Tomotherapy Image Guided Radiation Therapy

  • Walter H. GrantIII
  • E. Brian Butler
  • Dirk Verellen
Part of the Medical Radiology book series (MEDRAD)


There are a growing number of imaging modalities being implemented to maximize the precision of delivery of radiation therapy. The latest techniques involve volumetric imaging of the patient in the treatment room and automated adjustment of that current position to best match the position of the patient, the tumor and the critical structures obtained in the planning simulation. This chapter discusses the system implemented in the Tomotherapy Hi-Art machine which is basically a helical computed tomography scanner with a megavoltage X-ray source rather than a kilovoltage source. This means that all imaging components are rigidly affixed to a rotating gantry and the same point source is used for imaging and treatment. The system has advantages and disadvantages and processes to maximize the effectiveness of this system are discussed.


Fiducial Marker Deformable Image Registration Image Guide Radiation Therapy MVCT Image Treatment Planning Compute Tomography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Organs at Risk


Field of View






Computed Tomography


Image Guided Radiation Therapy


Regions of Interest


Image Value to Density Table


Adaptive Radiotherapy


Dose–Volume Histograms



The authors express their appreciation to Yessenia Reyes and Shirley Clark for their assistance in the preparation of this chapter.


  1. Boswell S, Tome W, Jeraj R, Jaradat H, Mackie TR (2006) Automatic registration of megavoltage to kilovoltage CT images in helical tomotherapy: an evaluation of the setup verification process for the special case of a rigid head phantom. Med Phys 33(11):4395–4404PubMedCrossRefGoogle Scholar
  2. Duchateau M, Tournel K, Verellen D, Van de Vondel I, Reynders T, Linthout N, Gevaert T, de Coninck P, Depuydt T, Storme G (2010) The effect of tomotherapy imaging beam output instabilities on dose calculation. Phys Med Biol 55(11):N329–336. doi: 10.1088/0031-9155/55/11/N03 Google Scholar
  3. International commission on radiation units and measurements (1999) Prescribing, recording, and reporting photon beam therapy. ICRU report, vol. 62. International Commission on Radiation Units and Measurements, Bethesda, MDGoogle Scholar
  4. Jaffray DA (2007) Kilovoltage volumetric imaging in the treatment room. Front Radiat Ther Oncol 40:116–131. doi: 10.1159/0000106031 Google Scholar
  5. Jeraj R, Mackie TR, Balog J, Olivera G, Pearson D, Kapatoes J, Ruchala K, Reckwerdt P (2004) Radiation characteristics of helical tomotherapy. Med Phys 31(2):396–404PubMedCrossRefGoogle Scholar
  6. Langen KM, Papanikolaou N, Balog J, Crilly R, Followill D, Goddu SM, Grant W 3rd, Olivera G, Ramsey CR, Shi C (2010) QA for helical tomotherapy: report of the AAPM Task Group 148. Med Phys 37(9):4817–4853PubMedCrossRefGoogle Scholar
  7. Lu W, Olivera GH, Chen Q, Ruchala KJ, Haimerl J, Meeks SL, Langen KM, Kupelian PA (2006) Deformable registration of the planning image (kVCT) and the daily images (MVCT) for adaptive radiation therapy. Phys Med Biol 51(17):4357–4374. doi: 10.1088/0031-9155/51/17/015
  8. Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709–1719PubMedCrossRefGoogle Scholar
  9. Mackie TR, Balog J, Ruchala K, Shepard D, Aldridge S, Fitchard E, Reckwerdt P, Olivera G, McNutt T, Mehta M (1999) Tomotherapy. Semin Radiat Oncol 9(1):108–117PubMedCrossRefGoogle Scholar
  10. Martinez AA, Yan D, Lockman D, Brabbins D, Kota K, Sharpe M, Jaffray DA, Vicini F, Wong J (2001) Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys 50(5):1226–1234PubMedCrossRefGoogle Scholar
  11. Meeks SL, Harmon JF Jr, Langen KM, Willoughby TR, Wagner TH, Kupelian PA (2005) Performance characterization of megavoltage computed tomography imaging on a helical tomotherapy unit. Med Phys 32(8):2673–2681PubMedCrossRefGoogle Scholar
  12. Ruchala KJ, Olivera GH, Kapatoes JM, Reckwerdt PJ, Mackie TR (2002) Methods for improving limited field-of-view radiotherapy reconstructions using imperfect a priori images. Med Phys 29(11):2590–2605PubMedCrossRefGoogle Scholar
  13. Shah AP, Langen KM, Ruchala KJ, Cox A, Kupelian PA, Meeks SL (2008) Patient dose from megavoltage computed tomography imaging. Int J Radiat Oncol Biol Phy 70(5):1579–1587. doi: 10.1016/j.ijrobp.2007.11.048 Google Scholar
  14. Siker ML, Tome WA, Mehta MP (2006) Tumor volume changes on serial imaging with megavoltage CT for non-small-cell lung cancer during intensity-modulated radiotherapy: how reliable, consistent, and meaningful is the effect? Int J Radiat Oncol Biol Phys 66(1):135–141. doi: 10.1016/j.ijrobp.2006.03.064
  15. Song WY, Chiu B, Bauman GS, Lock M, Rodrigues G, Ash R, Lewis C, Fenster A, Battista JJ, Van Dyk J (2006) Prostate contouring uncertainty in megavoltage computed tomography images acquired with a helical tomotherapy unit during image-guided radiation therapy. Int J Radiat Oncol Biol Phys 65(2):595–607. doi: 10.1016/j.ijrobp.2006.01.049 Google Scholar
  16. Verellen D, De Ridder M, Linthout N, Tournel K, Soete G, Storme G (2007) Innovations in image-guided radiotherapy. Nat Rev Cancer 7(12):949–960. doi: 10.1038/nrc2288 Google Scholar
  17. Welsh JS, Patel RR, Ritter MA, Harari PM, Mackie TR, Mehta MP (2002) Helical tomotherapy: an innovative technology and approach to radiation therapy. Technol Cancer Res Treat 1(4):311–316PubMedGoogle Scholar
  18. Welsh JS, Lock M, Harari PM, Tome WA, Fowler J, Mackie TR, Ritter M, Kapatoes J, Forrest L, Chappell R, Paliwal B, Mehta MP (2006) Clinical implementation of adaptive helical tomotherapy: a unique approach to image-guided intensity modulated radiotherapy. Technol Cancer Res Treat 5(5):465–479PubMedGoogle Scholar
  19. Langen KM, Meeks SL, Poole DO, Wagner TH, Willoughby, TR, Kupelian PA, Ruchala KJ, Haimerl J, Olivera GH (2005) The use of megavoltage CT (MVCT) images for dose recomputations. Phys Med Biol 50(18):4259–4276. doi: 10.1088/0031-9155/50/18/002 Google Scholar
  20. Woodford C, Yartsev S, Van Dyk J (2007) Optimization of megavoltage CT scan registration settings for brain cancer treatments on tomotherapy. Phys Med Biol 52(8):N185–193. doi: 10.1088/0031-9155/52/8/N04 Google Scholar
  21. Woodford C, Yartsev S, Van Dyk J (2007) Optimization of megavoltage CT scan registration settings for thoracic cases on helical tomotherapy. Phys Med Biol 52(15):N345–354. doi: 10.1088/0031-9155/52/15/N04 Google Scholar
  22. Woodford C, Yartsev S, Dar AR, Bauman G, Van Dyk J (2007) Adaptive radiotherapy planning on decreasing gross tumor volumes as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol Phys 69(4):1316–1322. doi: 10.1016/j.ijrobp.2007.07.2369 Google Scholar
  23. Xu SP, Xie CB, Ju ZJ, Dai XK, Gong HS, Guo YY, Wang LY (2009) Measurement and analysis of the imaging dose with megavoltage computed tomography for helical tomotherapy. Ai Zheng 28(8):886–889PubMedCrossRefGoogle Scholar
  24. Yadav P, Tolakanahalli R, Rong Y, Paliwal BR (2010) The effect and stability of MVCT images on adaptive TomoTherapy. J Appl Clin Med Phys/Am Coll Med Phys 11(4):3229Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Walter H. GrantIII
    • 1
  • E. Brian Butler
    • 2
  • Dirk Verellen
    • 3
  1. 1.Department of Radiology, BCM 360Baylor College of MedicineHoustonUSA
  2. 2.Radiation OncologyThe Methodist HospitalHoustonUSA
  3. 3.Department of Radiation Oncology and Biomedical PhysicsUZ Brussel, Vrije Universiteit BrusselBrusselBelgium

Personalised recommendations