Cranial Stereotactic Radiosurgery

  • Joseph R. Simpson
  • Robert E. Drzymala
  • Keith M. Rich
  • Brigitta G. Baumert
Part of the Medical Radiology book series (MEDRAD)


Presently, in any centers around the world, radiation can be wielded like a surgical instrument, or loco-regional chemotherapy agent in modern, precisely focused intracranial treatment techniques called stereotactic radiosurgery (SRS), fractionated radiosurgery (fSRS) and stereotactic radiotherapy (SRT). This chapter presents a practical overview of the rationale, methodology, equipment, and personnel required to successfully perform cranial stereotactic radiosurgery, fractionated radiosurgery and stereotactic radiotherapy


Essential Tremor Gamma Knife Stereotactic Radiosurgery Treatment Planning System Stereotactic Radiotherapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alfonso R et al (2008) A new formalism for reference dosimetry of small and nonstandard fields. Med Phys 35(11):5179–5186PubMedCrossRefGoogle Scholar
  2. Andisheh B et al (2009) Clinical and radiobiological advantages of single-dose stereotactic light-ion radiation therapy for large intracranial arteriovenous malformations. Technical note. J Neurosurg 111(5):919–926PubMedCrossRefGoogle Scholar
  3. Andrews DW et al (2002) Fractionated stereotactic radiotherapy for the treatment of optic nerve sheath meningiomas: preliminary observations of 33 optic nerves in 30 patients with historical comparison to observation with or without prior surgery. Neurosurgery 51(4):890–902 discussion 903–904PubMedGoogle Scholar
  4. Aoyama H et al (2003) Hypofractionated stereotactic radiotherapy alone without whole-brain irradiation for patients with solitary and oligo brain metastasis using noninvasive fixation of the skull. Int J Radiat Oncol Biol Phys 56:793–800PubMedCrossRefGoogle Scholar
  5. Aoyama H et al (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295(21):2483–2491PubMedCrossRefGoogle Scholar
  6. Ashamalla H et al (2003) Commissioning and clinical results utilizing the Gildenbergy-Laitinen adapter device for X-ray in fractionated stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 56:592–598PubMedCrossRefGoogle Scholar
  7. Baumert BG et al (2004) Early improvements in vision after fractionated stereotactic radiotherapy for primary optic nerve sheath meningioma. Radiother Oncol 72(2):169–174PubMedCrossRefGoogle Scholar
  8. Baumert B et al (2005) Repositioning accuracy of fractionated stereotactic irradiation: assessment of isocentre alignment for different dental fixations by using sequential CT scanning. Radiother Oncol 74:61–66PubMedCrossRefGoogle Scholar
  9. Benedict S et al (2001) Intensity-modulated stereotactic radiosurgery using dynamic micro-multileaf collimation. Int J Radiat Oncol Biol Phys 50:751–758PubMedCrossRefGoogle Scholar
  10. Bova F et al (1998) Optic-guided stereotactic radiotherapy. Med Dosim 23:221–228PubMedCrossRefGoogle Scholar
  11. Brell M et al (2006) Fractionated stereotactic radiotherapy in the treatment of exclusive cavernous sinus meningioma: functional outcome, local control, and tolerance. Surg Neurol 65(1):28–33, discussion 33–34PubMedCrossRefGoogle Scholar
  12. Chang SD, Adler J (2001) Robotics and radiosurgery: the Cyberknife. Stereotact Funct Neurosurg 76:204–208PubMedCrossRefGoogle Scholar
  13. Chang SD et al (1998) Clinical experience with image-guided robotic radiosurgery (the CyberKnife) in the treatment of brain and spinal cord tumors. Neurologia Medico Chirurgica (Tokyo) 38:780–783CrossRefGoogle Scholar
  14. Cho KH et al (1999) Single dose versus fractionated stereotactic radiotherapy for recurrent high-grade gliomas. Int J Radiat Oncol Biol Phys 45(5):1133–1141PubMedCrossRefGoogle Scholar
  15. Colombo F et al (2009) Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery 64(2 Suppl):A7–A13PubMedCrossRefGoogle Scholar
  16. Combs SE et al (2005a) Stereotactically guided fractionated re-irradiation in recurrent glioblastoma multiforme. J Neurooncol 74(2):167–171PubMedCrossRefGoogle Scholar
  17. Combs SE et al (2005b) Stereotactic radiosurgery (SRS): treatment option for recurrent glioblastoma multiforme (GBM). Cancer 104(10):2168–2173PubMedCrossRefGoogle Scholar
  18. Cosgrove V et al (1999) Commissioning of a micro multi-leaf collimator and planning system for stereotactic radiosurgery. Radiother Oncol 50:325–336PubMedCrossRefGoogle Scholar
  19. Das I et al (1996) Characteristics of a dedicated linear accelerator-based stereotactic radiosurgery–radiotherapy unit. Radiother Oncol 38:61–68PubMedCrossRefGoogle Scholar
  20. Delannes M et al (1990) Laitinen’s stereoadapter: application to the fractionated cerebral irradiation under stereotaxic conditions. Neurochirurgie 36:167–175PubMedGoogle Scholar
  21. Dieckmann K et al (2003) LINAC based stereotactic radiotherapy of uveal melanoma: 4 years clinical experience. Radiother Oncol 67:199–206PubMedCrossRefGoogle Scholar
  22. Drzymala R, Mutic S (1999) Stereotactic imaging quality assurance using an anthropomorphic phantom. Comput Aided Surg 4:248–255PubMedCrossRefGoogle Scholar
  23. Drzymala R et al (1994) Assurance of high quality linac-based stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 30:459–472PubMedCrossRefGoogle Scholar
  24. Duggan D, Coffey C (1996) Use of a micro-ionization chamber and an anthropomorphic head phantom in a quality assurance program for stereotactic radiosurgery. Med Phys 23:513–516PubMedCrossRefGoogle Scholar
  25. Dunbar S, Tarbell N, Kooy H (1994) Stereotactic radiotherapy for pediatric and adult brain tumors: preliminary report. Int J Radiat Oncol Biol Phys 30:531–539PubMedCrossRefGoogle Scholar
  26. Emara K et al (2004) Stereotactic radiotherapy in the treatment of juxtapapillary choroidal melanoma: preliminary results. Int J Radiat Oncol Biol Phys 59:94–100PubMedCrossRefGoogle Scholar
  27. Ernst-Stecken A et al (2006) Phase II trial of hypofractionated stereotactic radiotherapy for brain metastases: results and toxicity. Radiother Oncol 81(1):18–24PubMedCrossRefGoogle Scholar
  28. Ernst-Stecken A et al (2007) Survival and quality of life after hypofractionated stereotactic radiotherapy for recurrent malignant glioma. NeuroOncology 81:287–294CrossRefGoogle Scholar
  29. Ertl A et al (1996) TLD array for precise dose measurements in stereotactic radiation techniques. Phys Med Biol 41:2679–2686PubMedCrossRefGoogle Scholar
  30. Ertl A et al (2000) High-resolution dose profile studies based on MR imaging with polymer BANG™ gels in stereotactic radiation techniques. Magnet Resonance Imaging 18:343–349CrossRefGoogle Scholar
  31. Fidanzio A et al (2000) PTW-diamond detector: dose rate and particle type dependence. Med Phys 27:2589–2593PubMedCrossRefGoogle Scholar
  32. Fogh SE et al (2010) Hypofractionated stereotactic radiation therapy: an effective therapy for recurrent high-grade gliomas. J Clin Oncol 28(18):3048–3053PubMedCrossRefGoogle Scholar
  33. Foroni R et al (2000) New dosimetric approach for multidimensional dose evaluation in Gamma Knife surgery. Technical note. J Neurosurg 93:239–242PubMedGoogle Scholar
  34. Friedman W, Bova F (1989) The University of Florida radiosurgery system. Surg Neurol 32:334–342PubMedCrossRefGoogle Scholar
  35. Gerszten P, Welch W (2004) CyberKnife radiosurgery for metastatic spine tumors. Neurosurg Clin North Am 15:491–501CrossRefGoogle Scholar
  36. Gerszten P et al (2002) Feasibility of frameless single-fraction stereotactic radiosurgery for spinal lesions. Neurosurg Focus 13:e2PubMedCrossRefGoogle Scholar
  37. Grebe G (2001) Dynamic arc radiosurgery and radiotherapy: commissioning and verification of dose distributions. Int J Radiat Oncol Biol Phys 49:1451–1460PubMedCrossRefGoogle Scholar
  38. Grosu A-L et al (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a linac: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463PubMedCrossRefGoogle Scholar
  39. Grosu AL et al (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63(2):511–519PubMedCrossRefGoogle Scholar
  40. Hamm K (2004) Stereotactic radiation treatment planning and follow-up studies involving fused multimodality imaging. J Neurosurg 101:326–333PubMedGoogle Scholar
  41. Han JH et al (2008) Gamma knife radiosurgery for skull base meningiomas: long-term radiologic and clinical outcome. Int J Radiat Oncol Biol Phys 72(5):1324–1332PubMedCrossRefGoogle Scholar
  42. Hasegawa T et al (2007) Long-term outcomes of Gamma Knife surgery for cavernous sinus meningioma. J Neurosurg 107(4):745–751PubMedCrossRefGoogle Scholar
  43. Henzel M et al (2006) Stereotactic radiotherapy of meningiomas. Strahlenther Onkol 182:382–388PubMedCrossRefGoogle Scholar
  44. Higuchi Y et al (2009) Three-staged stereotactic radiotherapy without whole brain irradiation for large metastatic brain tumors. Int J Radiat Oncol Biol Phys 74(5):1543–1548PubMedCrossRefGoogle Scholar
  45. Ishihara H et al (2004) CyberKnife radiosurgery for vestibular schwannoma. Minimal Invasive Neurosurg 47:290–293CrossRefGoogle Scholar
  46. Jalali R et al (2002) High precision focused irradiation in the form of fractionated stereotactic conformal radiotherapy (SCRT) for benign meningiomas predominantly in the skull base location. Clin Oncol (R Coll Radiol) 14(2):103–109CrossRefGoogle Scholar
  47. Kai J et al (1998) Optical high-percision three-dimensional position measurement system suitable for head motion tracking in frameless stereotactic radiosurgery. Comput Aided Surg 3:257–263PubMedCrossRefGoogle Scholar
  48. Kassaee A et al (2003) Modification of Gill-Thomas-Cosman frame for extracranial head and neck stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1192–1195PubMedCrossRefGoogle Scholar
  49. Kellermann P, Ertl A, Gornik E (1998) A new method of readout in radiochromic film dosimetry. Phys Med Biol 43:2251–2263PubMedCrossRefGoogle Scholar
  50. Kim K et al (2003) Isocenter accuracy in frameless stereotactic radiotherapy using implanted fiducials. Int J Radiat Oncol Biol Phys 56:266–273PubMedCrossRefGoogle Scholar
  51. Kocher M et al (2011) Adjuvant whole-brain radiotherapy versus observation after radiosurgery or surgical resection of one to three cerebral metastases: results of the EORTC 22952–26001 study. J Clin Oncol 29(2):134–141PubMedCrossRefGoogle Scholar
  52. Kondziolka D et al (2008) Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery 62(1):53–58 discussion 58-60PubMedCrossRefGoogle Scholar
  53. Kooy H, Dunbar S, Tarbell N (1994) Adaptation and verification of the relocatable Gill-Thomas-cosman frame in stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 30:685–691PubMedCrossRefGoogle Scholar
  54. Kuo J et al (2003) The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery 53:1235–1239PubMedCrossRefGoogle Scholar
  55. Leber KA, Bergloff J, Pendl G (1998) Dose-response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg 88(1):43–50PubMedCrossRefGoogle Scholar
  56. Lefkopoulos D et al (2001) Physical and methodological aspects of multimodality imaging and principles of treatment planning in 3D conformal radiotherapy. Cancer Radiother 5:496–514PubMedCrossRefGoogle Scholar
  57. Leksell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319PubMedGoogle Scholar
  58. Leksell L (1968) Cerebral radiosurgery: I. Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595PubMedGoogle Scholar
  59. Levy R et al (1999) Stereotactic radiosurgery: the role of charged particles. Acta Oncol 38:165–169PubMedCrossRefGoogle Scholar
  60. Li S et al (2004) A new approach in dose measurement and error analysis for narrow photon beams (beamlets) shaped by different multifleaf collimators using a small detector. Med Phys 31:2020–2032PubMedCrossRefGoogle Scholar
  61. Lindvall P et al (2003) Hypofractionated conformal stereotactic radiotherapy for arteriovenous malformations. Neurosurgery 53:1036–1043PubMedCrossRefGoogle Scholar
  62. Lindvall P et al (2005) Hypofractionated conformal stereotactic radiotherapy alone or in combination with whole-brain radiotherapy in patients with cerebral metastases. Int J Radiat Oncol Biol Phys 61:1460–1466PubMedCrossRefGoogle Scholar
  63. Lindvall P et al (2010) Radiation schedules in relation to obliteration and complications in hypofractionated conformal stereotactic radiotherapy of arteriovenous malformations. Stereotact Funct Neurosurg 88(1):24–28PubMedCrossRefGoogle Scholar
  64. Linskey ME et al (2010) The role of stereotactic radiosurgery in the management of patients with newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline. J Neurooncol 96(1):45–68PubMedCrossRefGoogle Scholar
  65. Liu JK et al (2002) Optic nerve sheath meningiomas: visual improvement after stereotactic radiotherapy. Neurosurgery 50(5):950–955 discussion 955–957PubMedGoogle Scholar
  66. Low D, Li Z, Drzymala R (1995) Minimization of target positioning error in accelerator-based radiosurgery. Med Phys 22:443–448PubMedCrossRefGoogle Scholar
  67. Lutterbach J et al (2003) Radiosurgery followed by planned observation in patients with one to three brain metastases. Neurosurgery 52(5):1066–1073 discussion 1073–1074PubMedCrossRefGoogle Scholar
  68. Lutz W, Winston K, Maleki N (1988) A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 14:373–381PubMedCrossRefGoogle Scholar
  69. Mack A et al (2003) High precision film dosimetry with GAFCHROMIC films for quality assurance especially when using small fields. Med Phys 30:2399–2409PubMedCrossRefGoogle Scholar
  70. Mamalui-Hunter M, Drzymala R (2010) Patient-specific independent gamma plan quality assurance for Gamma Knife Perfexion, in 52nd annual meeting of the AAPM 2010Google Scholar
  71. Marchetti M et al (2011) Hypofractionated stereotactic radiotherapy for oligometastases in the brain: a single-institution experience. Neurol Sci 32:393–399PubMedCrossRefGoogle Scholar
  72. Mayer R, Sminia P (2008) Re-irradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys 70:1350–1360PubMedCrossRefGoogle Scholar
  73. McKerracher C, Thwaites D (1999) Assessment of new small-field detectors against standard-field detectors for practical stereotactic beam data acquisition. Phys Med Biol 44:2143–2160PubMedCrossRefGoogle Scholar
  74. Milker-Zabel S et al (2005) Fractionated stereotactic radiotherapy in patients with benign or atypical intracranial meningioma: long-term experience and prognostic factors. Int J Radiat Oncol Biol Phys 61(3):809–816PubMedCrossRefGoogle Scholar
  75. Milker-Zabel S et al (2009) Fractionated stereotactic radiation therapy in the management of primary optic nerve sheath meningiomas. J Neurooncol 94(3):419–424PubMedCrossRefGoogle Scholar
  76. Minniti G et al (2007) Fractionated stereotactic conformal radiotherapy following conservative surgery in the control of craniopharyngiomas. Radiother Oncol 82(1):90–95PubMedCrossRefGoogle Scholar
  77. Monk J et al (2003) Comparison of a micro-multileaf collimator with a 5-mm-leaf-width collimator for intracranial stereotactic radiotherapy. Int J Radiat Oncol Biol Phys 57:1443–1449PubMedCrossRefGoogle Scholar
  78. Murphy M (2004) Tracking moving organs in real time. Semin Radiat Oncol 14:91–100PubMedCrossRefGoogle Scholar
  79. Narayana A et al (2007) Hypofractionated stereotactic radiotherapy using intensity-modulated radiotherapy in patients with one or two brain metastases. Stereotact Funct Neurosurg 85(2–3):82–87PubMedCrossRefGoogle Scholar
  80. Neumann M (2002) DICOM-current status and future developments for radiotherapy. Z Med Phys 12:171–176PubMedGoogle Scholar
  81. Nieder C et al (2006) Therapeutic options for recurrent high-grade glioma in adult patients: recent advances. critical reviews in oncology hematology. Crit Rev Oncol Hematol 60(3):181–193PubMedCrossRefGoogle Scholar
  82. Oldham M et al (2001) High resolution gel-dosimetry by optical-CT and MR scanning. Med Phys 28:1436–1445PubMedCrossRefGoogle Scholar
  83. O’Neill BP et al (2003) A comparison of surgical resection and stereotactic radiosurgery in the treatment of solitary brain metastases. Int J Radiat Oncol Biol Phys 55(5):1169–1176PubMedCrossRefGoogle Scholar
  84. Paddick I (2000) A simple scoring ratio to index the conformity of radiosurgical treatment plans Technical note. J Neurosurg 93(Suppl 3):219–222PubMedGoogle Scholar
  85. Paddick I, Lippitz B (2006) A simple dose gradient measurement tool to complement the conformity index. J Neurosurg 105:194–201PubMedGoogle Scholar
  86. Patel M et al (2009) Salvage reirradiation for recurrent glioblastoma with radiosurgery: radiographic response and improved survival. J Neurooncol 92(2):185–191PubMedCrossRefGoogle Scholar
  87. Paulsen F et al (2011) Fractionated stereotactic radiotherapy in patients with optic nerve sheath meningioma. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  88. Rades D et al (2007) Whole-brain radiotherapy versus stereotactic radiosurgery for patients in recursive partitioning analysis classes 1 and 2 with 1 to 3 brain metastases. Cancer 110(10):2285–2292PubMedCrossRefGoogle Scholar
  89. Rades D et al (2009) Whole brain radiotherapy plus stereotactic radiosurgery (WBRT + SRS) versus surgery plus whole brain radiotherapy (OP + WBRT) for 1–3 brain metastases: results of a matched pair analysis. Eur J Cancer 45(3):400–404PubMedCrossRefGoogle Scholar
  90. Ramani R et al (1994) The use of radiochromic film in treatment verification of dynamic stereotactic radiosurgery. Med Phys 21:389–392PubMedCrossRefGoogle Scholar
  91. Robar J, Clark B (1999) The use of radiographic film for linear accelerator stereotactic radiosurgical dosimetry. Med Phys 26:2144–2150PubMedCrossRefGoogle Scholar
  92. Rock J et al (2004) The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J NeuroOncol 69:319–334PubMedCrossRefGoogle Scholar
  93. Rosenbaum A, Drayer B (1977) CT cisternography with metrizamide. Acta Radiol 355:323–337Google Scholar
  94. Scheib S, Gianolini S (2002) Three-dimensional dose verification using BANG gel: a clinical example. J Neurosurg 97:582–587PubMedGoogle Scholar
  95. Schell MC et al (1995) AAPM report no. 42, Stereotactic radiosurgery, report of task group 42. Radiat Ther Comm Am Inst Phys 5(3):213–219Google Scholar
  96. Selch M et al (2004a) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59:101–111PubMedCrossRefGoogle Scholar
  97. Selch MT et al (2004b) Stereotactic radiotherapy for treatment of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys 59(1):101–111PubMedCrossRefGoogle Scholar
  98. Shaw E et al (1996) Radiosurgery for the treatment of previously irradiated recurrent primary brain tumors and brain metastases: initial report of radiation therapy oncology group protocol 90–05. Int J Radiat Oncol Biol Phys 34:647–654PubMedCrossRefGoogle Scholar
  99. Sheehan JP, Williams BJ, Yen CP (2010) Stereotactic radiosurgery for WHO grade I meningiomas. J Neurooncol 99(3):407–416PubMedCrossRefGoogle Scholar
  100. Shepherd SF et al (1997) Hypofractionated stereotactic radiotherapy in the management of recurrent glioma. Int J Radiat Oncol Biol Phys 37(2):393–398PubMedCrossRefGoogle Scholar
  101. Shrieve DC et al (1995) Comparison of stereotactic radiosurgery and brachytherapy in the treatment of recurrent glioblastoma multiforme. Neurosurgery 36(2):275–282 discussion 282–284PubMedCrossRefGoogle Scholar
  102. Solberg T (2001) Dynamic arc radiosurgery field shaping: a comparison with static field conformal and on-coplanar circular arcs. Int J Radiat Oncol Biol Phys 49:1451–1460CrossRefGoogle Scholar
  103. Somigliana A et al (1999) Dosimetry of Gamma Knife and linac-based radiosurgery using radiochromic and diode detectors. Phys Med Biol 44:887–897PubMedCrossRefGoogle Scholar
  104. Stafford SL et al (2003) A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys 55(5):1177–1181PubMedCrossRefGoogle Scholar
  105. Starke RM et al (2008) A comprehensive review of radiosurgery for cerebral arteriovenous malformations: outcomes, predictive factors, and grading scales. Stereotact Funct Neurosurg 86(3):191–199PubMedCrossRefGoogle Scholar
  106. Torres RC et al (2003) Radiosurgery and stereotactic radiotherapy for intracranial meningiomas. Neurosurg Focus 14(5):e5PubMedCrossRefGoogle Scholar
  107. Verellen D, Soete G (2003) Quality assurance of a system for improved target localization and patient set-up that combined real-time infrared tracking and stereoscopic X-ray imaging. Radiother Oncol 67:129–141PubMedCrossRefGoogle Scholar
  108. Vernimmen FJ et al (2001) Stereotactic proton beam therapy of skull base meningiomas. Int J Radiat Oncol Biol Phys 49(1):99–105PubMedCrossRefGoogle Scholar
  109. Walton L et al (2000) Development of a relocatable frame technique for Gamma Knife radiosurgery. Technical note. J Neurosurg 93:198–202PubMedGoogle Scholar
  110. Warrington A, Laing R, Brada M (1994) Quality assurance in fractionated stereotactic radiotherapy. Radiother Oncol 30:239–246PubMedCrossRefGoogle Scholar
  111. Wiggenraad R et al (2011) Dose-effect relation in stereotactic radiotherapy for brain metastases. A systematic review. Radiother Oncol 98:292–297PubMedCrossRefGoogle Scholar
  112. Williams J (2002) Fractionated stereotactic radiotherapy for acoustic neuromas. Acta Neurochir 144:1249–1254CrossRefPubMedGoogle Scholar
  113. Williams J (2003) Fractionated stereotactic radiotherapy for acoustic neuromas: preservation of function versus size. J Clin Neurosci 10:48–52PubMedCrossRefGoogle Scholar
  114. Yan H (2003) A phantom study on the positioning accuracy of the Novalis system. Med Phys 30:3052–3060PubMedCrossRefGoogle Scholar
  115. Yin F et al (2002) Dosimetric characteristics of Novalis shaped beam surgery unit. Med Phys 29:1729–1738PubMedCrossRefGoogle Scholar
  116. Zachenhofer I et al (2006) Gamma-knife radiosurgery for cranial base meningiomas: experience of tumor control, clinical course, and morbidity in a follow-up of more than 8 years. Neurosurgery 58(1):28–36 discussion 28–36PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  • Joseph R. Simpson
    • 1
  • Robert E. Drzymala
    • 1
  • Keith M. Rich
    • 2
  • Brigitta G. Baumert
    • 3
  1. 1.Department of Radiation OncologyWashington University School of MedicineSt. LouisUSA
  2. 2.Department of Neurological SurgeryWashington University School of MedicineSt. LouisUSA
  3. 3.Department of Radiation-Oncology (MAASTRO) and GROW (School for Oncology and Developmental Biology)University Medical Center Maastricht (MUMC)MaastrichtThe Netherlands

Personalised recommendations