Advertisement

Cardiac Function

  • J. Bogaert
Part of the Medical Radiology book series (MEDRAD)

Abstract

Visualization and quantification of the cardiac pump activity by means of imaging techniques has become an essential part in the diagnosis of many cardiac diseases. This pump activity comprises a repetitive filling and emptying phase whereby one phase or both phases may be impaired by the underlying cardiac disease. Among the different available imaging modalities, MRI has become a preferred one to assess cardiac function because of its noninvasiveness, and the accuracy and reproducibility of the measurements. Moreover, cardiac function assessment by MRI is part of a more comprehensive approach including other facets such as myocardial perfusion imaging and tissue characterization. This chapter is written from the point of view of the imager, starting with a description of the mechanisms of cardiac contraction and relaxation, and how these lead to myocardial deformation and ventricular volume changes throughout the cardiac cycle. Next, it is discussed how imaging techniques can be used to assess these processes at different levels, and what major hurdles need to be passed to achieve reliable estimates of cardiac function parameters. Finally, normal reference values obtained by current MRI sequences are provided at the end of the chapter.

Keywords

Right Ventricular Ventricular Volume Wall Stress Leave Ventricular Wall Constrictive Pericarditis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abraham TP, Nishimura RA (2001) Myocardial strain: can we finally measure contractility? J Am Coll Cardiol 37:731–734PubMedCrossRefGoogle Scholar
  2. Aletras AH, Ding S, Balaban RS, Wen H (1999a) DENSE: displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson 137:247–252PubMedCrossRefGoogle Scholar
  3. Aletras AH, Balaban RS, Wen H (1999b) High-resolution strain analysis of the human heart with fast-DENSE. J Magn Reson 140:41–57PubMedCrossRefGoogle Scholar
  4. Alfakih K, Plein S, Thiele H et al (2003a) Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 17:323–329PubMedCrossRefGoogle Scholar
  5. Alfakih K, Plein S, Bloomer T, Jones T, Ridgway J, Sivananthan M (2003b) Comparison of right ventricular volume measurements between axial and short axis orientation using steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 18:25–32PubMedCrossRefGoogle Scholar
  6. Alley MT, Napel S, Amano Y et al (1999) Fast 3D cardiac cine MR imaging. J Magn Reson Imaging 9:751–755PubMedCrossRefGoogle Scholar
  7. Anderson JL, Horne BD, Pennell DJ (2005) Atrial dimensions in health and left ventricular disease using cardiovascular magnetic resonance. J Cardiovasc Magn Reson 7:671–675PubMedGoogle Scholar
  8. Arheden H, Holmqvist C, Thilen U et al (1999) Left-to-right shunts: comparison of measurement obtained with MR velocity mapping and with radionuclide angiography. Radiology 211:453–458PubMedGoogle Scholar
  9. Arts T, Bovendeerd PHM, Prinzen FW, Reneman RS (1991) Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J 59:93–102PubMedCrossRefGoogle Scholar
  10. Atkinson DJ, Edelman RR (1991) Cineangiography of the heart in a single breath hold with a segmented turboflash sequence. Radiology 178:357–360PubMedGoogle Scholar
  11. Aurigemma G, Davidoff A, Silver K, Boehmer J (1992) Left ventricular mass quantitation using single-phase cardiac magnetic resonance imaging. Am J Cardiol 70:259–262PubMedCrossRefGoogle Scholar
  12. Axel L, Dougherty L (1989a) Heart wall motion: improved method for spatial modulation of magnetization for MR imaging. Radiology 172:349–350PubMedGoogle Scholar
  13. Axel L, Dougherty L (1989b) MR imaging of motion with spatial modulation of magnetization. Radiology 171:841–845PubMedGoogle Scholar
  14. Axel L, Montillo A, Kim D (2005) Tagged magnetic resonance imaging of the heart: a survey. Med Image Analysis 9:376–393CrossRefGoogle Scholar
  15. Azhari H, Weiss JL, Rogers WJ, Siu CO, Zerhouni EA, Shapiro EP (1993) Noninvasive quantification of principal strains in normal canine hearts using tagged MRI images in 3D. Am J Physiol Heart Circ Physiol 264:33–41Google Scholar
  16. Baer FM, Smolarz R, Jungehulsing M et al (1992) Feasibility of high-dose dipyridamole MRI for detection of coronary artery disease and comparison with coronary angiography. Am J Cardiol 69:51–56PubMedCrossRefGoogle Scholar
  17. Baer FM, Theissen P, Smolarz K et al (1993) Dobutamine versus dipyridamole-magnetic resonance imaging: safety and sensitivity for the diagnosis of coronary artery stenoses. Z Kardiol 82:494–503PubMedGoogle Scholar
  18. Baer FM, Theissen P, Schneider CA, Voth E, Schicha H, Sechtem U (1994) Magnetic resonance imaging techniques for the assessment of residual myocardial viability. Herz 19:51–64PubMedGoogle Scholar
  19. Baldy C, Duke P, Crossville P, Magnum IE, Revel D, Amyl M (1994) Automated myocardial edge detection from breath-hold cine MR images: evaluation of left ventricular volumes and mass. Magn Reson Imaging 12:589–598PubMedCrossRefGoogle Scholar
  20. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin J (2001) MR evaluation of ventricular function: true fast imaging with steady-state precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269PubMedGoogle Scholar
  21. Barkhausen J, Goyen M, Rühm SG et al (2002) Assessment of ventricular function with single breath-hold real-time steady-state free precession cine MR imaging. Am J Roentgenol 178:731–735PubMedGoogle Scholar
  22. Basha TA, Ibrahim EH, Weiss RG, Osman NF (2009) Cine cardiac imaging using black-blood steady-state free precession (BB-SSFP) at 3T. J Magn Reson Imaging 30:94–103PubMedCrossRefGoogle Scholar
  23. Bavelaar-Croon CDL, Kayser HWM, van der Wall EE et al (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575PubMedGoogle Scholar
  24. Beerbaum P, Köperich H, Barth P, Esdorn H, Gieseke J, Meyer H (2001) Noninvasive quantification of left-to-right shunts in pediatric patients: phase-contrast cine magnetic resonance imaging compared with invasive oxymetry. Circulation 103:2476–2482PubMedGoogle Scholar
  25. Bellenger NG, Burgess MI, Ray SG et al (2000a) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance. Are they interchangeable? Eur Heart J 21:1387–1396PubMedCrossRefGoogle Scholar
  26. Bellenger NG, Davies LV, Francis JM, Coats AJS, Pennell DJ (2000b) Reduction of sample size for studies of remodeling of heart failure by the use of cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2:271–278PubMedCrossRefGoogle Scholar
  27. Bellenger NG, Francis JM, Davies CL, Coats AJ, Pennell DJ (2000c) Establishment and performance of a magnetic resonance cardiac function clinic. J Cardiovasc Magn Reson 2:271–278PubMedCrossRefGoogle Scholar
  28. Bellenger NG, Marcus NJ, Rajappan K, Yacoub M, Banner NR, Pennell DJ (2002) Comparison of techniques for the measurement of left ventricular function following cardiac transplantation. J Cardiovasc Magn Reson 4:255–263PubMedCrossRefGoogle Scholar
  29. Beyar R, Weiss JL, Shapiro EP, Graves WL, Rogers WJ, Weisfeldt ML (1993) Small apex-to-base heterogeneity in radius-to-thickness ratio by three-dimensional magnetic resonance imaging. Am J Physiol 264:H133–H140PubMedGoogle Scholar
  30. Bloomer TN, Plein S, Radjenovic A et al (2001) Cine MRI using steady state free precession in the radial long axis orientation is a fast and accurate method for obtaining volumetric data of the left ventricle. J Magn Reson Imaging 14:685–692PubMedCrossRefGoogle Scholar
  31. Bloomgarden DC, Fayad ZA, Ferrari VA, Chin B, Sutton MGA (1997) Global cardiac function using fast breath-hold MRI: validation of new acquisition and analysis techniques. Magn Reson Med 37:683–692PubMedCrossRefGoogle Scholar
  32. Bogaert J (1997) Three-dimensional strain analysis of the human left ventricle. PhD dissertation, Catholic University, LeuvenGoogle Scholar
  33. Bogaert J, Rademakers FE (2001) Regional nonuniformity of the normal adult human left ventricle. A 3D MR myocardial tagging study. Am J Physiol 280:H610–H620Google Scholar
  34. Bogaert JG, Bosmans H, Rademakers F et al (1995) Left ventricular quantification with breath-hold MR imaging: comparison with echocardiography. MAGMA 3:5–12PubMedCrossRefGoogle Scholar
  35. Bogaert J, Maes A, Van de Werf F et al (1999) Functional recovery of subepicardial myocardial tissue in transmural myocardial infarction after successful reperfusion. Circulation 99:36–43PubMedGoogle Scholar
  36. Bogaert J, Bosmans H, Maes A, Suetens P, Marchal G, Rademakers FE (2000) Remote myocardial dysfunction following acute anterior myocardial infarction. Impact of LV shape on regional function. J Am Coll Cardiol 35:1525–1534PubMedCrossRefGoogle Scholar
  37. Bolster BJ, McVeigh ER, Zerhouni EA (1990) Myocardial tagging in polar coordinates with use of striped tags. Radiology 177:769–772PubMedGoogle Scholar
  38. Bornstedt A, Nagel E, Schalla S, Schnackenburg B, Klein C, Fleck E (2001) Multi-slice dynamic imaging: complete functional cardiac MR examination within 15 seconds. J Magn Reson Imaging 14:300–305PubMedCrossRefGoogle Scholar
  39. Borow KM, Neumann A, Marcus RH, Sareli P, Lang RM (1992) Effects of simultaneous alterations in preload and afterload on measurements of left ventricular contractility in patients with dilated cardiomyopathy: comparisons of ejection phase, isovolumetric and end-systolic force-velocity indexes. J Am Coll Cardiol 20:787–795PubMedCrossRefGoogle Scholar
  40. Bosmans H, Bogaert J, Rademakers FE et al (1996) Left ventricular radial tagging acquisition using gradient-recalled-echo techniques: sequence optimization. MAGMA 4:123–133PubMedCrossRefGoogle Scholar
  41. Bottini PB, Carr AA, Prisant M, Flickinger FM, Allison JD, Gottdiener JS (1995) Magnetic resonance imaging compared to echocardiography to assess left ventricular mass in the hypertensive patient. Am J Hypertens 8:221–228PubMedCrossRefGoogle Scholar
  42. Brandts A, Bertini M, van Dijk E-J et al (2011) Left ventricular diastolic function assessment from three-dimensional three-directional velocity-encoded MRI with retrospective valve tracking. J Magn Reson Imaging 33:312–319PubMedCrossRefGoogle Scholar
  43. Brecker SJD (2000) The importance of long axis ventricular function. Heart 84:577–579PubMedCrossRefGoogle Scholar
  44. Brinker JA, Weiss JL, Lappe DL et al (1980) Leftward septal displacement during right ventricular loading in man. Circulation 61:626–633PubMedGoogle Scholar
  45. Buchalter MB, Weiss JL, Rogers WJ (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81:1236–1244PubMedCrossRefGoogle Scholar
  46. Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfelt ML, Shapiro EP (1994) Rotational deformation of the canine left ventricle measured by magnetic resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc Res 28:629–635PubMedCrossRefGoogle Scholar
  47. Buckberg GD, Mahajan A, Jung B, Markl M, Hennig J, Ballester-Rodes M (2006) MRI myocardial motion and fiber tracking: a confirmation of knowledge from different imaging modalities. Eur J Cardio-Thorac Surg 295:S165–S177Google Scholar
  48. Buser PT, Auffermann W, Holt WW et al (1989) Noninvasive evaluation of global left ventricular function with use of cine nuclear magnetic resonance. J Am Coll Cardiol 13:1294–1300PubMedCrossRefGoogle Scholar
  49. Cain PA, Ahl R, Hedstrom E et al (2009) Age and gender specific normal values of left ventricular mass, volume and function for gradient echo magnetic resonance imaging: a cross sectional study. BMC Med Imaging 9:1–10CrossRefGoogle Scholar
  50. Caputo GR, Suzuki JI, Kondo C et al (1990) Determination of left ventricular volume and mass with use of biphasic spin-echo MR imaging: comparison with cine MR. Radiology 177:773–777PubMedGoogle Scholar
  51. Carr JC, Simonetti O, Bundy J et al (2001) Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 219:828–834PubMedGoogle Scholar
  52. Casalino E, Laissy JP, Soyer P, Bouvet E, Vachon F (1996) Assessment of right ventricle function and pulmonary artery circulation by cine MRI in patients with AIDS. Chest 110:1243–1247PubMedCrossRefGoogle Scholar
  53. Caudron J, Fares J, Bauer F, Dacher JN (2011) Evaluation of left ventricular diastolic function with cardiac MR imaging. Radiographics 31:239–261PubMedCrossRefGoogle Scholar
  54. Cerqueira MD, Weissman NJ, Dilsizian V et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. J Cardiovasc Magn Reson 4:203–210CrossRefGoogle Scholar
  55. Chuang ML, Hibberd MG, Salton CJ (2000) Importance of imaging method over imaging modality in noninvasive determination of left ventricular volumes and ejection fraction. J Am Coll Cardiol 35:477–484PubMedCrossRefGoogle Scholar
  56. Cigarroa CG, de Filippi C, Brickner ME, Alvarez LG, Wait MA, Grayburn PA (1993) Dobutamine stress echocardiography identifies hibernating myocardium and predicts recovery of left ventricular function after coronary revascularization. Circulation 88:430–436PubMedGoogle Scholar
  57. Clay SR, Alfakih K, Radjenovic A et al (2006) Normal range of human left ventricular volumes and mass using steady state free precession MRI in the radial long-axis orientation. Magn Reson Mater Phys 19:41–45CrossRefGoogle Scholar
  58. Codella NCF, Weinsaft JW, Cham MD, Janik M, Prince MR, Wang Y (2008) Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging. Radiology 248:1004–1012PubMedCrossRefGoogle Scholar
  59. Constable RT, Rath KM, Sinusas AJ, Gore JC (1994) Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 32:33–42PubMedCrossRefGoogle Scholar
  60. Corsi C, Lamberti C, Catalano O et al (2005) Improved quantification of left ventricular volumes and mass based on endocardial and epicardial surface detection from cardiac MR images using level set models. J Cardiovasc Magn Reson 7:595–602PubMedCrossRefGoogle Scholar
  61. Cottin Y, Touzery C, Guy F et al (1999) MR imaging of the heart in patients after myocardial infarction: effect of increasing intersection gap on measurements of left ventricular volume, ejection fraction and wall thickness. Radiology 213:513–520PubMedGoogle Scholar
  62. Croisille P, Moore CC, Judd RM et al (1999) Differentiation of viable and nonviable myocardium by the use of three-dimensional tagged MRI in 2-day old reperfused canine infarcts. Circulation 99:284–291PubMedGoogle Scholar
  63. Culham J, Vince DJ (1988) Cardiac output by MR imaging: an experimental study comparing right ventricle and left ventricle with thermodilution. J Can Assoc Radiol 39:247–249Google Scholar
  64. Daneshvar D, Wei J, Tolstrup K, Thomson LEJ, Shufelt C, Merz CNB (2010) Diastolic dysfunction: improved understanding using emerging imaging techniques. Am Heart J 160:394–404PubMedCrossRefGoogle Scholar
  65. Davarpanah AH, Chen Y-P, Kino A et al (2010) Accelerated two- and three-dimensional cine MR imaging of the heart by using a 32-channel coil. Radiology 254:98–108PubMedCrossRefGoogle Scholar
  66. Dawson DK, Maceira AM, Ray VJ et al (2011) Regional thicknesses and thickening of compacted and trabeculated myocardial layers of the normal left ventricle studied by cardiovascular magnetic resonance. Circ Cardiovasc Imaging 4:139–146PubMedCrossRefGoogle Scholar
  67. Debatin JF, Nadel SN, Sostman HD, Spritzer CE, Evans AJ, Grist TM (1992a) Magnetic resonance imaging-cardiac ejection fraction measurements: phantom study comparing four different methods. Invest Radiol 27:198–204PubMedCrossRefGoogle Scholar
  68. Debatin JF, Nadel SN, Paolini JF et al (1992b) Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging and ventriculography. J Magn Reson Imaging 2:135–142PubMedCrossRefGoogle Scholar
  69. Dilworth LR, Aisen AM, Mancini J, Lande I, Buda AJ (1987) Determination of left ventricular volumes and ejection fraction by nuclear magnetic resonance imaging. Am Heart J 113:24–32PubMedCrossRefGoogle Scholar
  70. Dong SJ, Hees PS, Huang WM, Buffer SA, Weiss JL Jr, Shapiro EP (1999) Independent effects of preload, afterload, and contractility on left ventricular torsion. Am J Physiol 277:H1053–H1060PubMedGoogle Scholar
  71. Dong SJ, Hees PS, Siu CO, Weiss JL, Shapiro EP (2001) MRI assessment of LV relaxation by untwisting rate: a new isovolumic phase measure of τ. J Cardiovasc Magn Reson 281:H2002–H2009Google Scholar
  72. Dulce MC, Mostbeck GH, Friese KK, Caputo GR, Higgins CB (1993) Quantification of the left ventricular volumes and function with cine MR imaging: comparison of geometric models with three-dimensional data. Radiology 188:371–376PubMedGoogle Scholar
  73. Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JAC, Smiseth OA (2002) Quantitative assessment of regional myocardial deformation by Doppler strain rate echocardiography in humans. Validation against three-dimensional tagged magnetic resonance imaging. Circulation 160:50–56CrossRefGoogle Scholar
  74. Elgeti T, Laule M, Kaufels N et al (2009) Cardiac MR elastography: comparison with left ventricular pressure measurement. J Cardiovasc Magn Reson 11:44PubMedCrossRefGoogle Scholar
  75. Fieno DS, Jaffe WC, Simonetti OP, Judd RM, Finn JP (2002) TrueFISP: assessment of accuracy for measurement of left ventricular mass in an animal model. J Magn Reson Imaging 15:526–531PubMedCrossRefGoogle Scholar
  76. Fischer SE, McKinnon GC, Maier SE, Boesiger P (1993) Improved myocardial tagging contrast. Magn Reson Med 30:191–200PubMedCrossRefGoogle Scholar
  77. Föll D, Jung B, Staehle F et al (2009) Visualization of multidirectional regional left ventricular dynamics by high-temporal-resolution tissue phase mapping. J Magn Reson Imaging 29:1043–1052PubMedCrossRefGoogle Scholar
  78. Föll D, Jung B, Elfried S et al (2010) Magnetic resonance tissue phase mapping of myocardial motion. New insight in age and gender. Circ Cardiovasc Imaging 3:54–64PubMedCrossRefGoogle Scholar
  79. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T (1995) Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 195:471–478PubMedGoogle Scholar
  80. Forbat SM, Karwatowski SP, Gatehouse PD, Firmin DN, Longmore DB, Underwood SR (1994) Technical note: rapid measurement of left ventricular mass by spin echo magnetic resonance imaging. Br J Radiol 67:86–90PubMedCrossRefGoogle Scholar
  81. Francone M, Dymarkowski S, Kalantzi M, Bogaert J (2005) Real-time MRI of ventricular septal motion: a novel approach to assess ventricular coupling. J Magn Reson Imaging 21:305–309PubMedCrossRefGoogle Scholar
  82. Francone M, Dymarkowski S, Kalantzi M, Rademakers FE, Bogaert J (2006) Assessment of ventricular coupling with real-time cine MRI and its value to differentiate constrictive pericarditis from restrictive cardiomyopathy. Eur Radiol 16:944–951PubMedCrossRefGoogle Scholar
  83. Fujita N, Duerinckx AJ, Higgins CB (1993) Variation in left ventricular regional wall stress with cine magnetic resonance imaging: normal subjects versus dilated cardiomyopathy. Am Heart J 125:1337–1345PubMedCrossRefGoogle Scholar
  84. Furber A, Balzer P, Cavaro-Menard C et al (1998) Experimental validation of an automated edge-detection method for a simultaneous determination of the endocardial and epicardial borders in short-axis cardiac MR images: application in normal volunteers. J Magn Reson Imaging 8:1006–1014PubMedCrossRefGoogle Scholar
  85. Fyrenius A, Wigstrom L, Bolger AF et al (1999) Pitfalls in Doppler evaluation of diastolic function: insights from 3-dimensional magnetic resonance imaging. J Am Soc Echocardiogr 12:817–826PubMedCrossRefGoogle Scholar
  86. Galjee MA, van Rossum AC, van Eenige MJ, Visser FC, Kamp O, Falke TH, Visser CA (1995) Magnetic resonance imaging of the pulmonary venous flow pattern in mitral regurgitation. Independence of the investigated vein. Eur Heart J 16:1675–1685PubMedGoogle Scholar
  87. Germain P, Roul G, Kastler B, Mossard JM, Bareiss P, Sacrez A (1992) Inter-study variability in left ventricular mass measurement. Comparison between M-mode echography and MRI. Eur Heart J 13:1011–1019PubMedGoogle Scholar
  88. Giorgi B, Matton N, Dymarkowski S, Rademakers FE, Bogaert J (2003) Assessment of ventricular septal motion in patients clinically suspected of constrictive pericarditis, using magnetic resonance imaging. Radiology 228:417–424PubMedCrossRefGoogle Scholar
  89. Gopal AS, Keller AM, Rigling R, King DL, King DK Jr (1993) Left ventricular volume and endocardial surface area by three-dimensional echocardiography: comparison with two-dimensional echocardiography and nuclear magnetic resonance imaging in normal subjects. J Am Coll Cardiol 22:258–270PubMedCrossRefGoogle Scholar
  90. Goshtasby AA, Turner DA (1996) Fusion of short-axis and long-axis cardiac MR images. Comput Med Imaging Graph 20:77–87PubMedCrossRefGoogle Scholar
  91. Götte MJW, Germans T, Rüssel IK et al (2006) Myocardial strain and torsion quantified by cardiovascular magnetic resonance tissue tagging. Studies in normal and impaired left ventricular function. J Am Coll Cardiol 48:2002–2011PubMedCrossRefGoogle Scholar
  92. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH (1981) Left ventricular fibre architecture in man. Br Heart J 45:248–263PubMedCrossRefGoogle Scholar
  93. Griswold MA, Jakob PM, Chen Q et al (1999) Resolution enhancement in single-shot imaging using simultaneous acquisition of spatial harmonics (SMASH). Magn Reson Med 41:1236–1245PubMedCrossRefGoogle Scholar
  94. Grothues F, Smith GC, Moon JCC et al (2002) Comparison of interstudy reproducibility of cardiovascular magnetic resonance with two-dimensional echocardiography in normal subjects and in patients with heart failure or left ventricular hypertrophy. Am J Cardiol 90:29–34PubMedCrossRefGoogle Scholar
  95. Grothues F, Moon JC, Bellenger NG, Smith GS, Klein HU, Pennell DJ (2004) Interstudy reproducibility of right ventricular volumes, function, and mass with cardiovascular magnetic resonance. Am Heart J 147:218–223PubMedCrossRefGoogle Scholar
  96. Grothues F, Boenigk H, Graessner J, Kanowski M, Klein HU (2007) Balanced steady-state free precession versus segmented fast low-angle shot for the evaluation of ventricular volumes, mass, and function at 3 Tesla. J Magn Reson Imaging 26:392–400PubMedCrossRefGoogle Scholar
  97. Guzman PA, Maughan WL, Yin FC et al (1981) Transseptal pressure gradient with leftward septal displacement during the Mueller manoeuvre in man. Br Heart J 46:657–662PubMedCrossRefGoogle Scholar
  98. Haber I, Metaxas DN, Geva T, Axel L (2005) Three-dimensional systolic kinematics of the right ventricle. Am J Physiol Heart Circ Physiol 289:H1826–H1833PubMedCrossRefGoogle Scholar
  99. Hansen DE, Daughters G, Alderman EL, Ingels NJ, Miller DC (1988) Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ Res 62:941–952PubMedGoogle Scholar
  100. Hartnell G, Cerel A, Kamalesh M et al (1994) Detection of myocardial ischemia, value of combined myocardial perfusion and cineangiographic MR imaging. Am J Roentgenol 163:1061–1067Google Scholar
  101. Hatabu H, Gefter WB, Axel L (1994) MR imaging with spatial modulation of magnetization in the evaluation of chronic central pulmonary thromboemboli. Radiology 190:791–796PubMedGoogle Scholar
  102. Hatle LK, Appleton CP, Popp RL (1989) Differentiation of constrictive pericarditis and restrictive cardiomyopathy by Doppler echocardiography. Circulation 79:357–370PubMedCrossRefGoogle Scholar
  103. Hees PS, Fleg JL, Dong SJ, Shapiro EP (2004) MRI and echocardiographic assessment of the diastolic dysfunction of normal aging: altered LV pressure decline or load? Am J Physiol 286:H782–H788Google Scholar
  104. Hendrich K, Xu Y, Kim S, Ugurbil K (1994) Surface coil cardiac tagging and (31)P spectroscopic localization with B-1-insensitive adiabatic pulses. Magn Reson Med 31:541–545PubMedCrossRefGoogle Scholar
  105. Herregods M, De Paep G, Bijnens B et al (1994) Determination of left ventricular volume by two-dimensional echocardiography: comparison with magnetic resonance imaging. Eur Heart J 15:1070–1073PubMedGoogle Scholar
  106. Hess AT, Zhong X, Spottiswoode BS, Epstein FH, Meintjes EM (2009) Myocardial 3D strain calculation by combining cine displacement encoding with stimulated echoes (DENSE) and cine strain encoding (SENC) imaging. Magn Reson Med 62:77–84PubMedCrossRefGoogle Scholar
  107. Hoeper MM, Tongers J, Leppert A, Baus S, Maier R, Lotz J (2001) Evaluation of right ventricular performance with a right ventricular ejection fraction thermodilution catheter and MRI in patients with pulmonary hypertension. Chest 102:502–507CrossRefGoogle Scholar
  108. Hori Y, Yamada N, Higashi M, Hirai N, Nakatani S (2003) Rapid evaluation of right and left ventricular function and mass using real-time true-FISP cine MR imaging without breath-hold: comparison with segmented true-FISP cine MR imaging with breath-hold. J Cardiovasc Magn Reson 5:439–450PubMedCrossRefGoogle Scholar
  109. Hsu EW, Muzikant AL, Matulevicius SA, Penland RC, Henriquez CS (1998) Magnetic resonance myocardial fiber-orientation mapping with direct histologic correlation. Am J Physiol 274:H1627–H1634PubMedGoogle Scholar
  110. Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7:775–782PubMedCrossRefGoogle Scholar
  111. Hudsmith LE, Petersen SE, Tyler DJ et al (2006) Determination of cardiac volumes and mass with FLASH and SSFP cine sequences at 1.5 and 3 Tesla: a validation study. J Magn Reson Imaging 24:312–318PubMedCrossRefGoogle Scholar
  112. Hudsmith LE, Cheng AS, Tyler DJ et al (2007) Assessment of left atrial volumes at 1.5 Tesla and 3 Tesla using FLASH and SSFP cine imaging. J Cardiovasc Magn Reson 9:673–679PubMedCrossRefGoogle Scholar
  113. Hurrell DG, Nishimura RA, Higano ST et al (1996) Value of dynamic respiratory changes in left and right ventricular pressures for the diagnosis of constrictive pericarditis. Circulation 93:2007–2013PubMedGoogle Scholar
  114. Ichikawa Y, Sakuma H, Kitagawa K et al (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342PubMedCrossRefGoogle Scholar
  115. Iino M, Dymarkowski S, Chaothawee L, Delcroix M, Bogaert J (2008) Time course of reversed cardiac remodeling after pulmonary endarterectomy in patients with chronic pulmonary thromboembolism. Eur Radiol 18:792–799PubMedCrossRefGoogle Scholar
  116. Iwase M, Nagata K, Izawa H (1993) Age-related changes in left and right ventricular filling velocity profiles and their relationship in normal subjects. Am Heart J 126:419–426PubMedCrossRefGoogle Scholar
  117. Jahnke C, Paetsch I, Gebker R, Bornstedt A, Fleck E, Nagel E (2006) Accelerated 4D dobutamine stress MR imaging with k-t BLAST: feasibility and diagnostic performance. Radiology 241:718–728PubMedCrossRefGoogle Scholar
  118. Jahnke C, Nagel E, Gebker R et al (2007) Four-dimensional single breath-hold magnetic resonance imaging using kt-BLAST enables reliable assessment of left- and right-ventricular volumes and mass. J Magn Reson Imaging 25:737–742PubMedCrossRefGoogle Scholar
  119. Janik M, Cham MD, Ross MI et al (2008) Effects if papillary muscles and trabeculae on left ventricular quantification: increased impact of methodological variability in patients with left ventricular hypertrophy. J Hypertens 26:1677–1685PubMedCrossRefGoogle Scholar
  120. Janz RF (1982) Estimation of local myocardial stress. Am J Physiol 242:H875–H881PubMedGoogle Scholar
  121. Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994a) Assessment of left atrial volumes and phasic function using cine magnetic resonance imaging in normal subjects. Am J Cardiol 73:1135–1137PubMedCrossRefGoogle Scholar
  122. Jarvinen VM, Kupari MM, Hekali PE, Poutanen VP (1994b) Right atrial MR imaging studies of cadaveric atrial casts and comparisons with right and left atrial volumes and function in healthy subjects. Radiology 191:137–142PubMedGoogle Scholar
  123. Jauhiainen T, Järvinen VM, Hekali PE (2002) Evaluation of methods for MR imaging of human right ventricular heart volumes and mass. Acta Radiol 43:587–592PubMedCrossRefGoogle Scholar
  124. Jessup M, Sutton MS, Weber KT, Janicki JS (1987) The effect of chronic pulmonary hypertension on left ventricular size, function, and interventricular septal motion. Am Heart J 113:1114–1122PubMedCrossRefGoogle Scholar
  125. Jung B, Markl M, Föll D, Hennig J (2006a) Investigating myocardial motion by MRI using tissue phase mapping. Eur J Cardiothorac Surg 29S:S150–S157CrossRefGoogle Scholar
  126. Jung B, Föll D, Böttler P et al (2006b) J Magn Reson Imaging 24:1033–1039PubMedCrossRefGoogle Scholar
  127. Kacere RD, Pereyra M, Nemeth MA, Muthupillai R, Flamm SD (2005) Quantitative assessment of left ventricular function: steady-state free precession MR imaging with or without sensitivity encoding. Radiology 235:1031–1305PubMedCrossRefGoogle Scholar
  128. Kaji S, Yang PC, Kerr AB et al (2001) Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 38:527–533PubMedCrossRefGoogle Scholar
  129. Karamitsos TD, Francis JM, Myerson S, Selvanayagam JB, Neubauer S (2009) The role of cardiovascular magnetic resonance imaging in heart failure. J Am Coll Cardiol 54:1407–1424PubMedCrossRefGoogle Scholar
  130. Katz J, Whang J, Boxt LM et al (1993) Estimation of right ventricular mass in normal subjects and in patients with primary pulmonary hypertension by nuclear magnetic resonance imaging. J Am Coll Cardiol 21:1475–1481PubMedCrossRefGoogle Scholar
  131. Kaul S, Wismer GL, Brady TJ (1986) Measurement of normal left heart dimensions using optimally oriented MR images. Am J Roentgenol 146:75–79Google Scholar
  132. Kim D, Gilson WD, Kramer CM, Epstein FH (2004) Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 230:862–871PubMedCrossRefGoogle Scholar
  133. Klein AL, Cohen GI, Pietrolungo JF et al (1993) Differentiation of constrictive pericarditis from restrictive cardiomyopathy by Doppler transesophageal echocardiographic measurements of respiratory variations in pulmonary venous flow. J Am Coll Cardiol 22:1935–1943PubMedCrossRefGoogle Scholar
  134. Kojima S, Yamada N, Goto Y (1999) Diagnosis of constrictive pericarditis by tagged cine magnetic resonance imaging. N Engl J Med 341:373–374PubMedCrossRefGoogle Scholar
  135. Kondo C, Caputo GR, Semelka R, Foster E, Shimakawa A, Higgins CB (1991) Right and left ventricular stroke volume measurements with velocity-encoded cine MR imaging: in vitro and in vivo validation. Am J Roentgenol 157:9–16Google Scholar
  136. Korosoglou G, Youssel AA, Bilchick KC et al (2008) Real-time fast strain-encoded magnetic resonance imaging to evaluate regional myocardial function at 3.0 Tesla: comparison to conventional tagging. J Magn Reson Imaging 27:1012–1018PubMedCrossRefGoogle Scholar
  137. Korosoglou G, Futterer S, Humpert PM et al (2009a) Strain-encoded cardiac MR during high-dose dobutamine stress testing: comparison to cine imaging and to myocardial tagging. J Magn Reson Imaging 29:1053–1061PubMedCrossRefGoogle Scholar
  138. Korosoglou G, Lossnitzer D, Schellberg D et al (2009b) Strain-encoded cardiac magnetic resonance imaging as an adjunct for dobutamine stress testing. Incremental value to conventional wall motion analysis. Circ Cardiovasc Imaging 2:132–140PubMedCrossRefGoogle Scholar
  139. Korosoglou G, Elhmidi Y, Steen H et al (2010a) Prognostic value of high-dose dobutamine stress magnetic resonance imaging in 1, 493 consecutive patients. Assessment of myocardial wall motion and perfusion. J Am Coll Cardiol 56:1225–1234PubMedCrossRefGoogle Scholar
  140. Korosoglou G, Lehrke S, Wochele A et al (2010b) Strain-encoded CMR for the detection of inducible ischemia during intermediate stress. J Am Coll Cardiol Imaging 3:361–371Google Scholar
  141. Kozerke S, Scheidegger MB, Pedersen EM, Boesiger P (1999) Heart motion adapted cine phase-contrast flow measurements through the aortic valve. Magn Reson Med 42:970–978PubMedCrossRefGoogle Scholar
  142. Kozerke S, Schwitter J, Pedersen EM, Boesiger P (2001) Aortic and mitral regurgitation: quantification using moving slice velocity mapping. J Magn Reson Imaging 14:106–112PubMedCrossRefGoogle Scholar
  143. Kramer CM, Barkhausen J, Flamm SD, Kim R, Nagel E (2008) Society for cardiovascular magnetic resonance board of trustees task force on standardized protocols standardized cardiovascular magnetic resonance imaging (CMR) protocols. J Cardiovasc Magn Reson 10:35PubMedCrossRefGoogle Scholar
  144. Kroft LJ, de Roos A (1999) Biventricular diastolic cardiac function assessed by MR flow imaging using a single angulation. Acta Radiol 40:563–568PubMedCrossRefGoogle Scholar
  145. Kroft LJM, Simons P, Van Laar JM, de Roos A (2000) Patients with pulmonary fibrosis: cardiac function assessed with MR imaging. Radiology 216:464–471PubMedGoogle Scholar
  146. Kudelka AM, Turner DA, Liebson PR, Macioch JE, Wang JZ, Barron JT (1997) Comparison of cine magnetic resonance imaging and Doppler echocardiography for evaluation of left ventricular diastolic function. Am J Cardiol 80:384–386PubMedCrossRefGoogle Scholar
  147. Kühl HP, Spuentrup E, Wall A et al (2004) Assessment of myocardial function with interactive non-breath-hold real-time MR imaging: comparison with echocardiography and breath-hold cine MR imaging. Radiology 231:198–207PubMedCrossRefGoogle Scholar
  148. Kuijer JPA, Marcus JT, Götte MJW, van Rossum AC, Heethaar RM (2002) Three-dimensional myocardial strains at end-systole and during diastole in the left ventricle of normal humans. J Cardiovasc Magn Reson 4:341–351PubMedCrossRefGoogle Scholar
  149. Lalande A, Legrand L, Walker PM et al (1999) Automatic detection of left ventricular contours from cine magnetic resonance imaging using fuzzy logic. Invest Radiol 34:211–217PubMedCrossRefGoogle Scholar
  150. Lamb HJ, Doornbos J, Van der Velde EA, Kruit MC, Reiber JH, de Roos A (1996) Echo planar MRI of the heart on a standard system: validation of measurements of left ventricular function and mass. J Comput Assist Tomogr 20:942–949PubMedCrossRefGoogle Scholar
  151. Lauerma K, Harjula A, Jarvinen V, Kupari M, Keto P (1996) Assessment of right and left atrial function in patients with transplanted hearts with the use of magnetic resonance imaging. J Heart Lung Transplant 15:360–367PubMedGoogle Scholar
  152. Lee VS, Resnick D, Bundy JM, Simonetti OP, Lee P, Weinreb JC (2002) Cardiac function: MR evaluation in one breath hold with real-time true fast imaging with steady-state precession. Radiology 222:835–842PubMedCrossRefGoogle Scholar
  153. Legget ME (1999) Usefulness of parameters of left ventricular wall stress and systolic function in the evaluation of patients with aortic stenosis. Echocardiography 16:701–710PubMedCrossRefGoogle Scholar
  154. Lester SJ, Tajik AJ, Nishimura RA, Kandheria BK, Seward JB (2008) Unlocking the mysteries of diastolic function. Deciphering the Rosetta stone 10 years later. J Am Coll Cardiol 51:679–689PubMedCrossRefGoogle Scholar
  155. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566PubMedCrossRefGoogle Scholar
  156. Lima JA, Guzman PA, Yin FC et al (1986) Septal geometry in the unloaded living human heart. Circulation 74:463–468PubMedCrossRefGoogle Scholar
  157. Lima JAC, Jeremy R, Guier W et al (1993) Accurate systolic wall thickening by nuclear magnetic resonance imaging with tissue ragging: correlation with sonomicrometers in normal and ischemic myocardium. J Am Coll Cardiol 21:1741–1751PubMedCrossRefGoogle Scholar
  158. Lingamneni A, Hardy PA, Powell KA, Pelc NJ, White RD (1995) Validation of cine-phase-contrast MR imaging for motion analysis. J Magn Reson Imaging 5:331–338PubMedCrossRefGoogle Scholar
  159. Longmore DB, Underwood SR, Hounsfield GN (1985) Dimensional accuracy of magnetic resonance in studies of the heart. Lancet 15:1360–1362CrossRefGoogle Scholar
  160. Lorenz CH (2000) The range of normal values of cardiovascular structures in infants, children and adolescents measured by magnetic resonance imaging. Pediatr Cardiol 21:37–46PubMedCrossRefGoogle Scholar
  161. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr (1999) Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J Cardiovasc Magn Reson 1:7–21PubMedCrossRefGoogle Scholar
  162. Lorenz CH, Pastorek JS, Bundy JM (2000) Delineation of normal human left ventricular twist throughout systole by tagged cine magnetic resonance imaging. J Cardiovasc Magn Reson 2:97–108PubMedCrossRefGoogle Scholar
  163. Lurz P, Muthurangu V, Schievano S et al (2009) Feasibility and reproducibility of biventricular volumetric assessment of cardiac function during exercise using real-time radial k-t SENSE magnetic resonance imaging. J Magn Reson Imaging 29:1062–1070PubMedCrossRefGoogle Scholar
  164. Lutz A, Bornstedt A, Manzke R, Etyngier P et al (2011) Acceleration of tissue phase mapping by k-t BLAST: a detailed analysis of the influence of k-t BLAST for the quantification of myocardial motion at 35. J Cardiovasc Magn Reson 13:5PubMedCrossRefGoogle Scholar
  165. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006a) Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 8:417–426PubMedCrossRefGoogle Scholar
  166. Maceira AM, Prasad SK, Khan M, Pennell DJ (2006b) Reference right ventricular systolic and diastolic function normalized to age, gender and body surface area from steady-state free precession cardiovascular magnetic resonance. Eur Heart J 27:2879–2888PubMedCrossRefGoogle Scholar
  167. Maceira AM, Cosín-Sales J, Roughton M, Prasad SK, Pennell DJ (2010) Reference left atrial dimensions and volumes by steady state free precession cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:65PubMedCrossRefGoogle Scholar
  168. Malayeri AA, Johnson WC, Macedo R, Bathon J, Lima JAC, Bluemke DA (2008) Cardiac cine MRI: quantification of the relationship between fast gradient echo and steady-state free precession for determination of myocardial mass and volumes. J Magn Reson Imaging 28:60–66PubMedCrossRefGoogle Scholar
  169. Mandinov L, Eberli FR, Seiler C, Hess OM (2000) Diastolic heart failure. Cardiovasc Res 45:813–825PubMedCrossRefGoogle Scholar
  170. Manka R, Buehrer M, Boesiger P, Fleck E, Kozerke S (2010) Performance of simultaneous cardiac-respiratory self-gated three-dimensional MR imaging of the heart: initial experience. Radiology 255:909–916PubMedCrossRefGoogle Scholar
  171. Marcus JT, Vonk Noordegraaf A, De Vries PM et al (1998) MRI evaluation of right ventricular pressure overload in chronic pulmonary disease. J Magn Reson Imaging 8:999–1005PubMedCrossRefGoogle Scholar
  172. Marcus JT, Götte MJW, DeWaal LK et al (1999a) The influence of through-plane motion on left ventricular volumes measured by magnetic resonance imaging: implications for image acquisition and analysis. J Cardiovasc Magn Reson 1:1–6PubMedCrossRefGoogle Scholar
  173. Marcus JT, DeWaal LK, Götte MJ, van der Geest RJ, Heethaar RM, Van Rossum AC (1999b) MRI-derived left ventricular function parameters and mass in healthy young adults: relation with gender and body size. Int J Card Imaging 15:411–419PubMedCrossRefGoogle Scholar
  174. Markiewicz W, Sechtem U, Higgins CB (1987a) Evaluation of the right ventricle by magnetic resonance imaging. Am Heart J 113:8–15PubMedCrossRefGoogle Scholar
  175. Markiewicz W, Sechtem U, Kirby R, Derugin N, Caputo GC, Higgins CB (1987b) Measurement of ventricular volumes in the dog by nuclear magnetic resonance imaging. J Am Coll Cardiol 10:170–177PubMedCrossRefGoogle Scholar
  176. Masci PG, Dymarkowski S, Rademakers FE, Bogaert J (2009) Determination of regional ejection fraction in patients with myocardial infarction by using merged late gadolinium enhancement and cine MR: feasibility study. Radiology 250:50–60PubMedCrossRefGoogle Scholar
  177. Matter C, Nagel E, Stuber M, Boesiger P, Hess OM (1996) Assessment of systolic and diastolic LV function by MR myocardial tagging. Basic Res Cardiol 91(Suppl 2):23–28PubMedCrossRefGoogle Scholar
  178. Matthaei D, Frahm J, Haase A, Hanicke W (1985) Regional physiological functions depicted by sequences of rapid magnetic resonance images. Lancet 19:893CrossRefGoogle Scholar
  179. McVeigh ER, Atalar E (1992) Cardiac tagging with breath-hold cine MRI. Magn Reson Med 28:318–327PubMedCrossRefGoogle Scholar
  180. McVeigh ER, Zerhouni EA (1991) Noninvasive measurement of transmural gradients in myocardial strain with MR imaging. Radiology 180:677–683PubMedGoogle Scholar
  181. Mertens LL, Friedberg MK (2010) Imaging of the right ventricle—current state of the art. Nat Rev Cardiol 7:551–563PubMedCrossRefGoogle Scholar
  182. Miller S, Simonetti OP, Carr J, Kramer U, Finn JP (2002) MR imaging of the heart with cine true fast imaging with steady-state precession: influence of spatial and temporal resolutions on left ventricular functional parameters. Radiology 223:263–269PubMedCrossRefGoogle Scholar
  183. Mirsky I, Corin WJ, Murakami T, Grimm J, Hess OM, Krayenbuehl HP (1988) Correction for preload in assessment of myocardial contractility in aortic and mitral valve disease. Application of the concept of systolic myocardial stiffness. Circulation 78:68–80PubMedCrossRefGoogle Scholar
  184. Mogelvang J, Thomsen C, Mehlsen J, Bräckle G, Stubgaard M, Henriksen O (1986) Evaluation of left ventricular volumes measured by magnetic resonance imaging. Eur Heart J 7:1016–1021PubMedGoogle Scholar
  185. Mohiaddin RH, Wann SL, Underwood R, Firmin DN, Rees S, Longmore DB (1990) Vena caval flow: assessment with cine MR velocity mapping. Radiology 177:537–541PubMedGoogle Scholar
  186. Mohiaddin RH, Amanuma M, Kilner PJ, Pennell DJ, Manzara C, Longmore DB (1991) MR phase-shift velocity mapping of mitral and pulmonary venous flow. J Comput Assist Tomogr 15:237–243PubMedCrossRefGoogle Scholar
  187. Moon JCC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797PubMedCrossRefGoogle Scholar
  188. Moore CC, O’Dell WG, McVeigh ER, Zerhouni EA (1992) Calculation of three-dimensional left ventricular strains from biplanar tagged MR images. J Magn Reson Imaging 2:165–175PubMedCrossRefGoogle Scholar
  189. Moore CC, Reeder SB, McVeigh ER (1994) Tagged MR imaging in a deforming phantom: photographic validation. Radiology 190:765–769PubMedGoogle Scholar
  190. Moreo A, Ambrosio G, De Chiara B et al (2009) Influence of myocardial fibrosis on left ventricular diastolic function. Noninvasive assessment by cardiac magnetic resonance and echo. Circ Cardiovasc Imaging 2:437–443PubMedCrossRefGoogle Scholar
  191. Mostbeck GH, Hartiala JJ, Foster E, Fujita N, Dulce MC, Higgins CB (1993) Right ventricular diastolic filling: evaluation with velocity-encoded cine MRI. J Comput Assist Tomogr 17:245–252PubMedCrossRefGoogle Scholar
  192. Muthurangu V, Lurz P, Critchely JD, Deanfield JE, Taylor AM, Hansen MS (2008) Real-time assessment of right and left ventricular volumes and function in patients with congenital heart disease by using high spatiotemporal resolution radial k-t SENSE. Radiology 248:782–791PubMedCrossRefGoogle Scholar
  193. Myerson SG, Montgomery HE, World MJ, Pennell DJ (2002a) Left ventricular mass. Reliability of M-mode and 2-dimensional echocardiographic formulas. Hypertension 40:673–678PubMedCrossRefGoogle Scholar
  194. Myerson SG, Bellenger NG, Pennell DJ (2002b) Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 39:750–755Google Scholar
  195. Nagel E, Schneider U, Schalla S et al (2000) Magnetic resonance real-time imaging for the evaluation of left ventricular function. J Cardiovasc Magn Reson 2:7–14PubMedCrossRefGoogle Scholar
  196. Naito H, Arisawa J, Harada K, Yamagami H, Kozuka T, Tamura S (1995) Assessment of right ventricular regional contraction and comparison with the left ventricle in normal humans: a cine magnetic resonance study with presaturation myocardial tagging. Br Heart J 74:186–191PubMedCrossRefGoogle Scholar
  197. Nasiraei-Moghaddam A, Gharib M (2009) Evidence for the existence of a functional helical myocardial band. Am J Physiol Heart Circ Physiol 296:H127–H131PubMedCrossRefGoogle Scholar
  198. Neizel M, Lossnitzer D, Korosoglou G et al (2009) Strain-encoded MRI for evaluation of left ventricular function and transmurality in acute myocardial infarction. Circ Cardiovasc Imaging 2:116–122PubMedCrossRefGoogle Scholar
  199. Nesser HJ, Sugeng L, Corsi C et al (2007) Volumetric analysis of regional left ventricular function with real-time three-dimensional echocardiography: validation by magnetic resonance and clinical utility testing. Heart 93:572–578CrossRefGoogle Scholar
  200. Nesser HJ, Mor-Avi V, Gorissen W et al (2009) Quantification of left ventricular volumes using three-dimensional echocardiographic speckle tracking: comparison with MRI. Eur Heart J 30:1565–1573PubMedCrossRefGoogle Scholar
  201. Niemann PS, Pinho L, Balbach T et al (2007) Anatomically oriented right ventricular volume measurements with dynamic three-dimensional echocardiography validated by 3-Tesla magnetic resonance imaging. J Am Coll Cardiol 50:1668–1676PubMedCrossRefGoogle Scholar
  202. O’Dell WG, Moore CC, Hunter WC, Zerhouni EA, McVeigh ER (1995) Three-dimensional myocardial deformations: calculation with displacement field fitting to tagged MR images. Radiology 195:829–835PubMedGoogle Scholar
  203. Osman NF, Kerwin WS, McVeigh ER, Prince JL (1999) Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 42:1048–1060PubMedCrossRefGoogle Scholar
  204. Osman NF, Sampath S, Atalar E, Prince JL (2001) Imaging longitudinal cardiac strain on short-axis images using strain-encoded MRI. Magn Reson Med 46:324–334PubMedCrossRefGoogle Scholar
  205. Paelinck BP, Lamb HJ, Bax JJ, Van der Wall EE, de Roos A (2002) Assessment of diastolic function by cardiovascular magnetic resonance. Am Heart J 144:198–205PubMedCrossRefGoogle Scholar
  206. Paelinck BP, de Roos A, Bax JJ et al (2005) Feasibility of tissue magnetic resonance imaging: a pilot study in comparison with tissue Doppler imaging and invasive measurement. J Am Coll Cardiol 45:1109–1116PubMedCrossRefGoogle Scholar
  207. Palmon LC, Reichek N, Yeon SB et al (1994) Intramural myocardial shortening in hypertensive left ventricular hypertrophy with normal pump function. Circulation 89:122–131PubMedGoogle Scholar
  208. Pan L, Stuber M, Kraitchman DL, Fritzges DL, Gilson WD, Osman NF (2006) Real-time imaging of regional functional using FastSENC. Magn Reson Med 55:386–395PubMedCrossRefGoogle Scholar
  209. Papavassiliu T, Kühl HP, Schröder M et al (2005) Effect of endocardial trabeculae on left ventricular measurements and measurement reproducibility at cardiovascular MR imaging. Radiology 236:57–64PubMedCrossRefGoogle Scholar
  210. Parish V, Hussain T, Beerbaum P et al (2010) Single breath-hold assessment of ventricular volumes using 32-channel coil technology and an extracellular contrast agent. J Magn Reson Imaging 31:838–844PubMedCrossRefGoogle Scholar
  211. Pattynama PM, Doornbos J, Hermans J, van der Wall EE, de Roos A (1992) Magnetic resonance evaluation of regional left ventricular function. Effect of through-plane motion. Invest Radiol 27:681–685PubMedCrossRefGoogle Scholar
  212. Pattynama PM, Lamb HJ, van der Velde EA, van der Wall EE, de Roos A (1993) Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 187:261–268PubMedGoogle Scholar
  213. Pattynama PM, Lamb HJ, van der Velde EA, van der Geest RJ, van der Wall EE, De Roos A (1995) Reproducibility of MRI-derived measurements of right ventricular volumes and myocardial mass. Magn Reson Imaging 13:53–63PubMedCrossRefGoogle Scholar
  214. Pennell DJ, Underwood SR, Ell PJ, Swanton RH, Walker JM, Longmore DB (1990) Dipyridamole magnetic resonance imaging: a comparison with thallium-201 emission tomography. Br Heart J 64:362–369PubMedCrossRefGoogle Scholar
  215. Pennell DJ, Underwood SR, Manzara CC et al (1992) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40PubMedCrossRefGoogle Scholar
  216. Pennell DJ, Firmin DN, Burger P et al (1995) Assessment of magnetic resonance velocity mapping of global ventricular function during dobutamine infusion in coronary artery disease. Br Heart J 74:163–170PubMedCrossRefGoogle Scholar
  217. Perman WH, Creswell LL, Wyers SG, Moulton MJ, Pasque MK (1995) Magnetic resonance imaging during dobutamine stress in coronary artery disease. Am J Cardiol 70:34–40Google Scholar
  218. Petersen SE, Jung BA, Wiesmann F et al (2006) Myocardial tissue phase mapping with cine phase-contrast MR imaging: regional wall motion analysis in healthy volunteers. Radiology 238:816–826PubMedCrossRefGoogle Scholar
  219. Pipe JG, Boes JL, Chenevert TL (1991) Method for measuring three-dimensional motion with tagged MR imaging. Radiology 181:591–595PubMedGoogle Scholar
  220. Plein S, Bloomer TN, Ridgway JP, Jones TR, Bainbridge GJ, Sivananthan MU (2001) Steady-state free precession magnetic resonance imaging of the heart: comparison with segmented k-space gradient-echo imaging. J Magn Reson Imaging 14:230–236PubMedCrossRefGoogle Scholar
  221. Powell AJ, Tsai-Goodman B, Prakash A, Greil GF, Geva T (2003) Comparison between phase-velocity cine magnetic resonance imaging and invasive oxymetry for quantification of atrial shunts. Am J Cardiol 91:1523–1525PubMedCrossRefGoogle Scholar
  222. Rademakers FE, Bogaert J (2006) Cardiac dysfunction in heart failure with normal ejection fraction: MRI measurements. Prog Cardiovasc Dis 49:215–227PubMedCrossRefGoogle Scholar
  223. Rademakers FE, Buchalter MB, Rogers WJ et al (1992) Dissociation between left ventricular untwisting and filling: accentuation by catecholamines. Circulation 85:1572–1581PubMedGoogle Scholar
  224. Rademakers FE, Rogers WJ, Guier WH et al (1994) Relation of regional cross-fiber shortening to wall thickening in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 89:1174–1182PubMedGoogle Scholar
  225. Rademakers FE, Marchal G, Mortelmans L, Van de Werf F, Bogaert J (2003) Evolution of regional performance after an acute anterior myocardial infarction in humans using magnetic resonance tagging. J Physiol 546:777–787PubMedCrossRefGoogle Scholar
  226. Rajappan K, Livieratos L, Camici PG, Pennell DJ (2002) Measurement of ventricular volumes and function: a comparison of gated PET and cardiovascular magnetic resonance. J Nucl Med 43:806–810PubMedGoogle Scholar
  227. Robinson TF, Factor SM, Sonnenblick EH (1986) The heart as a suction pump. Sci Am 254:84–91PubMedCrossRefGoogle Scholar
  228. Rogers WJ, Shapiro EP, Weiss JL et al (1991) Quantification of and correction for left ventricular systolic long-axis shortening by magnetic resonance tissue tagging and slice isolation. Circulation 84:721–731PubMedGoogle Scholar
  229. Romiger MB, Bachmann GF, Geuer M et al (1999) Accuracy of right and left ventricular heart volume and left ventricular muscle mass determination with cine MRI in breath holding technique. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 170:54–60Google Scholar
  230. Ryf S, Spiegel MA, Gerber M, Boesiger P (2002) Myocardial tagging with 3D CSPAMM. J Magn Reson Imaging 16:320–325PubMedCrossRefGoogle Scholar
  231. Sakuma H, Fujita N, Foo TK et al (1993) Evaluation of left ventricular volume and mass with breath-hold cine MR imaging. Radiology 188:377–380PubMedGoogle Scholar
  232. Salton CJ, Chuang ML, O’Donnell CJ et al (2002) Gender differences and normal left ventricular anatomy in an adult population free of hypertension. J Am Coll Cardiol 39:1055–1060PubMedCrossRefGoogle Scholar
  233. Sampath S, Derbyshire A, Atalar E, Osman NF, Prince JL (2003) Real-time imaging of two-dimensional cardiac strain using a harmonic phase magnetic resonance imaging (HARP-MRI) pulse technique. Magn Reson Med 50:154–163PubMedCrossRefGoogle Scholar
  234. Santaralli MF, Positano V, Michelassi C, Lombardi M, Landini L (2003) Automated cardiac MR image segmentation: theory and measurement segmentation. Med Eng Phys 25:149–159CrossRefGoogle Scholar
  235. Sarikouch S, Peters B, Gutberlet M et al (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI. Assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76PubMedCrossRefGoogle Scholar
  236. Scharf M, Brem MH, Wilhelm M, Schoepf UJ, Uder M, Lell MM (2010) Atrial and ventricular functional and structural adaptations of the heart in elite triathletes assessed with cardiac MR imaging. Radiology 257:71–79PubMedCrossRefGoogle Scholar
  237. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete’s Heart. Right and left ventricular mass and function in male endurance athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863PubMedCrossRefGoogle Scholar
  238. Schulen V, Schick F, Loichat J et al (1996) Evaluation of k-space segmented cine sequences for fast functional cardiac imaging. Invest Radiol 31:512–522PubMedCrossRefGoogle Scholar
  239. Scollan DF, Holmes A, Winslow R, Forder J (1998) Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am J Physiol 275:H2308–H2318PubMedGoogle Scholar
  240. Sechtem U, Pflugfelder PW, Gould RG et al (1987) Measurement of right and left ventricular volumes in healthy individuals with cine MR imaging. Radiology 163:697–702PubMedGoogle Scholar
  241. Semelka RC, Tomei E, Wagner S et al (1990a) Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J 119:1367–1373PubMedCrossRefGoogle Scholar
  242. Semelka RC, Tomei E, Wagner S et al (1990b) Normal left ventricular dimensions and function: interstudy reproducibility of measurements with cine MR imaging. Radiology 174:763–768PubMedGoogle Scholar
  243. Setser RM, Fischer SE, Lorenz CH (2000) Quantification of left ventricular function with magnetic resonance images acquired in real-time. J Magn Reson Imaging 12:430–438PubMedCrossRefGoogle Scholar
  244. Sierra-Galan LM, Ingkanisorn WP, Rhoads KL, Agyeman KO, Arai AE (2003) Qualitative assessment of regional left ventricular can predict MRI or radionuclide ejection fraction: an objective alternative to eyeball estimates. J Cardiovasc Magn Reson 5:451–463PubMedCrossRefGoogle Scholar
  245. Sievers B, Addo M, Kirchberg S et al (2005) How much are atrial volumes and ejection fraction assessed by cardiac magnetic resonance imaging influenced by the ECG gating method? J Cardiovasc Magn Reson 7:587–593PubMedCrossRefGoogle Scholar
  246. Singelton HR, Pohost GM (1997) Automatic cardiac MR image segmentation using edge detection by tissue classification in pixel neighborhoods. Magn Reson Med 37:418–424CrossRefGoogle Scholar
  247. Sodickson DK, Manning WJ (1997) Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn Reson Med 38:591–603PubMedCrossRefGoogle Scholar
  248. Soldo SJ, Norris SL, Gober JR, Haywood LJ, Colletti PM, Terk M (1994) MRI-derived ventricular volume curves for the assessment of left ventricular function. Magn Reson Imaging 12:711–717PubMedCrossRefGoogle Scholar
  249. Sosnovik DE, Wang R, Dai G, Reese TG, Wedeen WJ (2009) Diffusion MR tractography of the heart. J Cardiovasc Magn Reson 11:47PubMedCrossRefGoogle Scholar
  250. Spiegel MA, Luechinger R, Schwitter J, Boesiger P (2003) Ring Tag: ring-shaped tagging for myocardial centerline assessment. Invest Radiol 38:669–678PubMedCrossRefGoogle Scholar
  251. Spottiswoode BS, Zhong X, Lorenz CH, Mayosi BM, Meintjes EM, Epstein FH (2008) 3D myocardial tissue tracking with slice followed cine DENSE MRI. J Magn Reson Imaging 27:1019–1027PubMedCrossRefGoogle Scholar
  252. Spuentrup E, Schroeder J, Mahnken AH et al (2003) Quantitative assessment of left ventricular function with interactive real-time spiral and radial MR imaging. Radiology 227:870–876PubMedCrossRefGoogle Scholar
  253. Stillmann AE, Wilke N, Jerosch-Herold M (1997) Use of an intravascular T1 contrast agent to improve MR cine myocardial-blood pool definition in man. J Magn Reson Imaging 7:765–767CrossRefGoogle Scholar
  254. Stratemeier EJ, Thompson R, Brady TJ (1986) Ejection fraction determination by MR imaging: comparison with left ventricular angiography. Radiology 158:775–777PubMedGoogle Scholar
  255. Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH (1969) Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24:339–347PubMedGoogle Scholar
  256. Streeter DD, Vaishnav RN, Patel DJ, Spotniz HM, Ross J, Sonnenblick EH Jr (1970) Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10:343–363Google Scholar
  257. Stuber M, Scheidegger MB, Fischer SE et al (1999) Alterations in the local myocardial motion pattern in patients suffering from pressure overload due to aortic stenosis. Circulation 27:361–368Google Scholar
  258. Sugeng L, Mor-Avi V, Weinert L et al (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114:654–661PubMedCrossRefGoogle Scholar
  259. Sugeng L, Mor-Avi V, Weinert L et al (2010) Multimodality comparison of quantitative volumetric analysis of the right ventricle. J Am Coll Cardiol Imaging 3:10–18Google Scholar
  260. Tardivon AA, Mousseaux E, Brenot F et al (1994) Quantification of hemodynamics in primary pulmonary hypertension with magnetic resonance imaging. Am J Respir Crit Care Med 150:1075–1080PubMedGoogle Scholar
  261. Taylor AM, Dymarkowski S, De Meerleer K et al (2005) Validation and application of single breath-hold cine cardiac MR for ventricular function assessment in children with congenital heart disease at rest and during adenosine stress. J Cardiovasc Magn Reson 7:743–751PubMedCrossRefGoogle Scholar
  262. Thiele H, Nagel E, Paetsch I et al (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367PubMedCrossRefGoogle Scholar
  263. Thiele H, Paetsch I, Schnackenburg B et al (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339PubMedCrossRefGoogle Scholar
  264. Tsao CW, Josephson ME, Hauser TH et al (2008) Accuracy of electrocardiographic criteria for atrial enlargement: validation with cardiovascular magnetic resonance. J Cardiovasc Magn Reson 10:7–14PubMedCrossRefGoogle Scholar
  265. Tseng W-YI, Reese TG, Weisskoff RM, Brady TJ, Wedeen VJ (2000) Myocardial fiber shortening in humans: initial results of MR imaging. Radiology 216:128–139PubMedGoogle Scholar
  266. Ugander M, Carlsson M, Arheden H (2010) Short-axis epicardial volume change is a measure of cardiac left ventricular short-axis function, which is independent of myocardial wall thickness. Am J Physiol Heart Circ Physiol 298:H530–H535PubMedCrossRefGoogle Scholar
  267. Utz JA, Herfkens RJ, Heinsimer JA et al (1987) Cine MR determination of left ventricular ejection fraction. Am J Roentgenol 148:839–843Google Scholar
  268. van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27PubMedCrossRefGoogle Scholar
  269. van den Hout RJ, Lamb HJ, van den Aardweg JG et al (2003) Real-time MR imaging of aortic flow: influence of breathing on left ventricular stroke volume in chronic obstructive pulmonary disease. Radiology 229:513–519PubMedCrossRefGoogle Scholar
  270. van der Geest RJ, Buller VG, Jansen E et al (1997) Comparison between manual and semiautomated analysis of left ventricular volume parameters from short-axis MR images. J Comput Assist Tomogr 21:756–765PubMedCrossRefGoogle Scholar
  271. van Geuns RJM, Baks T, Gronenschild EHBM et al (2006) Automatic quantitative left ventricular analysis of cine MR images by using three-dimensional information for contour detection. Radiology 240:215–221PubMedCrossRefGoogle Scholar
  272. van Rossum AC, Visser FC, Sprenger M, Van Eenige MJ, Valk J, Roos JP (1988a) Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 15:628–633CrossRefGoogle Scholar
  273. van Rossum AC, Visser FC, van Eenige MJ, Valk J, Roos JP (1988b) Magnetic resonance imaging of the heart for determination of ejection fraction. Int J Cardiol 18:53–63PubMedCrossRefGoogle Scholar
  274. van Rugge FP, Holman ER, van der Wall EE, De Roos A, van der Laarse A, Bruschke AVG (1993a) Quantitation of global and regional left ventricular function by cine magnetic resonance imaging during dobutamine stress in normal human subjects. Eur Heart J 14:456–463PubMedCrossRefGoogle Scholar
  275. van Rugge FP, Van der Wall EE, de Roos A, Bruschke AVG (1993b) Dobutamine stress magnetic resonance imaging for detection of coronary artery disease. J Am Coll Cardiol 22:431–439PubMedCrossRefGoogle Scholar
  276. van Rugge FP, Van der Wall EE, Spanjersberg SJ et al (1994) Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease: quantitative wall motion analysis using a modification of the centerline method. Circulation 90:127–138PubMedGoogle Scholar
  277. Verberne HJ, Dibbets-Schneider P, Spijkerboer A et al (2006) Multicenter intercomparison assessment of consistency of left ventricular function from a gated cardiac SPECT phantom. J Nucl Cardiol 13:801–810PubMedCrossRefGoogle Scholar
  278. Waldman LK, Fung YC, Covell JW (1985) Transmural myocardial deformation in the canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 57:152–163PubMedGoogle Scholar
  279. Waldman LK, Nosan D, Villarreal F, Covell JW (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63:550–562PubMedGoogle Scholar
  280. Weiger M, Pruessmann KP, Boesiger P (2000) Cardiac real-time imaging using SENSE: sensitivity encoding scheme. Magn Reson Med 43:177–184PubMedCrossRefGoogle Scholar
  281. Weinsaft JW, Cham MD, Janik M et al (2008) Left ventricular papillary muscles and trabeculae are significant determinants of cardiac MRI volumetric measurements: effects on clinical standards in patients with advanced systolic dysfunction. Int J Cardiol 126:359–365PubMedCrossRefGoogle Scholar
  282. Wen Z, Zhang Z, Yu W, Fan Z, Du J, Lv B (2010) Assessing the left atrial phasic volume and function with dual-source CT: comparison with 3T MRI. Int J Cardiovasc Imaging 26:83–92PubMedCrossRefGoogle Scholar
  283. Westenberg JJM, Roes SD, Marsan SD et al (2008) Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249:792–800PubMedCrossRefGoogle Scholar
  284. Weyman AE, Wann S, Feigenbaum H, Dillon JC (1976) Mechanism of abnormal septal motion in patients with right ventricular volume overload: a cross-sectional echocardiographic study. Circulation 54:179–186PubMedGoogle Scholar
  285. Weyman AE, Heger JJ, Kronik TG, Wann LS, Dillon JC, Feigenbaum H (1977) Mechanism of paradoxical early diastolic septal motion in patients with mitral stenosis: a cross-sectional echocardiographic study. Am J Cardiol 40:691–699PubMedCrossRefGoogle Scholar
  286. Whitlock M, Garg A, Gelow J, Jacobson T, Broberg C (2010) Comparison of left and right atrial volume by echocardiography versus cardiac magnetic resonance imaging using the area-length method. Am J Cardiol 106:1345–1350PubMedCrossRefGoogle Scholar
  287. Winter MM, Bernink FJP, Groenink M et al (2008) Evaluating the systemic right ventricle by CMR: the importance of consistent and reproducible delination of the cavity. J Cardiovasc Magn Reson 10:40–47PubMedCrossRefGoogle Scholar
  288. Wong AYK, Rautaharju PM (1968) Stress distribution within the left ventricular wall approximated as a thick ellipsoidal shell. Am Heart J 75:649–662PubMedCrossRefGoogle Scholar
  289. Yamaoka O, Yabe T, Okada M et al (1993) Evaluation of left ventricular mass: comparison of ultrafast computed tomography, magnetic resonance imaging, and contrast left ventriculography. Am Heart J 126:1372–1379PubMedCrossRefGoogle Scholar
  290. Yim PJ, Ha B, Ferreiro JI et al (1998) Diastolic shape of the right ventricle of the heart. Anat Rec 250:316–324PubMedCrossRefGoogle Scholar
  291. Young AA, Axel L (1992) Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization—a model-based approach. Radiology 185:241–247PubMedGoogle Scholar
  292. Young AA, Axel L, Dougherty L, Bogen DK, Parenteau CS (1993) Validation of tagging with MR imaging to estimate material deformation. Radiology 188:101–108PubMedGoogle Scholar
  293. Young AA, Kramer CM, Ferrari VA, Axel L, Reichek N (1994) Three-dimensional left ventricular deformation in hypertrophic cardiomyopathy. Circulation 90:854–867PubMedGoogle Scholar
  294. Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ (2000) Left ventricular mass and volume: fast point calculation with guide-point modeling on MR images. Radiology 216:597–602PubMedGoogle Scholar
  295. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging—a new method for noninvasive assessment of myocardial motion. Radiology 169:59–63PubMedGoogle Scholar
  296. Zile MR, Brutsaert DL (2002) New concepts in diastolic dysfunction and diastolic heart failure: part 1. Diagnosis, prognosis and measurements of diastolic function. Circulation 105:1387–1393PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Radiology and Medical Imaging Research Center (MIRC), University Hospitals GasthuisbergCatholic University of LeuvenLeuvenBelgium

Personalised recommendations