  PubMed  Google Scholar 

  • Olivotto I, Maron MS, Autore C et al (2008) Assessment and significance of left ventricular mass by magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 52:559–566

    Article  PubMed  Google Scholar 

  • Olivotto I, Maron BJ, Appelbaum E et al (2010) Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 106:261–267

    Article  PubMed  Google Scholar 

  • Ong P, Athansiadis A, Hill S et al (2011) Usefulness of pericardial effusion as new diagnostic criterion for noninvasive detection of myocarditis. Am J Cardiol 108:445–452

    Article  PubMed  Google Scholar 

  • Otmani A, Leborgne L, Renard C et al (2007) Electrocardiogram, electrocardiography, and magnetic resonance imaging characteristics in Uhl’s disease. Circulation 115:e11–e12

    Article  PubMed  Google Scholar 

  • Owan TE, Hodge DO, Herges RM et al (2006) Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med 355:251–259

    Article  PubMed  CAS  Google Scholar 

  • Pamuru PR, Dokuparthi MVN, Remersu S, Calambur N, Nallari P (2010) Comparison of Uhl’s anomaly, right ventricular outflow tract ventricular tachycardia (RVOT VT) and arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C) with an insight into genetics of ARVD/C. Indian J Med Res 131:35–45

    PubMed  Google Scholar 

  • Park JH, Kim YM, Chung JW, Park YB, Han JH, Han MC (1992) MR imaging of hypertrophic cardiomyopathy. Radiology 185:441–446

    PubMed  CAS  Google Scholar 

  • Parrillo JE (1990) Heart disease and the eosinophil. N Engl J Med 323:1560–1561

    Article  PubMed  CAS  Google Scholar 

  • Patel MR, Cawley PJ, Heitner JF et al (2009) Detection of myocardial sarcoidosis in patients with sarcoidosis. Circulation 120:1969–1977

    Article  PubMed  Google Scholar 

  • Petersen SE, Selvanayagam JB, Francis JM et al (2005a) Differentiation of athlete’s heart from pathological forms of cardiac hypertrophy by means of geometric indices derived from cardiovascular magnetic resonance. J Cardiovasc Magn Reson 7:551–558

    Article  PubMed  Google Scholar 

  • Petersen SE, Selvanayagam JB, Wiesmann F et al (2005b) Left ventricular non-compaction. Insight from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105

    Article  PubMed  Google Scholar 

  • Petersen SE, Jerosch-Herold M, Hudsmith LE (2007) Evidence for microvascular dysfunction in hypertrophic cardiomyopathy. New insights from multiparametric magnetic resonance imaging. Circulation 115:2418–2425

    Article  PubMed  Google Scholar 

  • Pfluger HB, Phrommintikul A, Mariani JA, Cherayath JG, Taylor AJ (2008) Utility of myocardial fibrosis and fatty infiltration detected by cardiac magnetic resonance imaging in the diagnosis of arrhythmogenic right ventricular dysplasia–a single centre experience. Heart Lung Circ 17:478–483

    Article  PubMed  Google Scholar 

  • Pieroni M, Dello Russo A, Marzo F et al (2009) High prevalence of myocarditis mimicking arrhythmogenic right ventricular cardiomyopathy. Differential diagnosis by electroanatomic mapping-guided endomyocardial biopsy. J Am Coll Cardiol 53:681–689

    Article  PubMed  Google Scholar 

  • Pignatelli RH, McMahon CJ, Dreyer WJ et al (2003) Clinical characterization of left ventricular noncompaction in children. A relatively common form of cardiomyopathy. Circulation 108:2672–2678

    Article  PubMed  Google Scholar 

  • Pinamonti B, Dragos AM, Pyxaras SA et al (2011) Prognostic predictors in arrhythmogenic right ventricular cardiomyopathy: results from a 10-year registry. Eur Heart J 32:1105–1113

    Article  PubMed  Google Scholar 

  • Pitt M, Davies MK, Brady AJ (1996) Hypereosinophilic syndrome: endomyocardial fibrosis. Heart 76:377–378

    Article  PubMed  CAS  Google Scholar 

  • Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE (1999) The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation 100:336–344

    Google Scholar 

  • Prasad A, Lerman A, Rihal CS (2008) Apical ballooning syndrome (Tako-Tsubo or stress cardiomyopathy): a mimic of acute myocardial infarction. Am Heart J 155:408–417

    Article  PubMed  Google Scholar 

  • Prasad A, Hastings JL, Shibata S et al (2010) Characterization of static and dynamic left ventricular function in patients with heart failure with a preserved ejection fraction. Circ Heart Fail 3:617–626

    Article  PubMed  Google Scholar 

  • Proclemer A, Basadonna PT, Slavich GA, Miani D, Fresco C, Fioretti PM (1997) Cardiac magnetic resonance imaging findings in patients with right ventricular outflow tract premature contractions. Eur Heart J 18:2002–2010

    PubMed  CAS  Google Scholar 

  • Rademakers FE, Bogaert J (2006) Cardiac dysfunction in heart failure with normal ejection fraction: MRI measurements. Prog Cardiovasc Dis 49:215–227

    Article  PubMed  Google Scholar 

  • Rademakers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling. Accentuation by catecholamines. Circulation 85:1572–1581

    PubMed  CAS  Google Scholar 

  • Rademakers FE, Marchal G, Mortelmans L, Van de Werf F, Bogaert J (2003) Evolution of regional performance after an acute anterior myocardial infarction in humans using magnetic resonance tagging. J Physiol 546:777–787

    Article  PubMed  CAS  Google Scholar 

  • Rahman JE, Helou EF, Gelzer-Bell R (2004) Noninvasive diagnosis of biopsy-proven cardiac amyloidosis. J Am Coll Cardiol 43:410–415

    Article  PubMed  Google Scholar 

  • Raman SV, Basso C, Tandri H, Taylor MRG (2010) Imaging phenotype vs genotype in nonhypertrophic heritable cardiomyopathies. Dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Imaging 3:753–765

    Article  PubMed  Google Scholar 

  • Rapezzi C, Merline G, Quarta C et al (2009) Systemic cardiac amyloidosis. Disease profiles and clinical courses of the 3 main types. Circulation 120:1203–1212

    Article  PubMed  CAS  Google Scholar 

  • Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the definition and classification of cardiomyopathies. Circulation 93:841–842

    Article  PubMed  CAS  Google Scholar 

  • Rickers C, Wilke N, Jerosch-Herold M et al (2005) Utility of cardiac magnetic resonance imaging in the diagnosis of hypertrophic cardiomyopathy. Circulation 112:855–861

    Article  PubMed  Google Scholar 

  • Rijzewijk LJ, van der Meer RW, Smit JW et al (2008) Myocardial steatosis is an independenet predictor of diastolic dysfunction in type 2 diabetes mellitus. J Am Coll Cardiol 52:1793–1799

    Article  PubMed  Google Scholar 

  • Ripoli A, Pingitore A, Favilli B et al (2005) Does subclinical hypothyroidism affect cardiac pump performance? Evidence from a magnetic resonance imaging study. J Am Coll Cardiol 45:439–445

    Article  PubMed  Google Scholar 

  • Rochitte CE, Nacif MD, de Oliveira Junior AC et al (2007) Cardiac magnetic resonance in Chagas’ disease. Artif Organs 31:259–267

    Article  PubMed  Google Scholar 

  • Ruberg FL, Appelbaum E, Davidoff R et al (2009) Diagnostic and prognostic utility of cardiovascular magnetic resonance imaging in light-chain cardiac amyloidosis. Am J Cardiol 103:544–549

    Article  PubMed  Google Scholar 

  • Rubinshtein R, Glockner JF, Ommen SR et al (2010) Characteristics and clinical significance of late gadolinium enhancement by contrast-enhanced magnetic resonance imaging in patients with hypertrophic cardiomyopathy. Circ Heart Fail 3:51–58

    Article  PubMed  Google Scholar 

  • Rudin M, Pedersen B, Umemura K, Zierhut W (1991) Determination of rat heart morphology and function in vivo in two models of cardiac hypertrophy by means of magnetic resonance imaging. Basic Res Cardiol 86:165–174

    Article  PubMed  CAS  Google Scholar 

  • Rudolf A, Abdel-Aty H, Bohl S et al (2009) Noninvasive detection of fibrosis applying contrast-enhanced cardiac magnetic resonance in different forms of left ventricular hypertrophy. Relation to remodeling. J Am Coll Cardiol 53:284–291

    Article  Google Scholar 

  • Scharlag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athete’s heart. Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863

    Article  Google Scholar 

  • Schietinger BJ, Brammer GM, Wang H et al (2008) Patterns of late gadolinium enhancement in chronic hemodialysis patients. J Am Coll Cardiol Img 1:450–456

    Google Scholar 

  • Schulz-Menger J, Strohm O, Waigand J, Uhlich F, Dietz R, Friedrich MG (2000a) The value of magnetic resonance imaging of the left ventricular outflow tract in patients with hypertrophic obstructive cardiomyopathy after septal artery embolization. Circulation 101:1764–1766

    PubMed  CAS  Google Scholar 

  • Schulz-Menger J, Strohm O, Dietz R, Friedrich MG (2000b) Visualization of cardiac involvement in patients with systemic sarcoidosis applying contrast-enhanced magnetic resonance imaging. MAGMA 11:82–83

    Article  PubMed  CAS  Google Scholar 

  • Schulz-Menger J, Abdel-Aty H, Busjahn A et al (2006) Left ventricular outflow tract planimetry by cardiovascular magnetic resonance differentiates obstructive from non-obstructive hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 8:741–746

    Article  PubMed  Google Scholar 

  • Schwefer M, Aschenbach R, Heidemann J, Mey C, Lapp H (2009) Constrictive pericarditis, still a diagnostic challenge: comprehensive review of clinical management. Eur J Cardiohoracic Surg 36:502–510

    Article  Google Scholar 

  • Semelka RC, Tomei E, Wagner S et al (1990) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373

    Article  PubMed  CAS  Google Scholar 

  • Sen-Chowdhry S, Prasad SK, Syrris P et al (2006) Cardiovascular magnetic resonance in arrhythmogenic right ventricular cardiomyopathy revisited. Comparison with task force criteria and genotype. J Am Coll Cardiol 48:2132–2140

    Article  PubMed  Google Scholar 

  • Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ (2007) Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115:1710–1720

    Article  PubMed  Google Scholar 

  • Sen-Chowdhry S, Syrris P, Prasad SK et al (2008) Left dominant arrhythmogenic cardiomyopathy. An underrecognized clinical entity. J Am Coll Cardiol 52:2175–2187

    Article  PubMed  Google Scholar 

  • Sen-Chowdhry S, Syrris P, Pantazis A et al (2010) Mutational heterogeneity, modifier genes, and environmental influence to phenotypic diversity of arrhythmogenic cardiomyopathy. Circ Cardiovasc Genet 3:323–330

    Article  PubMed  Google Scholar 

  • Sharkey SW, Lesser JR, Zenovich AG et al (2005) Acute and reversible cardiomyopathy provoked by stress in women form the United States. Circulation 111:472–479

    Article  PubMed  Google Scholar 

  • Sharma OP (2003) Diagnosis of cardiac sarcoidosis. An imperfect science, a hesitant art. Chest 123:18–19

    Article  PubMed  Google Scholar 

  • Shimada T, Shimada K, Sakane T et al (2001) Diagnosis of cardiac sarcoidosis and evaluation of the effects of steroid therapy by gadolinium-DTPA-enhanced magnetic resonance imaging. Am J Med 110:520–527

    Article  PubMed  CAS  Google Scholar 

  • Shimizu I, Iguchi N, Watanabe H et al (2010) Delayed cardiovascular magnetic resonance as a novel technique to predict cardiac events in dilated cardiomyopathy patients. Int J Cardiol 142:224–229

    Article  PubMed  Google Scholar 

  • Sigwart U (1995) Non-surgical reduction for hypertrophic obstructive cardiomyopathy. Lancet 346:211–214

    Article  PubMed  CAS  Google Scholar 

  • Silva MC, Meira ZM, Giannetti G et al (2007) Myocardial delayed enhancement by magnetic resonance imaging in patients with muscular dystrophy. J Am Coll Cardiol 49:1874–1879

    Article  PubMed  Google Scholar 

  • Silverman KJ, Hutchins GM, Bulkley BH (1978) Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation 58:1204–1211

    PubMed  CAS  Google Scholar 

  • Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    PubMed  CAS  Google Scholar 

  • Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  PubMed  CAS  Google Scholar 

  • Singh JA, Woodard PK, Davilla-Roman VG et al (2005) Cardiac magnetic resonance imaging abnormalities in systemic lupus erythematosus: a preliminary report. Lupus 14:137–144

    Article  PubMed  CAS  Google Scholar 

  • Sliwa K, Flett J, Elkayam Y (2006) Peripartum cardiomyopathy. Lancet 368:687–693

    Article  PubMed  Google Scholar 

  • Smedema JP, Snoep G, van Kroonenburgh MPG et al (2005) Evaluation of the accuracy of gadolinium-enhanced magnetic resonance in the diagnosis of cardiac sarcoidosis. J Am Coll Cardiol 45:1683–1690

    Article  PubMed  Google Scholar 

  • Smith SC, Ladenson JH, Mason JW, Jaffe AS (1997) Elevations of cardiac troponin I associated with myocarditis. Experimental and clinical correlates. Circulation 95:163–168

    PubMed  CAS  Google Scholar 

  • Soler R, Rodriguez E, Rodriguez JA, Perez ML, Penas M (1997) Magnetic resonance imaging of apical hypertrophic cardiomyopathy. J Thorac Imaging 12:221–225

    Article  PubMed  CAS  Google Scholar 

  • Soriano CJ, Ridocci F, Estornell J, Jimenez J, Martinez V, De Velasco JA (2005) Noninvasive diagnosis of coronary artery disease in patients with heart failure and systolic dysfunction of uncertain etiology, using late gadolinium-enhanced cardiovascular magnetic resonance. J Am Coll Cardiol 45:743–748

    Article  PubMed  Google Scholar 

  • Sotgia B, Sciagrà R, Olivotto I et al (2008) Spatial resolution between coronary microvascular dysfunction and delayed contrast enhancement in patients with hypertrophic cardiomyopathy. J Nucl Med 49:1090–1096

    Article  PubMed  Google Scholar 

  • Sparrow P, Amirabadi A, Sussman MS, Paul N, Merchant N (2009) Quantitative assessment of myocardial T2 relaxation times in cardiac amyloidosis. J Magn Reson Imaging 30:942–946

    Article  PubMed  Google Scholar 

  • Spirito P, Seidman CE, MCKenna WJ, Maron BK (1997) The management of hypertrophic cardiomyopathy. N Engl J Med 336:775–785

    Article  PubMed  CAS  Google Scholar 

  • Stanek G, Gray J, Strie F, Wormser G (2004) Lyme borreliosis. Lancet Infect Dis 4:197–198

    Article  PubMed  Google Scholar 

  • Stark DD, Mosely ME, Bacon BR et al (1985) Magnetic resonance imaging and spectroscopy of hepatic iron overload. Radiology 154:137–142

    PubMed  CAS  Google Scholar 

  • Stensaeth KH, Fossum E, Hoffmann P et al (2010) Takotsubo cardiomyopathy in acute coronary syndrome; clinical features and contribution of cardiac magnetic resonance during the acute and convalescent phase. Scand Cardiovasc J 45:77–85

    Article  PubMed  Google Scholar 

  • Steward S, Mason D, Braunwald E (1968) Impaired rate of left ventricular filling in idiopathic hypertrophic subaortic stenosis and valvular aortic stenosis. Circulation 37:8–14

    Google Scholar 

  • Stöllberger C, Blazek G, Wegner C, Winkler-Dworak M, Finsterer J (2011) Neuromuscular and cardiac comorbidity determines survival in 140 patients with left ventricular hypertrabeculation/noncompaction. Int J Cardiol 148:120–123

    Article  PubMed  Google Scholar 

  • Storey P, Thompson AA, Carqueville CL et al (2007) R2* imaging at 3T and comparison with 1.5. J Magn Reson Imaging 25:540–547

    Article  PubMed  Google Scholar 

  • Strohm O, Schulz-Menger J, Pilz B, Osterziel KJ, Dietz R, Friedrich MG (2001) Measurement of left ventricular dimensions and function in patients with dilated cardiomyopathy. J Magn Reson Imaging 13:367–371

    Article  PubMed  CAS  Google Scholar 

  • Stuber M, Scheidegger MB, Fischer SE et al (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 100:361–368

    PubMed  CAS  Google Scholar 

  • Sueyoshi E, Sakamoto I, Uetani M (2010) Contrast-enhanced myocardial inversion time at the null point for detection of left ventricular myocardial fibrosis in patients with dilated and hypertrophic cardiomyopathy: a pilot study. AJR Am J Roentgenol 294:W293–W298

    Article  Google Scholar 

  • Suk T, Edwards C, Hart H, Christiansen JP (2008) Myocardial scar detected by contrast-enhanced cardiac magnetic resonance imaging is associated with ventricular tachycardia in hypertrophic cardiomyopathy patients. Heart Lung Circ 17:370–374

    Article  PubMed  Google Scholar 

  • Sun JP, James KB, Yang XS et al (1997) Comparison of mortality rates and progression of left ventricular dysfunction in patients with idiopathic dilated cardiomyopathy and dilated versus nondilated right ventricular cavities. Am J Cardiol 80:1583–1587

    Article  PubMed  CAS  Google Scholar 

  • Suzuki J, Caputo GR, Masui T, Chang JM, O’Sullivan M, Higgins CB (1991) Assessment of right ventricular diastolic and systolic function in patients with dilated cardiomyopathy using cine magnetic resonance imaging. Am Heart J 122:1035–1040

    Article  PubMed  CAS  Google Scholar 

  • Suzuki J, Watanabe F, Takenaka K et al (1993) New subtype of apical hypertrophic cardiomyopathy identified with nuclear magnetic resonance imaging as an underlying cause of markedly inverted T waves. J Am Coll Cardiol 22:1175–1181

    Article  PubMed  CAS  Google Scholar 

  • Syed IS, Prasad A, Oh JK (2008) Apical ballooning syndrome or aborted acute myocardial infarction? Insights from cardiovascular magnetic resonance imaging. Int J Cardiovasc Imaging 24:875–882

    Article  PubMed  Google Scholar 

  • Syed IS, Glockner JF, Feng DL et al (2010) Role of cardiac magnetic resonance imaging in the detection of cardiac amyloidosis. J Am Coll Cardiol Img 3:155–164

    Google Scholar 

  • Takenaka T, Teraguchi H, Yoshida A et al (2008) Terminal stage cardiac findings in patient with cardiac Fabry disease: an electrocardiographic, echocardiographic, and autopsy study. J Cardiol 51:50–59

    Article  PubMed  Google Scholar 

  • Tan YT, Wenzelburger F, Lee E et al (2009) The pathophysiology of heart failure with normal ejection fraction. Exercise echocardiography reveals complex abnormalities of both systolic and diastolic function involving torsion, untwist, and longitudinal motion. J Am Coll Cardiol 54:36–46

    Article  PubMed  Google Scholar 

  • Tandri H, Calkins H, Nasir K et al (2003) Magnetic resonance imaging findings in patients meeting task force criteria for arrhythmogenic right ventricular dysplasia. J Cardiovasc Electrophysiol 14:476–482

    Article  PubMed  Google Scholar 

  • Tandri H, Bluemke DA, Ferrari VA et al (2004) Findings on magnetic resonance imaging of idiopathic right ventricular outflow tachycardia. Am J Cardiol 94:1441–1445

    Article  PubMed  Google Scholar 

  • Tandri H, Saranathan M, Rodriguez ER et al (2005) Noninvasive detection of myocardial fibrosis in arrhythmogenic right ventricular cardiomyopathy using delayed-enhancement magnetic resonance imaging. J Am Coll Cardiol 45:98–103

    Article  PubMed  Google Scholar 

  • Tandri H, Castillo E, Ferrari VA et al (2006) Magnetic resonance imaging of arrhythmogenic right ventricular dysplasia. Sensitivity, specificity, and observer variability of fat detection versus functional analysis of the right ventricle. J Am Coll Cardiol 48:2277–2284

    Article  PubMed  Google Scholar 

  • Tanner MA, Galanello R, Dessi C et al (2007) A randomized, placebo-controlled, double-blind trial of the effect of combined therapy with deferoxamine and deferiprone on myocardial iron in thalassemia major using cardiovascular magnetic resonance. Circulation 115:1876–1884

    Article  PubMed  CAS  Google Scholar 

  • Thaman R, Gimeno JR, Reith S et al (2004) Progressive left ventricular remodeling in patients with hypertrophic cardiomyopathy and severe left ventricular hypertrophy. J Am Coll Cardiol 44:398–405

    Article  PubMed  Google Scholar 

  • Tigen K, Karaahmet T, Kirma C et al (2010) Diffuse late gadolinium enhancement by cardiovascular magnetic resonance predicts significant intraventricular systolic dyssynchrony in patients with non-ischemic dilated cardiomyopathy. J Am Soc Echocardiogr 23:416–422

    Article  PubMed  Google Scholar 

  • To A, De Zoysa J, Christiansen JP (2007) Cardiomyopathy associated with Wegener’s granulomatosis. Heart 93:984

    Article  PubMed  Google Scholar 

  • Tsukihashi K, Ueshima K, Uchida T et al (2001) Transient left ventricular apical ballooning without coronary artery stenosis: a novel heart syndrome mimicking acute myocardial infarction. J Am Coll Cardiol 38:11–18

    Article  Google Scholar 

  • Ueyama T, Kasamatsu K, Hano T, Yamamoto K, Tsuruo Y, Nishio I (2002) Emotional stress induces transient left ventricular hypocontraction in the rat via activation of cardiac adrenoceptors. A possible animal of Tako-Tsubo cardiomyopathy. Circ J 66:712–713

    Article  PubMed  Google Scholar 

  • Uhl HSM (1952) A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp 91:197–205

    PubMed  CAS  Google Scholar 

  • Valeti US, Nishimura RA, Holmes DR et al (2007) Comparison of surgical septal myectomy and alcohol septal ablation with cardiac magnetic resonance imaging in patients with hypertrophic obstructive cardiomyopathy. J Am Coll Cardiol 49:350–357

    Article  PubMed  Google Scholar 

  • van der Linde MR (1991) Lyme carditis: clinical characteristics of 105 cases. Scand J Infect Dis Suppl 77:81–84

    PubMed  Google Scholar 

  • van Dockum WG, ten Gate FJ, ten Berg JM et al (2004) Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 43:27–34

    Article  PubMed  Google Scholar 

  • van Dockum WG, Beek AM, ten Gate FJ et al (2005) Early onset and progression of left ventricular remodeling after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. Circulation 111:2503–2508

    Article  PubMed  Google Scholar 

  • van Dockum WG, Kuijer JPA, Götte MJW et al (2006) Septal ablation in hypertrophic cardiomyopathy improves systolic myocardial function in the lateral (free) wall: a follow-up study using CMR tissue tagging and 3D strain analysis. Eur Heart J 27:2833–2839

    Article  PubMed  Google Scholar 

  • Van Geluwe F, Dymarkowski S, Crevits I, De Wever W, Bogaert J (2006) Amyloidosis of the heart and respiratory system. Eur Radiol 16:2358–2365

    Article  PubMed  Google Scholar 

  • Varnava AM, Elliot PM, Sharma S, McKenna WJ, Davies MJ (2000) Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 84:476–482

    Article  PubMed  CAS  Google Scholar 

  • Varnava AM, Elliot PM, Mahon N, Davies MJ, McKenna WJ (2001) Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am J Cardiol 88:275–279

    Article  PubMed  CAS  Google Scholar 

  • Vermes E, Strohm O, Otmani A et al (2011) Impact of the revision of arrhythmogenic right ventricular cardiomyopathy/dysplasia task force criteria on its prevalence by CMR criteria. J Am Coll Cardiol Img 4:282–287

    Google Scholar 

  • Vignaux O, Dhote R, Duboc D et al (2002a) Detection of myocardial involvement in patients with sarcoidosis applying T2-weighted, contrast-enhanced, and cine magnetic resonance imaging: initial results of a prospective study. J Comput Assist Tomogr 26:762–767

    Article  PubMed  Google Scholar 

  • Vignaux O, Dhote R, Duboc D et al (2002b) Clinical significance of myocardial magnetic resonance abnormalities in patients with sarcoidosis. A 1-year follow-up study. Chest 122:1895–1901

    Article  PubMed  Google Scholar 

  • Virmani R, Bures JC, Roberts WC (1980) Cardiac sarcoidosis: a major cause of sudden death in young individuals. Chest 77:423–428

    Article  PubMed  CAS  Google Scholar 

  • Vogel M, Anderson LJ, Holden S, Deanfield JE, Pennell DJ, Walker JM (2003) Tissue Doppler echocardiography in patients with thalassaemia detects early myocardial dysfunction related to myocardial iron overload. Eur Heart J 24:113–119

    Article  PubMed  CAS  Google Scholar 

  • Vogelsang TW, Hanel B, Kristoffersen US et al (2008) Effect of eight weeks of endurance training on right and left ventricular volume and mass in untrained obese subjects: a longitudinal study. Scand J Med Sci Sports 18:354–359

    Article  PubMed  CAS  Google Scholar 

  • Vogelsberg H, Mahrholdt H, Deluigi C et al (2008) Cardiovascular magnetic resonance in clinically suspected cardiac amyloidosis. J Am Coll Cardiol 51:1022–1030

    Article  PubMed  Google Scholar 

  • Voigt A, Elgeti T, Durmus T et al (2011) Cardiac magnetic resonance imaging in dilated cardiomyopathy in adults—towards identification of myocardial inflammation. Eur Radiol 21:925–935

    Article  PubMed  Google Scholar 

  • Von Hoff D, Layard M, Basa P (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91:710–717

    Google Scholar 

  • Wassmuth R, Lentzsch S, Erbruegger U et al (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging–a pilot study. Am Heart J 141:1007–1013

    Article  PubMed  CAS  Google Scholar 

  • Wassmuth R, Göbel U, Natusch A et al (2008) Cardiovascular magnetic resonance imaging detects cardiac involvement in Churg-Strauss syndrome. J Card Fail 14:856–860

    Article  PubMed  Google Scholar 

  • Watkins H, Ashrafian H, Redwood C (2011) Inherited cardiomyopathies. N Engl J Med 364:1643–1656

    Article  PubMed  CAS  Google Scholar 

  • Weidemann F, Niemann M, Breunig F et al (2009) Long-term effects of enzyme replacement therapy on Fabry cardiomyopathy. Evidence for a better outcome with early treatment. Circulation 119:524–529

    Article  PubMed  CAS  Google Scholar 

  • Weller PF, Bubley GJ (1994) The idiopathic hypereosinophilic syndrome. Blood 83:2759–2779

    PubMed  CAS  Google Scholar 

  • Westermann D, Kasner M, Steendijk P et al (2008) Role of left ventricular stiffness in heart failure with normal ejection fraction. Circulation 117:2051–2060

    Article  PubMed  Google Scholar 

  • Westwood M, Anderson LJ, Firmin DN et al (2003a) A single breath-hold multi-echo T2* cardiovascular magnetic resonance technique for diagnosis of myocardial iron overload. J Magn Reson Imag 18:33–39

    Article  Google Scholar 

  • Westwood M, Anderson LJ, Firmin DN et al (2003b) Interscanner reproducibility of cardiovascular magnetic resonance T2* measurements of tissue iron in thalassemia. J Magn Reson Imag 18:616–620

    Article  Google Scholar 

  • White RD, Trohman RG, Flamm SD et al (1998) Right ventricular arrhythmia in the absence of arrhythmogenic dysplasia: MR imaging of myocardial abnormalities. Radiology 207:743–751

    PubMed  CAS  Google Scholar 

  • White J, Sutton T, Kerr A (2010) Isolated primary cardiac sarcoidosis. MRI diagnosis and monitoring of treatment response with cardiac enzymes. Circ Heart Fail 3:e28–e29

    Article  PubMed  Google Scholar 

  • World Health Organization Expert Committee (1984) Chagas disease. In: World Health Organization technical report series 697. WHO, Geneva, pp 50–55

    Google Scholar 

  • Wu E, Judd RM, Vargas JD et al (2001) Visualisation of the presence, location and transmural extent of healed Q-wave and non-Q-wave myocardial infarction. Lancet 357:21–28

    Article  PubMed  CAS  Google Scholar 

  • Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421

    Article  PubMed  Google Scholar 

  • Yared K, Johri AM, Soni AV et al (2008) Cardiac sarcoidosis imitating arrhythmogenic right ventricular dysplasia. Images in cardiovascular medicine. Circulation 118:e113–e115

    Article  PubMed  Google Scholar 

  • Yelgec NS, Dymarkowski S, Ganame J, Bogaert J (2007) Value of MRI in patients with a clinical suspicion of acute myocarditis. Eur Rad 17:2211–2217

    Article  Google Scholar 

  • Yilmaz A, Mahrholdt H, Athanasiadis A et al (2008a) Coronary spasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart 94:1456–1463

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz A, Gdynia H-J, Baccouche H et al (2008b) Cardiac involvement in patients with Becker muscular dystrophy: new diagnostic and pathophysiological insights by a CMR approach. J Cardiovasc Magn Reson 10:50

    Article  PubMed  Google Scholar 

  • Yilmaz A, Kindermann I, Kindermann M et al (2010) Comparative evaluation of left and right ventricular endomyocardial biopsy. Differences in complication rate and diagnostic performance. Circulation 122:900–909

    Article  PubMed  Google Scholar 

  • Yoon GJ, Telli ML, Kao DP et al (2010) Left ventricular dysfunction in patients receiving cardiotoxic cancer therapies are clinicians responding optimally? J Am Coll Cardiol 56:1644–1650

    Article  PubMed  Google Scholar 

  • Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867

    PubMed  CAS  Google Scholar 

  • Zagrosek A, Wassmuth R, Abdel-Aty H et al (2008) Relation between myocardial edema and myocardial mass during the acute and convalescent phase of myocarditis–a CMR study. J Cardiovasc Magn Reson 10:19

    Article  PubMed  Google Scholar 

  • Zagrosek A, Abdel-Aty H, Boyé P et al (2009) Cardiac magnetic resonance monitors reversible and irreversible myocardial injury in myocarditis. J Am Coll Cardiol Img 2:131–138

    Google Scholar 

  • Zile MR, Baicu CF, Gaasch WH (2004) Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med 350:1953–1959

    Article  PubMed  CAS  Google Scholar 

  • Zinzani PL, Gherlinzoni F, Piovaccari G et al (1996) Cardiac injury as late toxicity of mediastinal radiation therapy for Hodgkin’s disease patients. Haematologica 81:132–137

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bogaert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bogaert, J., Taylor, A.M. (2011). Heart Muscle Diseases. In: Bogaert, J., Dymarkowski, S., Taylor, A., Muthurangu, V. (eds) Clinical Cardiac MRI. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_358

Download citation

  • DOI: https://doi.org/10.1007/174_2011_358

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23034-9

  • Online ISBN: 978-3-642-23035-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics