Advertisement

Quality Assurance for Multi-Institutional Clinical Trials

  • James A. Purdy
  • Philip M. Poortmans
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

The need for specific quality assurance (QA) activities in the framework of clinical trials is continually increasing as the technical requirements needed for optimal radiation oncology continue to evolve and to become more demanding as new technologies continue to be developed and implemented at a progressively higher rate. The need for exchange of digital data allowing the evaluation of volume delineation and dose-volume parameters and enabling the linking of these QA parameters to the clinical outcome has led to the development of dedicated technical platforms and software for clinical trials QA. All of these developments present credentialing and QA challenges for cooperative groups and clinical trial QA centers. The level of appropriate QA in clinical trials is highly dependent on the complexity of the trial. It should be evidence based; by doing this, efficient QA in clinical trials will improve the overall quality of treatment for most patients at an acceptable cost. It is also apparent that clinical trials are becoming much more multicenter, multidisciplinary and international, thereby not only giving additional relevance to the already stringent demands for QA but also putting forward the critically important issue of harmonization of clinical trials credentialing and QA procedures. This chapter will address all these issues focusing primarily on the United States and European clinical trial QA experience.

Keywords

Target Volume Intensity Modulate Radiation Therapy Stereotactic Body Radiation Therapy Treatment Planning System German Hodgkin Study Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Back M, Oliver L, Bromley R, Eade T (2008) Multicentre quality assurance of intensity-modulated radiotherapy planning: beware the benchmarker (letter to the editor). J Med Imag Radiat Oncol 52:197CrossRefGoogle Scholar
  2. Bentzen SM, Bernier J, Davis JB, Horiot JC, Garavaglia G, Chavaudra J, Johansson KA, Bolla M (2000) Clinical impact of dosimetry quality assurance programmes assessed by radiobiological modelling of data from the thermoluminescent dosimetry study of the European Organization for Research and Treatment of Cancer. Eur J Cancer 36(5):615–620. S0959804999003366[pii]PubMedCrossRefGoogle Scholar
  3. Bernier J, Horiot JC, Bartelink H, Johansson KA, Cionini L, Gonzalez Gonzalez D, Hamers H, van den Bogaert W (1996) Profile of radiotherapy departments contributing to the cooperative group of radiotherapy of the European Organization for Research and Treatment of Cancer. Int J Radiat Oncol Biol Phys 34(4):953–960. 0360301695021779[pii]PubMedCrossRefGoogle Scholar
  4. Boehmer D, Maingon P, Poortmans P et al (2006) Guidelines for primary radiotherapy of patients with prostate cancer. Radiother Oncol 79:259–269PubMedCrossRefGoogle Scholar
  5. Bolla M, Bartelink H, Garavaglia G, Gonzalez D, Horiot JC, Johansson KA, van Tienhoven G, Vantongelen K, van Glabbeke M (1995) EORTC guidelines for writing protocols for clinical trials of radiotherapy. Radiother Oncol 36(1):1–8. 016781409501573Y[pii]PubMedCrossRefGoogle Scholar
  6. Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE (2006) Image-Guided IMRT, vol 3. Springer, BerlinCrossRefGoogle Scholar
  7. Bosch WR, Lakanen TL, Kahn MG, Harms WB Sr, Purdy JA (1997) An image/clinical database for multi-institutional clinical trials in 3D-conformal radiation therapy. In: Leavitt DD, Starkschall G (eds) XII international conference on the use of computers in radiation therapy. Medical Physics Publishing, Salt Lake City, pp 455–457Google Scholar
  8. Bosch WR, Harms WB Sr, Matthews JW, Purdy JA (2000) Database infrastructure for multi-institutional clinical trials in 3D-conformal radiotherapy and prostate brachytherapy. In: Schlegel W, Bortfeld T (eds) XIII International conference on the use of computers in radiation therapy. Medical Physics Publishing, Heidelberg, pp 483–485Google Scholar
  9. Bosch W, Matthews J, Ulin K, Urie M, Yorty J, Straube W, FitzGerald TJ, Purdy JA (2006) Implementation of ATC method 1 for clinical trials data review at the Quality Assurance Review Center (abstract). Med Phys 33(6):2109CrossRefGoogle Scholar
  10. Bosch W, Matthews J, Straube W, Purdy J (2007) QuASAR: quality assurance submission, analysis, and review system for advanced technology clinical trials in radiation therapy. In: Bissonnette J-P (ed) XVth international conference on the use of computers in radiation therapy, 4–7 June, Toronto. Novel Digital Publishing, Oakville, Ontario, Canada, pp 98–102Google Scholar
  11. Bridier A, Nyström H, Ferreira I, Gomola I, Huyskens D (2000) A comparative description of three multipurpose phantoms (MPP) for external audits of photon beams in radiotherapy: the water MPP, the Umeå MPP and the EC MPP. Radiother Oncol 55(3):285–293PubMedCrossRefGoogle Scholar
  12. Budiharto T, Musat E, Poortmans P, Hurkmans C, Monti A, Bar-Deroma R, Bernstein Z, Tienhoven GV, Collette L, Duclos F, Davis B, Aird E (2008) Profile of European radiotherapy departments contributing to the EORTC Radiation Oncology Group (ROG) in the twenty-first century. Radiother Oncol 88(3):403–410PubMedCrossRefGoogle Scholar
  13. Deasy JO, Blanco AI, Clark VH (2003) CERR: a computational environment for radiotherapy research. Med Phys 30(5):979–985PubMedCrossRefGoogle Scholar
  14. Derreumaux S, Chavaudra J, Bridier A, Rossetti V, Dutreix A (1995) A European quality assurance network for radiotherapy: dose measurement procedure. Phys Med Biol 40(7):1191–1208PubMedCrossRefGoogle Scholar
  15. Devic S, Tomic N, Faria S, Menard S, Lisbona R, Lehnert S (2010) Defining radiotherapy target volumes using (18)F-Fluoro-Deoxy-Glucose positron emission tomography/computed tomography: still a Pandora’s box? Int J Radiat Oncol Biol Phys (in press)Google Scholar
  16. DICOM (Digital Imaging and Communications in Medicine) (2000) National Electrical Manufacturers Association (NEMA), Rosslyn, VA. http://medical.nema.org/dicom/2001.html
  17. Dühmke E, Franklin J, Pfreundschuh M, Sehlen S, Willich N, Rühl U, Müller R-P, Lukas P, Atzinger A, Paulus U, Lathan B, Rüffer U, Sieber M, Wolf J, Engert A, Georgii A, Staar S, Herrmann R, Beykirch M, Kirchner H, Emminger A, Greil R, Fritsch E, Koch P, Drochtert A, Brosteanu O, Hasenclever D, Loeffler M, Diehl V (2001) Low-dose radiation is sufficient for the noninvolved extended-field treatment in favorable early-stage Hodgkin’s disease: long-term results of a randomized trial of radiotherapy alone. J Clin Oncol 19:2905–2914PubMedGoogle Scholar
  18. Dutreix A, van der Schueren E, Derreumaux S, Chavaudra J (1993) Preliminary results of a quality assurance network for radiotherapy centres in Europe. Radiother Oncol 29(2):97–101PubMedCrossRefGoogle Scholar
  19. Ebert MA, Haworth A, Kearvell R, Hooton B, Coleman RE, Spry N, Bydder S, Joseph D (2008) Detailed review and analysis of complex radiotherapy clinical trial planning data: evaluation and initial experience with the SWAN software system. Radiother Oncol 86:200–210PubMedCrossRefGoogle Scholar
  20. Ferreira IH, Dutreix A, Bridier A, Chavaudra J, Svensson H (2000) The Estro-quality assurance network (EQUAL). Radiother Oncol 55(3):273–284PubMedCrossRefGoogle Scholar
  21. FitzGerald TJ, Urie M, Ulin K, Laurie F, Yorty J, Hanusik R, Kessel S, Jodoin MB, Osagie G, Cicchetti MG, Pieters R, McCarten K, Rosen N (2008a) Processes for quality improvements in radiation oncology clinical trials. Int J Radiat Oncol Biol Phys 71(1, Supplement 1):S76–S79PubMedCrossRefGoogle Scholar
  22. FitzGerald TJ, White K, Saltz J, Sharma A, Siegel E, Urie M, Ulin K, Purdy J, Bosch W, Matthews J, Deasy J, Ibbott G et al (2008b) Development of a queriable database for oncology outcome analysis. In: Rubin P, Constine LS, Marks LB, Okunieff P (eds) Cured II-LENT cancer survivorship research and education. Late effects on normal tissues. Springer, NY, pp 55–66CrossRefGoogle Scholar
  23. Geets X, Tomsej M, Lee JA, Duprez T, Coche E, Cosnard G, Lonneux M, Grégoire V (2007) Adaptive biological image-guided IMRT with anatomic and functional imaging in pharyngo-laryngeal tumors: impact on target volume delineation and dose distribution using helical tomotherapy. Radiother Oncol 85(1):105–115PubMedCrossRefGoogle Scholar
  24. Girinsky T, Specht L, Ghalibafian M, Edeline V, Bonniaud G, Van Der Maazen R, Aleman B, Paumier A, Meijnders P, Lievens Y, Noordijk E, Poortmans P (2008) EORTC-GELA lymphoma group. The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. Radiother Oncol 88:202–210PubMedCrossRefGoogle Scholar
  25. Hall WH, Guiou M, Lee NY, Dublin A, Narayan S, Vijayakumar S, Purdy JA, Chen AM (2008) Development and validation of a standardized method for contouring the brachial plexus: preliminary dosimetric analysis among patients treated with IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys 72(5):1362–1367PubMedCrossRefGoogle Scholar
  26. Hansson U, Johansson KA (1991) Quality audit of radiotherapy with EORTC mailed in water TL-dosimetry. Radiother Oncol 20(3):191–196PubMedCrossRefGoogle Scholar
  27. Hansson U, Johansson KA, Horiot JC, Bernier J (1993) Mailed TL dosimetry programme for machine output check and clinical application in the EORTC radiotherapy group. Radiother Oncol 29(2):85–90. 0167-8140(93)90230-6[pii]PubMedCrossRefGoogle Scholar
  28. Harms WB Sr, Bosch WR, Purdy JA (1997) An interim digital data exchange standard for multi-institutional 3D-conformal radiation therapy trials. In: Leavitt DD, Starkschall G (eds) XII international conference on the use of computers in radiation therapy. Medical Physics Publishing, Salt Lake City, pp 465–468Google Scholar
  29. Horiot JC, Johansson KA, Gonzalez DG, van der Schueren E, van den Bogaert W, Notter G (1986) Quality assurance control in the EORTC cooperative group of radiotherapy: 1. Assessment of radiotherapy staff and equipment. European Organization for Research and Treatment of Cancer. Radiother Oncol 6(4):275–284PubMedCrossRefGoogle Scholar
  30. Horiot JC, Bernier J, Johansson KA, van der Schueren E, Bartelink H (1993) Minumum requirements for quality assurance in radiotherapy. Radiother Oncol 29(2):103–104CrossRefGoogle Scholar
  31. Ibbott GS (2009) QA for clinical dosimetry, with emphasis on clinical trials. In: Rogers DWO, Cygler JE (eds) Clinical dosimetry measurements in radiotherapy. Medical Physics Publishing, MadisonGoogle Scholar
  32. Ibbott GS, Followill DS, Molineu A, Lowenstein JR, Alvarez PE, Roll JE (2008) Challenges in credentialing institutions and participants in advanced technology multi-institutional clinical trials. Int J Radiat Oncol Biol Phys 71(1):S71–S75PubMedCrossRefGoogle Scholar
  33. ISCRO (1991) Radiation oncology in integrated cancer management: report of the inter-society council for radiation oncology, Philadelphia, PA Google Scholar
  34. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349PubMedCrossRefGoogle Scholar
  35. Kirby TH, Hanson WF, Gastorf RJ, Chu CH, Shalek RJ (1986) Mailable TLD system for photon and electron therapy beams. Int J Radiat Oncol Biol Phys 12:261–265PubMedCrossRefGoogle Scholar
  36. Kirby TH, Hanson WF, Johnson DA (1992) Uncertainty analysis of absorbed dose calculations from thermoluminescence dosimeters. Med Phys 19(6):1427–1433PubMedCrossRefGoogle Scholar
  37. Lawton CAF, Michalski J, El-Naqa I, Buyyounouski MK, Lee WR, Menard C, O’Meara E, Rosenthal SA, Ritter M, Seider M (2009a) RTOG GU radiation oncology specialists reach consensus on pelvic lymph node volumes for high-risk prostate cancer. Int J Radiat Oncol Biol Phys 74(2):383–387PubMedCrossRefGoogle Scholar
  38. Lawton CAF, Michalski J, El-Naqa I, Kuban D, Lee WR, Rosenthal SA, Zietman A, Sandler H, Shipley W, Ritter M, Valicenti R, Catton C, Roach Iii M, Pisansky TM, Seider M (2009b) Variation in the definition of clinical target volumes for pelvic nodal conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 74(2):377–382PubMedCrossRefGoogle Scholar
  39. Martinez AA, Yan D, Lockman D, Brabbins D, Kota K, Sharpe M, Jaffray DA, Vicini F, Wong J (2001) Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiat Oncol Biol Phys 50(5):1226–1234PubMedCrossRefGoogle Scholar
  40. Michalski JM, Roach Iii M, Merrick G, Anscher MS, Beyer DC, Lawton CA, Lee WR, Pollack A, Rosenthal SA, Vijayakumar S, Carroll PR (2009) ACR Appropriateness Criteria® on external beam radiation therapy treatment planning for clinically localized prostate cancer: expert panel on radiation oncology––prostate. Int J Radiat Oncol Biol Phys 74(3):667–672PubMedCrossRefGoogle Scholar
  41. Michalski JM, Lawton C, El Naqa I, Ritter M, O’Meara E, Seider MJ, Lee WR, Rosenthal SA, Pisansky T, Catton C, Valicenti RK, Zietman AL, Bosch WR, Sandler H, Buyyounouski MK, Ménard C (2010) Development of RTOG consensus guidelines for the definition of the clinical target volume for postoperative conformal radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 76(2):361–368PubMedCrossRefGoogle Scholar
  42. Molineu A, Followill DS, Balter PA, Hanson WF, Gillin MT, Huq MS, Eisbruch A, Ibbott GS (2005) Design and implementation of an anthropomorphic quality assurance phantom for intensity-modulated radiation therapy for the radiation therapy oncology group. Int J Radiat Oncol Biol Phys 63(2):577–583PubMedCrossRefGoogle Scholar
  43. Palta JR, Deye JA, Ibbott GS, Purdy JA, Urie MM (2004) Credentialing of institutions for IMRT in clinical trials (correspondence). Int J Radiat Oncol Biol Phys 59(43):1257–1259PubMedCrossRefGoogle Scholar
  44. Peters LJ, O’Sullivan B, Giralt J, Fitzgerald TJ, Trotti A, Bernier J, Bourhis J, Yuen K, Fisher R, Rischin D (2010) Critical impact of radiotherapy protocol compliance and quality in the treatment of advanced head and neck cancer: results from TROG 02.02. J Clin Oncol 28(10):2996–3001PubMedCrossRefGoogle Scholar
  45. Pettersen MN, Aird E, Olsen DR (2008) Quality assurance of dosimetry and the impact on sample size in randomized clinical trials. Radiother Oncol 86(2):195–199PubMedCrossRefGoogle Scholar
  46. Pilepich MV, Prasad SC, Perez CA (1982) Computed tomography in definitive radiotherapy of prostatic carcinoma. Part 2: definition of target volume. Int J Radiat Oncol Biol Phys 8:235PubMedCrossRefGoogle Scholar
  47. Piroth MD, Pinkawa M, Holy R, Stoffels G, Demirel C, Attieh C, Kaiser HJ, Langen KJ, Eble MJ (2009) Integrated-boost IMRT or 3D-CRT using FET-PET based auto-contoured target volume delineation for glioblastoma multiforme––a dosimetric comparison. Radiather Oncol 4(57):1–12Google Scholar
  48. Poortmans PM, Venselaar JL, Struikmans H, Hurkmans CW, Davis JB, Huyskens D, van Tienhoven G, Vlaun V, Lagendijk JJ, Mijnheer BJ, De Winter KA, Van der Hulst MH, Van den Bogaert WF (2001) The potential impact of treatment variations on the results of radiotherapy of the internal mammary lymph node chain: a quality-assurance report on the dummy run of EORTC phase III randomized trial 22922/10925 in stage I–III breast cancer (1). Int J Radiat Oncol Biol Phys 49(5):1399–1408. S0360301600015492[pii]PubMedCrossRefGoogle Scholar
  49. Poortmans PM, Davis JB, Atamanc F, Bernierd J, Horiote J-C (2005) The quality assurance programme of the radiotherapy group of the European Organisation for Research and Treatment of Cancer: past, present and future. Eur J Surg Oncol 31:667–674PubMedCrossRefGoogle Scholar
  50. Poortmans PMP, Ataman F, Bernard Davis J, Bartelink H, Horiot J-C, Pierart M, Collette L, Van Tienhoven G (2007) Guidelines for target volume definition in post-operative radiotherapy for prostate cancer, on behalf of the EORTC radiation oncology group. Radiother Oncol 82:121–127CrossRefGoogle Scholar
  51. Purdy JA (1996) 3D-radiation treatment planning: a new era. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy and oncology: 3D-conformal radiotherapy: a new era in the irradiation of cancer, vol 29. Karger, Basel, pp 1–16Google Scholar
  52. Purdy JA (2007) From new frontiers to new standards of practice: advances in radiotherapy planning and delivery. In: Meyer JL (ed) Frontiers of radiation therapy and oncology: IMRT, IGRT, SBRT––advances in the treatment planning and delivery of radiotherapy, vol 40. Karger, Basel, pp 18–39Google Scholar
  53. Purdy JA (2008) Quality assurance issues in conducting multi-institutional advanced technology clinical trials. Int J Radiat Oncol Biol Phys 71(1):S66–S70PubMedCrossRefGoogle Scholar
  54. Purdy JA, Harms WB, Michalski J, Cox JD (1996) Multi-institutional clinical trials: 3D-conformal radiotherapy quality assurance. In: Meyer JL, Purdy JA (eds) Frontiers of radiation therapy and oncology: 3D-conformal radiotherapy: a new era in the irradiation of cancer. vol 29. Karger, Basel, pp 255–263Google Scholar
  55. Purdy JA, Harms WB, Michalski JM, Bosch WR (1998) Initial experience with quality assurance of multi-Institutional 3D-radiotherapy clinical trials. Strahlenther Onkol 174(Supplement II):40–42PubMedGoogle Scholar
  56. Purdy JA, Bosch WR, Straube WL, Matthews JW, Haynes RJ, Michalski JM, Martin EM, Winter K, Curran WJ Jr, Cox JD (2006) A review of the activities of the ITC in support of RTOG advanced technology clinical trials (abstract). Int J Radiat Oncol Biol Phys 66(3):S134CrossRefGoogle Scholar
  57. Purdy JA, Poortmans P, Aird E (2011) Clinical trials: quality assurance. In: Pawlicki T, Dunscombe PB, Mundt AJ, Scalliet P (eds) Quality and safety in radiotherapy. Taylor and Francis, New York, pp 197–207Google Scholar
  58. Schinagl DA, Kaanders JH, Oyen WJ (2006) From anatomical to biological target volumes: the role of PET in radiation treatment planning. Cancer Imag 6:S107–S116CrossRefGoogle Scholar
  59. Shchory T, Schifter D, Lichtman R, Neustadter D, Corn BW (2010) Tracking Accuracy of a real-time fiducial tracking system for patient positioning and monitoring in radiation therapy. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  60. Straube W, Matthews J, Bosch W, Purdy JA (2005) DVH analysis: consequences for quality assurance of multi-institutional clinical trials (abstract). Med Phys 32(6):2021CrossRefGoogle Scholar
  61. Straube W, Bosch W, Matthews J, Haynes R, Purdy J (2006) Digital data integrity QA for multi-institutional clinical trials (abstract). Med Phys 33(6):2087CrossRefGoogle Scholar
  62. Swinnen A, Verstraete J, Huyskens DP (2002) The use of a multipurpose phantom for mailed dosimetry checks of therapeutic photon beams: ‘OPERA’ (operational phantom for external radiotherapy audit). Radiother Oncol 64(3):317–326PubMedCrossRefGoogle Scholar
  63. van Mourik AM, Elkhuizen PHM, Minkema D, Duppen JC, van Vliet-Vroegindeweij C (2010) Multiinstitutional study on target volume delineation variation in breast radiotherapy in the presence of guidelines. Radiother Oncol 94(3):286–291PubMedCrossRefGoogle Scholar
  64. van Tienhoven G, van Bree NA, Mijnheer BJ, Bartelink H (1991) Quality assurance of the EORTC trial 22881/10882: “assessment of the role of the booster dose in breast conserving therapy”: the dummy run. EORTC radiotherapy cooperative group. Radiother Oncol 22(4):290–298PubMedCrossRefGoogle Scholar
  65. Villeirs GM, Van Vaerenbergh K, Vakaet L, Bral S, Claus F, De Neve WJ, Verstraete KL, De Meerleer GO (2005) Interobserver delineation variation using CT versus combined CT + MRI in intensity-modulated radiotherapy for prostate cancer. Strahlenther Onkol 181:424–430PubMedCrossRefGoogle Scholar
  66. Webb S (2000) Intensity-modulated radiation therapy. Institute of Physics Publishing, BristolGoogle Scholar
  67. Williams MJ, Bailey MJ, Forstner D, Metcalfe PE (2007) Multicentre quality assurance of intensity modulated radiation therapy plans: a precursor to clinical trials. Australas Radiol 51:472–479PubMedCrossRefGoogle Scholar
  68. Williams MJ, Bailey MJ, Forstner D, Metcalfe PE (2008) Reply: multicentre quality assurance of intensity-modulated radiotherapy planning: beware the bench marker (letter to the editor). J Med Imag Radiat Oncol 52:303CrossRefGoogle Scholar
  69. Williamson JF, Khan FM, Sharma SC (1981) Film dosimetry of megavoltage photon beams: a practical method of isodensity-to-isodose curve conversion. Med Phys 8:94–98PubMedCrossRefGoogle Scholar
  70. Willoughby TR, Kupelian PA, Pouliot J, Shinohara K, Aubin M, Roach Iii M, Skrumeda LL, Balter JM, Litzenberg DW, Hadley SW, Wei JT, Sandler HM (2006) Target localization and real-time tracking using the Calypso 4D-localization system in patients with localized prostate cancer. Int J Radiat Oncol Biol Phys 65(2):528–534PubMedCrossRefGoogle Scholar
  71. Wu DH, Mayr NA, Karatas Y, Karatas R, Adli M, Edwards SM, Wolff JD, Movahed A, Montebello JF, Yuh WTC (2005) Interobserver variation in cervical cancer tumor delineation for image-based radiotherapy planning among and within different specialties. J Appl Clin Med Phys 6(4):106–110PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity of California Davis Medical CenterSacramentoUSA
  2. 2.Department of Radiation OncologyInstitute VerbeetenTilburgThe Netherlands

Personalised recommendations