Advertisement

Clinical Applications of High-Energy Electrons

  • Bruce J. Gerbi
  • Youlia M. Kirova
  • Roberto Orecchia
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

High-energy electron beams have been used successfully in radiation therapy for several decades. Their primary application has been in the treatment of skin and superficial lesions and also play an important role in the treatment of head and neck and breast disease. Many applications where electrons have been used historically have been replaced by the modem techniques of intensity modulated radiation therapy (IMRT) or TomoTherapy but there is still a distinct role for electrons in the treatment of the total skin, other superficial regions, or as a unique boost modality to treat the skin surface while protecting sensitive underlying normal structures.

Keywords

Plan Target Volume Dose Distribution Field Size Electron Field Isodose Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Able CM, Mills MD, McNeese MD, Hogstrom KR (1991) Evaluation of a total scalp electron irradiation technique. Int J Radiat Oncol Biol Phys 21:1063–1072PubMedCrossRefGoogle Scholar
  2. Akazawa C (1989) Treatment of the scalp using photon and electron beams. Med Dosim 14(2):129–131PubMedGoogle Scholar
  3. Al Uwini S, Antonini N, Poortmans PM (2009) The influence of the use of CT-planning on the irradiated boost volume in breast conserving treatment. Radiother Oncol 93:87PubMedCrossRefGoogle Scholar
  4. Almond PR (1976) Radiation physics of electron beams. In: Tapley N (ed) Clinical application of the electron beam. John Wiley, New YorkGoogle Scholar
  5. Almond PR, Biggs PJ, Coursey BM (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847–1870PubMedCrossRefGoogle Scholar
  6. American Association of Physicists in Medicine (1987) American association of physicists in Medicine: report 23. Total skin electron therapy: technique and dosimetry. American Institute of Physics, New YorkGoogle Scholar
  7. American Association of Physicists in Medicine (1991) American association of physicists in Medicine: task group 25 report. Clinical electron beam dosimetry. Med Phys 18:73–109CrossRefGoogle Scholar
  8. Antolak JA, Scrimger JW, Mah E (1992) Optimization of a cord shielding technique for electrons. Australas Phys Eng Sci Med 15:91–94PubMedGoogle Scholar
  9. Antolak JA, Cundiff JH, Ha CS (1998) Utilization of thermoluminescent dosimetry in total skin electron beam radiotherapy of mycosis fungoides. Int J Radiat Oncol Biol Phys 40:101–108PubMedCrossRefGoogle Scholar
  10. Archambeau JO, Forell B, Doria R et al (1981) Use of variable thickness bolus to control electron beam penetration in chest wall irradiation. Int J Radiat Oncol Biol Phys 7:835–842PubMedCrossRefGoogle Scholar
  11. Bartelink H, Horiot JC, Poortmans PM et al (2007) Impact of a higher radiation dose on local control and survival in breast-conserving therapy of early breast cancer: 10-years results of the randomized boost vs no boost EORTC 22881–10882 trial. J Clin Oncol 25:3259–3265PubMedCrossRefGoogle Scholar
  12. Beddar AS, Biggs PJ, Chang S et al (2006) Intraoperative radiation therapy using mobile electron linear accelerators: report of AAPM radiation therapy committee task group no. 72. Med Phys 33:1476–1489PubMedCrossRefGoogle Scholar
  13. Benda RK, Yasuda G, Sethi A et al (2003) Breast boost: Are we missing the target? Cancer 97:905–909PubMedCrossRefGoogle Scholar
  14. Boone ML, Jardine JH, Wright AE, Tapley ND (1967) High-energy electron dose perturbations in regions of tissue heterogeneity. I. In vivo dosimetry. Radiology 88:1136–1145PubMedGoogle Scholar
  15. Boone ML, Almond PR, Wright AE (1969) High-energy electron dose perturbations in regions of tissue heterogeneity. Ann N Y Acad Sci 161:214–232PubMedCrossRefGoogle Scholar
  16. Brahme A, Svensson H (1976) Specification of electron beam quality from the central-axis depth absorbed-dose distribution. Med Phys 3:95–102PubMedCrossRefGoogle Scholar
  17. Chobe R, McNeese M, Weber R, Fletcher GH (1988) Radiation therapy for carcinoma of the nasal vestibule. Otolaryngol Head Neck Surg 98:67–71PubMedGoogle Scholar
  18. Ciocca M, Piazzi V, Lazzari R et al (2006) Real-time in vivo dosimetry using micro-MOSFET detectors during intraoperative electron beam radiation therapy in early-stage breast cancer. Radiother Oncol 78:213–216PubMedCrossRefGoogle Scholar
  19. Coles C, Wilson CB, Cumming J et al. Titanium clip placement to allow accurate tumor bed localization following breast conserving surgery: audit on behalf of the IMPORT trial management group. Eur J Surg Oncol 1).1016/j.ejso.2008.1009.1005Google Scholar
  20. Cuzick J, Stewart H, Rutqvist L et al (1994) Cause-specific mortality in long-term survivors of breast cancer who participated in trials of radiotherapy. J Clin Oncol 12:447–453PubMedGoogle Scholar
  21. Donaldson SS, Findley DO (1991) Treatment of orbital lymphoid tumors with electron beams. In: Vaeth JM, Meyer JL (eds) Frontiers of Radiation Therapy and Oncology Vol 25: The Role of High Energy Electrons in the Treatment of Cancer. Basel: S. Karger AG pp 187–200Google Scholar
  22. Dutreix J (1970) Dosimetry. In: Gil G, Gayarre G (eds) Symposium on high-energy electrons. General Directorate of Health, MadridGoogle Scholar
  23. Duvic M, Apisarnthanarax N, Cohen DS, Smith TL, Ha CS, Kurzrock R (2003) Analysis of long-term outcomes of combined modality therapy for cutaneous T-cell lymphoma. J Am Acad Dermatol 49:35–49PubMedCrossRefGoogle Scholar
  24. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2000) Favourable and unfavourable effects on long-term survival of radiotherapy for early breast cancer: an overview of the randomized trials. Lancet 355:1757–1770CrossRefGoogle Scholar
  25. Early Breast Cancer Trialists Collaborative Group (EBCTCG) (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomized trials. Lancet 366:2087–2106Google Scholar
  26. Ekstrand KE, Dixon RL (1982) The problem of obliquely incident beams in electron-beam treatment planning. Med Phys 9:276–278PubMedCrossRefGoogle Scholar
  27. Ellis RJ, Nag S, Kinsella TJ (2000) Alternative techniques of intraoperative radiotherapy. Eur J Surg Oncol Nov; 26(Suppl A):S25–S27PubMedGoogle Scholar
  28. Feigenberg SJ, Mendenhall NP, Benda RK et al (2003) Postmastectomy radiotherapy: patterns of recurrence and long-term disease control using electrons. Int J Radiat Oncol Biol Phys 56:716–725PubMedCrossRefGoogle Scholar
  29. Fournier-Bidoz N, Kirova Y, Campana F, El Barouky J, Zefkili S, Dendale R, Bollet MA, Mazal A, Fourquet A (2009) Technique alternatives for breast radiation oncology: conventional radiation therapy to Tomotherapy. J Med Phys 34:149PubMedCrossRefGoogle Scholar
  30. Gaffney DK, Prows J, Leavitt DD et al (1997) Electron arc irradiation of the postmastectomy chest wall: clinical results. Radiother Oncol 42:17–24PubMedCrossRefGoogle Scholar
  31. Gaffney DK, Prows J, Leavitt DD et al (2001) Electron arc irradiation of the postmastectomy chest wall: with CT treatment planning: 20-year experience. Int J Radiat Oncol Biol Phys 51:994–1001PubMedCrossRefGoogle Scholar
  32. Gahbauer R, Landberg T, Chavaudra J, Dobbs J et al (2004) Prescribing, recording, and reporting electron beam therapy. J ICRU vol.4Google Scholar
  33. Gebski V, Lagleva M, Keech A, Simes J (2006) Langlands AO: Survival Effects of postmastectomy adjuvant radiation therapy using biologically equivalent doses: a clinical perspective. J Natl Cancer Inst 98:26–38PubMedCrossRefGoogle Scholar
  34. Gerbi BJ, Khan FM, Deibel FC, Kim TH (1989) Total skin electron arc irradiation using a reclined patient position. Int J Radiat Oncol Biol Phys 17(2):397–404PubMedCrossRefGoogle Scholar
  35. Gez E, Ashaf N, Bar-Deroma R et al (2004) Postmastectomy electron beam chest wall irradiation in women with breast cancer. Int J Radiat Oncol Biol Phys 60:1190–1194PubMedCrossRefGoogle Scholar
  36. Giarratano JC, Duerkes RJ, Almond PR (1975) Lead shielding thickness for dose reduction of 7–28MeV electrons. Med Phys 2:336–337PubMedCrossRefGoogle Scholar
  37. Giordano SH, Kuo YF, Freeman JL et al (2005) Risk of cardiac death after adjuvant radiotherapy for breast cancer. J Natl Cancer Inst 97:419–424PubMedCrossRefGoogle Scholar
  38. Graham P, Fourquet A (2006a) Placing the boost in breast-conservation radiotherapy: a review of the role, indications and techniques for breast-boost radiotherapy. Clin Oncol 18:210CrossRefGoogle Scholar
  39. Graham P, Fourquet A (2006b) Placing the boost in breast-conservation radiotherapy: a review of the role, indications and techniques for breast-boost radiotherapy. Clin Oncol 18:210–219CrossRefGoogle Scholar
  40. Hehr T, Budach W, Paulsen F et al (1999) Evaluation of predictive factors for local tumor control after electron-beam-rotation irradiation of the chest wall in locally advanced breast cancer. Radiother Oncol 50:283–289PubMedCrossRefGoogle Scholar
  41. Hogstrom KR (1991) Clinical electron beam dosimetry: basic dosimetry date. In: Purdy JA (ed) Advances in radiation oncology physics: dosimetry, treatment planning, and brachytherapy. American Institute of Physics, Inc, Woodbury, pp 390–429Google Scholar
  42. Hogstrom KR (2004) Electron beam therapy: dosimetry, planning, and techniques. In: Perez CA, Brady LW, Halperin EC, Schmidt-Ullrich RK (eds) Principles and practice of radiation oncology. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  43. Hogstrom KR, Fields RS (1983) Use of CT in electron beam treatment planning: current and future development. In: Ling CC, Rogers CC, Morton RJ (eds) Computed tomography in radiation therapy. Raven, New YorkGoogle Scholar
  44. Hoppe RT (2003) Mycosis fungoides: radiation therapy (review). Dermatol Ther 16:347–354PubMedCrossRefGoogle Scholar
  45. IAEA International Atomic Energy Agency TRS-398 (2000) Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. International Atomic Energy Agency, ViennaGoogle Scholar
  46. International Commission on Radiation Units, Measurements (1984) ICRU Report No. 35: radiation dosimetry: electron beams with energies between 1 and 50 MeV. International Commission on Radiation Units and Measurements, WashingtonGoogle Scholar
  47. International Commission on Radiation Units, Measurements (1993) ICRU Report 50: prescribing, recording and reporting photon beam therapy. International Commission on Radiation Units and Measurements, WashingtonGoogle Scholar
  48. International Commission on Radiation Units, Measurements (1999) ICRU Report 62: prescribing, recording and reporting photon beam therapy (supplement to ICRU Report 50). International Commission on Radiation Units and Measurements, WashingtonGoogle Scholar
  49. Johnson JM, Khan FM (1994) Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 28:741–747PubMedCrossRefGoogle Scholar
  50. Khan FM (1982) Calibration and treatment planning of electron beam arc therapy. In: Paliwal B (ed) Proceedings of the symposium on electron dosimetry and arc therapy. AAPM. American Institute of Physics, New York, p 249Google Scholar
  51. Khan FM (1984) The physics of radiation therapy. Williams & Wilkins, BaltimoreGoogle Scholar
  52. Khan PM (2003) The physics of radiation therapy, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  53. Khan FM (2010) The physics of radiation therapy, 4th edn. Lippincott Williams & Wilkins, BaltimoreGoogle Scholar
  54. Khan FM, Moore VC, Levitt SH (1976) Field shaping in electron beam therapy. Br J Radiol 49:883PubMedCrossRefGoogle Scholar
  55. Khan FM, Fullerton GD, Lee JM, Moore VC, Levitt SH (1977) Physical aspects of electron-beam arc therapy. Radiology 124:497–500PubMedGoogle Scholar
  56. Khan FM, Deibel FC, Soleimani-Meigooni A (1985) Obliquity correction for electron beams. Med Phys 12:749PubMedCrossRefGoogle Scholar
  57. Kirby AM, Yarnold JR, Evans PM et al (2009) Tumor bed delineation for partial breast and breast boost radiotherapy planned in the prone position: what does MRI add to X-ray localiszation of titanium clips in the excision cavity wall? Int J Rad Oncol Biol Phys 74:1276–1282CrossRefGoogle Scholar
  58. Kirova YM, Belembaogo E, Frikha H, Haddad E, Calitchi E, Levy E, Piedbois P, Le Bourgeois JP (1998) Radiotherapy in the management of epidemic Kaposi’s sarcoma: a retrospective study of 643 cases. Radiother Oncol 46:19PubMedCrossRefGoogle Scholar
  59. Kirova YM, Piedbois Y, Haddad E, Levy E, Calitchi E, Marinello G, Le Bourgeois JP (1999a) Radiotherapy in the management of mycosis fungoides: indications, results, prognosis Twenty years experience. Radiother Oncol 51:147PubMedCrossRefGoogle Scholar
  60. Kirova YM, Piedbois Y, Le Bourgeois JP (1999b) Radiotherapy in the management of cutaneous B-cell lymphoma Our experience in 25 cases. Radiother Oncol 52:15PubMedCrossRefGoogle Scholar
  61. Kirova YM, Campana F, Fournier-Bidoz N, Stilhart A, Dendale R, Bollet MA, Fourquet A (2007) Postmastectomy electron beam chest wall irradiation in women with breast cancer: a clinical step toward conformal electron therapy. Int J Radiat Oncol Biol Phys 69:1139–1144PubMedCrossRefGoogle Scholar
  62. Kirova YM, Fournier-Bidoz N, Servois V, Laki F, Pollet GA, Salmon R, Thomas A, Dendale R, Bollet MA, Campana F, Fourquet A (2008) How to boost the breast tumor bed? a multidisciplinary approach in eight steps. Int J Radiat Oncol Biol Phys 72:494PubMedCrossRefGoogle Scholar
  63. Kirova YM, Castro Pena P, Hijal T, Fournier-Bidoz N, Laki F, Sigal-Zafrani B, Dendale R, Bollet MA, Campana F, Fourquet A (2010) Improving the definition of tumor bed boost with the use of surgical clips and image registration in breast cancer patients. Int J Radiat Oncol Biol PhysGoogle Scholar
  64. Klevenhagen SC (1985) Physics of electron beam therapy. Adam Hilger Ltd, BristolGoogle Scholar
  65. Klevenhagen SC, Lambert GD, Arbabi A (1982) Backscattering in electron beam therapy for energies between 3 and 35 MeV. Phys Med Biol 27:363–373PubMedCrossRefGoogle Scholar
  66. Kudchadker RJ, Hogstrom KR, Garden AS, McNeese MD, Boyd RA, Antolak JA (2002) Electron conformal radiotherapy using bolus and intensity modulation. Int J Radiat Oncol Biol Phys 53:1023–1037PubMedCrossRefGoogle Scholar
  67. Kudchadker RJ, Antolak JA, Morrison WH, Wong PF, Hogstrom KR (2003) Utilization of custom electron bolus in head and neck radiotherapy. J Appl Clin Med Phys A4:321–333CrossRefGoogle Scholar
  68. Lambert GD, Klevenhagen SC (1982) Penetration of backscattered electrons in polystyrene for energies between 1 and 25 MeV. Phys Med Biol 27:721–725CrossRefGoogle Scholar
  69. Le Bourgeois JP, Haddad E, Marinello G, Martin L, Mazeron JJ, Ganem G (1986) The indications for total cutaneous electron beam radiation therapy for mycosis fungoides. Int J Radiat Oncol Biol Phys 13:189CrossRefGoogle Scholar
  70. Le Bourgeois JP, Chavaudra J, Eschwege F (1992) Breast cancer in Radiothérapie oncologique, 2nd edn. Paris Hermann ed; pp 237–253Google Scholar
  71. Leavitt DD, Stewart JR, Moeller JH, Earley L (1992) Electron beam arc therapy. In: Purdy JA (ed) Medical physics monograph 19, advances in radiation oncology physics: dosimetry, treatment, planning and brachytherapy. American Institute of Physics Inc, Woodbury, p 430ffGoogle Scholar
  72. Low DA, Starkschall G, Bujnowski SW, Wang LL, Hogstrom KR (1992) Electron bolus design for radiotherapy treatment planning: bolus design algorithms. Med Phys 19:115–124PubMedCrossRefGoogle Scholar
  73. Magee B, Ribeiro GG, Williams P et al (1991) Use of an electron beam for post-mastectomy radiotherapy: 5-year follow-up of 500 cases. Clin Oncol 3:310–314CrossRefGoogle Scholar
  74. Maor MH, Fields RS, Hogstrom KR, van Eys J (1985) Improving the therapeutic ratio of craniospinal irradiation in medulloblastoma. Int J Radiat Oncol Biol Phys 11(4):687–697PubMedCrossRefGoogle Scholar
  75. Maor MH, Hogstrom KR, Fields RS et al (1986) Newer approaches to cerebrospinal irradiation in pediatric brain tumors. In: Brooks BF (ed) Malignant tumors of childhood. The University of Texas Press, Austin, pp 245–254Google Scholar
  76. Marinello G, Le Bourgeois JP (1992) Total skin irradiation. In: Bourgeois JP, Chavaudra J, Eschwege F (eds) Radiothérapie oncologique, 2nd edn. Paris Hermann, Paris, pp 531–537Google Scholar
  77. McNeese MD, Sinesi C (1986) Radiotherapy for eyelid carcinomas. Cancer Bulletin 38:91Google Scholar
  78. Meyer JA, Palta JR, Hogstrom KR (1984) Demonstration of relatively new electron dosimetry measurement techniques on the mevatron 80. Med Phys 11:670–677PubMedCrossRefGoogle Scholar
  79. Nyerick CE, Ochran TG, Boyer AL, Hogstrom KR (1991) Dosimetry characteristics of metallic cones for intraoperative radiotherapy. Int J Radiat Oncol Biol Phys 21:501–510PubMedCrossRefGoogle Scholar
  80. Orecchia R, Veronesi U (2005) Intraoperative electrons. Semin Radiat Oncol 15:76–83PubMedCrossRefGoogle Scholar
  81. Overgaard M, Hansen PS, Overgaard J et al (1997) Postoperative radiotherapy in high-risk premenaupausal women with breast cacer who receive adjuvant chemotherapy. N Engl J Med 337:949–955PubMedCrossRefGoogle Scholar
  82. Overgaard M, Jensen MB, Overgaard J et al (1999) Postoperative radiotherapy in high-risk postmenopausal breast-cancer patients given adjuvant tamoxifen: Danish Breast Cancer Cooperative Group DBCG 82c randomised trial. Lancet 353:1641–1648PubMedCrossRefGoogle Scholar
  83. Palta JR, Biggs PJ, Hazle JD, Huq MS, Dahl RA, Ochran TG, Soen J, Dobelbower RR Jr, McCullough EC (1995) Intraoperative electron beam radiation therapy: technique, dosimetry, and dose specification: report of task force 48 of the radiation therapy committee, American association of physicists in medicine. Int J Radiat Oncol Biol Phys 33:725–746PubMedCrossRefGoogle Scholar
  84. Perez CA, Brady LW (1992) Principles and practice of radiation oncology. 2nd ed. J.B. Lippincott Company, Philadelphia, pp 948–969Google Scholar
  85. Perkins GH, McNeese MD, Antolak JA, Buchholz TA, Strom EA, Hogstrom KR (2001) A custom three-dimensional electron bolus technique for optimization of postmastectomy irradiation. Int J Radiat Oncol Biol Phys 51:1142–1151PubMedCrossRefGoogle Scholar
  86. Pohlit W, Manegold KH (1976) Electron-beam dose distribution in inhomogeneous media. In: Kramer S, Suntharalingam N, Zinnenger GF (eds) High energy photons and electrons. John Wiley, New York, p 243Google Scholar
  87. Purdy JA, Choi MC, Feldman A (1980) Lipowitz metal shielding thickness for dose reduction of 6–20 MeV electrons. Med Phys 7(3):251–253PubMedCrossRefGoogle Scholar
  88. Ragaz J, Jackson SM, Le N et al (1997) Adjuvant radiotherapy and chemotherapy in node-positive premenopausal women with breast cancer. N Engl J Med 337:956–962PubMedCrossRefGoogle Scholar
  89. Roback DM, Johnson JM, Khan FM, Engeler GP, McGuire WA (1997) The use of tertiary collimation for spinal irradiation with extended SSD electron fields. Int J Radiat Oncol Biol Phys 37(5):1187–1192PubMedCrossRefGoogle Scholar
  90. Romestaing P, Lehingue Y, Carrie C et al (1997) Role of a 10-Gy boost in the conservative treatment of early breast cancer: results of a randomized clinical trial in Lyon, France. J Clin Oncol 15:963–968PubMedGoogle Scholar
  91. Rustgi SN (1986) Dose distribution under external eye shields for high energy electrons. Int J Radiat Oncol Biol Phys 12(1):141–144PubMedCrossRefGoogle Scholar
  92. Salguero FJ, Palma B, Arrans R, Rosello J, Leal A (2009) Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Radiother Oncol 93:625–632PubMedCrossRefGoogle Scholar
  93. Sewchand W, Khan FM, Williamson J (1979) Total-body superficial electron-beam therapy using a multiple-field pendulum-arc technique. Radiology 130:493–498PubMedGoogle Scholar
  94. Shiu AS, Tung SS, Gastorf RJ, Hogstrom KR, Morrison WH, Peters LJ (1996) Dosimetric evaluation of lead and tungsten eye shields in electron beam treatment. Int J Radiat Oncol Biol Phys 35:599–604PubMedCrossRefGoogle Scholar
  95. Strydom W, Parker W, Olivares M (2003) Electron beams: physical and clinical aspects. In: Podgorsak EB (ed) Review of radiation oncology physics: a handbook for teachers and students. International Atomic Energy Agency, ViennaGoogle Scholar
  96. Tapley N, du V (1976) Clinical applications of the electron beam. John Wiley, New YorkGoogle Scholar
  97. Tung SS, Shiu AS, Starkschall G, Morrison WH, Hogstrom KR (1993) Dosimetric evaluation of total scalp irradiation using a lateral electron–photon technique. Int J Radiat Oncol Biol Phys 27:153–160PubMedCrossRefGoogle Scholar
  98. Wang CC (1989) Radiotherapeutic management and results of T1N0, T2N0 carcinoma of the oral tongue: evaluation of boost techniques. Int J Radiat Oncol Biol Phys 17:287–291PubMedCrossRefGoogle Scholar
  99. Wang CC (1991) Intraoral cone for carcinoma of the oral cavity. In: Vaeth JM, Meyer JL (eds) Frontiers of radiation therapy and oncology, Vol 25 : the role of high energy electrons in the treatment of cancer. Karger AG, Basel, pp 128–131Google Scholar
  100. Weaver RD, Gerbi BJ, Dusenbery KE (1995) Evaluation of dose variation during total skin electron irradiation using thermoluminescent dosimeters. Int J Radiat Oncol Biol Phys 33:475–478PubMedCrossRefGoogle Scholar
  101. Weaver RD, Gerbi BJ, Dusenbery KE (1998) Evaluation of eye shields made of tungsten and aluminum in high-energy electron beams. Int J Radiat Oncol Biol Phys 41:233–237PubMedCrossRefGoogle Scholar
  102. Whipp EC, Halliwell M (2008) Magnetic resonance imaging appearances in the postoperative breast: the clinical target volume-tumor and its relationship to the chest wall. Int J Rad Oncol Biol Phys 72:49–57CrossRefGoogle Scholar
  103. Wilson CM, Schreiber DP, Russell JD, Hitchcock P (1992) Electron beam versus photon beam radiation therapy for the treatment of orbital lymphoid tumors. Med Dosim 17:161PubMedGoogle Scholar
  104. Wooden KK, Hogstrom KR, Blum P, Gastorf RJ, Cox JD (1996) Whole-limb irradiation of the lower calf using a six-field electron technique. Med Dosim 21:211–218PubMedCrossRefGoogle Scholar
  105. Ysebaert L, Truc G, Dalac S, Lambert D, Petrella T, Barillot I, Naudy S, Horiot JC, Maingon P (2004) Ultimate results of radiation therapy for T1–T2 mycosis fungoides (including reirradiation). Int J Radiat Oncol Biol Phys 58:1128–1134PubMedCrossRefGoogle Scholar
  106. Zhu TC, Das IJ, Bjärngard BE (2001) Characteristics of bremsstrahlung in electron beams. Med Phys 8:352Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bruce J. Gerbi
    • 1
  • Youlia M. Kirova
    • 2
  • Roberto Orecchia
    • 3
  1. 1.Department of Therapeutic Radiology,Radiation OncologyUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Radiation OncologyInstitut CurieParisFrance
  3. 3.Department of Radiation OncologyEuropean Institute of Oncology and University of MilanMilanItaly

Personalised recommendations