Physics of Radiotherapy Planning and Delivery

  • James A. Purdy
  • Philip Poortmans
  • Carlos A. Perez
  • Seymour H. Levitt
Part of the Medical Radiology book series (MEDRAD)


A solid foundation in the physics concepts used in the planning and delivery of the cancer patient’s radiation therapy is one of the fundamental cornerstones for the practice of radiation therapy. The essential concepts are discussed in this chapter, including a brief review of modern treatment machines, basic dosimetry parameters used in treatment planning, monitor unit and dose calculation methods, dose calculation algorithms and correction factors for the effects of patient topography and internal heterogeneities, isodose distributions for various combined fields, peripheral dose, field junctions, field shaping and special considerations including patients with cardiac pacemakers, fetal dose and gonadal dose. These topics are presented in detail suitable for practicing radiation oncologists and physician residents.


Dose Distribution Intensity Modulate Radiation Therapy Field Size Helical Tomotherapy Percentage Depth Dose 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAPM (2001) Report 72: Basic applications of multileaf collimators: report of task group 50 of the radiation therapy committee. Medical Physics Publishing, Madison, WIGoogle Scholar
  2. Abrath FG, Purdy JA (1980) Wedge design and dosimetry for 25 MV X-rays. Radiology 136:757–762PubMedGoogle Scholar
  3. Adler JR, Chang SD, Murphy MJ, Doty J, Geis P, Hancock SL (1997) The CyberKnife: a frameless robotic system for radiosurgery. Stereotact Funct Neurosurg 69:124–128PubMedGoogle Scholar
  4. Adler JR, Murphy MJ, Chang SD, Hancock SL (1999) Image-guided robotic radiosurgery. Neurosurgery 44:1299–1307PubMedGoogle Scholar
  5. Ahnesjö A (1989) Collapsed cone convolution of radiant energy for photon dose calculation in heterogeneous media. Med Phys 16:577–592PubMedGoogle Scholar
  6. Ahnesjö A, Aspradakis MM (1999) Dose calculations for external photon beams in radiotherapy. Phys Med Biol 44:R99–R155PubMedGoogle Scholar
  7. Ahnesjö A, Andreo P, Brahme A (1987) Calculation and application of point spread functions for treatment planning with high energy photon beams. Acta Oncol 26:49–56PubMedGoogle Scholar
  8. Aoyama H, Westerly DC, Mackie TR, Olivera GH, Bentzen SM, Patel RR, Jaradat H, Tome WA, Ritter MA, Mehta MP (2006) Integral radiation dose to normal structures with conformal external beam radiation. Int J Radiat Oncol Biol Phys 64(3):962–967PubMedGoogle Scholar
  9. Batho HF (1964) Lung corrections in Cobalt 60 beam therapy. J Can Assoc Radiol 15:79–83PubMedGoogle Scholar
  10. Beach JL, Mendiondo MS, Mendiondo OA (1987) A comparison of air-cavity inhomogeneity effects for cobalt-60, 6- and 10 MV X-ray beams. Med Phys 14:140PubMedGoogle Scholar
  11. Bentel GC (1996) Radiation therapy planning, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  12. BJR (1996) Central axis depth dose data for use in radiotherapy. Br J Radiol Supplement 25Google Scholar
  13. Boyer AL, Ochran TG, Nyerick CE, Waldron TJ, Huntzinger CJ (1992) Clinical dosimetry for implementation of a multileaf collimator. Med Phys 19(5):1255–1261PubMedGoogle Scholar
  14. Brahme A (1988) Optimization of stationary and moving beam radiation therapy techniques. Radiother Oncol 12:129–140PubMedGoogle Scholar
  15. Caporaso GJ, Mackie TR, Sampayan S, Chen Y-J, Blackfield D, Harris J, Hawkins S, Holmes C, Nelson S, Paul A, Poole B, Rhodes M, Sanders D, Sullivan J, Wang L, Watson J, Reckwerdt PJ, Schmidt R, Pearson D, Flynn RW, Matthews D, Purdy J (2008) A compact linac for intensity modulated proton therapy based on a dielectric wall accelerator. Phys Med 24(2):98–101PubMedGoogle Scholar
  16. Cella L, Lomax A, Miralbell R (2001) Potential role of intensity modulated proton beams in prostate cancer radiotherapy. Int J Radiat Oncol Biol Phys 49(1):217–223PubMedGoogle Scholar
  17. Christopherson D, Courlas GJ, Jette D (1984) Field matching in radiotherapy. Med Phys 3:369Google Scholar
  18. Chui C, Mohan R, Fontanela D (1986) Dose computation for asymmetric fields defined by independent jaws. Med Phys 15:92Google Scholar
  19. Coutrakon G, Bauman M, Lesyna D, Miller D, Nusbaum J, Slater J, Johanning J, Miranda J, Jr DeLuca PM, Siebers J, Ludewigt B (1991) A prototype beam delivery system for the proton medical accelerator at loma linda. Med Phys 18(6):1093–1099PubMedGoogle Scholar
  20. Cundiff JH, Cunningham JR, Golden R, Lanze LJ, Meurk LJ, Ovadia J, Pagelast V, Pope RA, Sampiere VA, Saylor WL, Shalek RJ, Suntharalingham N (1973) A method for the calculation of dose in the radiation treatment of Hodgkin’s disease. Am J Roentgenol 117:30–44Google Scholar
  21. Cunningham JR (1972) Scatter-air ratios. Phys Med Biol 17:42–51PubMedGoogle Scholar
  22. Cygler JE, Daskalov GM, Chan GH, Ding GX (2004) Evaluation of the first commercial monte carlo dose calculation engine for electron beam treatment planning. Med Phys 31(1):142–153PubMedGoogle Scholar
  23. Das IJ, Khan FM (1989) Backscatter dose perturbation at high atomic number interfaces in megavoltage photon beams. Med Phys 16(3):367–375PubMedGoogle Scholar
  24. Das IJ, Kase KR, Meigooni AS, Khan FM, Werner BL (1990) Validity of transition-zone dosimetry at high atomic number interfaces in megavoltage photon beams. Med Phys 17(1):10–16PubMedGoogle Scholar
  25. Das IJ, Desobry GE, McNeeley SW, Cheng EC, Schultheiss TE (1998) Beam characteristics of a retrofitted double-focused multileaf collimator. Med Phys 25(9):1676–1684PubMedGoogle Scholar
  26. Das IJ, Cheng C-W, Watts RJ, Ahnesjo A, Gibbons J, Li XA, Lowenstein J, Mitra RK, Simon WE, Zhu TC (2008a) Accelerator beam data commissioning equipment and procedures: Report of the TG-106 of the Therapy Physics Committee of the AAPM. Med Phys 35(9):4186–4215Google Scholar
  27. Das IJ, Ding GX, Ahnesjo A (2008b) Small fields: nonequilibrium radiation dosimetry. Med Phys 35(1):206–215Google Scholar
  28. Depuydt T, Verellen D, Haas O, Gevaert T, Linthout N, Duchateau M, Tournel K, Reynders T, Leysen K, Hoogeman M, Storme G, Ridder MD (2011) Geometric accuracy of a novel gimbals based radiation therapy tumor tracking system. Radioth and Oncol 98(3):365–372Google Scholar
  29. DesRosiers C, Moskvin V, Bielajew AF, Papiez L (2000) 150–250 MeV electron beams in radiation therapy. Phys Med Biol 45:1781–1805PubMedGoogle Scholar
  30. Du MN, Yu CX, Symons M, Eng C, Yan D, Taylor R, Matter RC, Gustafson G, Martinez A, Wong JW (1995) A multi-leaf collimator prescription preparation system for conventional radiotherapy. Int J Radiat Oncol Biol Phys 32:513–520PubMedGoogle Scholar
  31. Dutreix A, Bjärngard BE, Bridier A, Mijnheer b, Shaw JE, Svensson H (1997) Monitor unit calculation for high energy photon beams. Garant, Leuven-ApeldoornGoogle Scholar
  32. Ellis F, Miller H (1944) The use of wedge filters in deep X-ray therapy. Brit J Radiol 17:90Google Scholar
  33. Emami B, Lyman J, Brown A, Burman C, Coia L, Goitein M, Munzenrider J, Sloan L, Shank B, Wesson M (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedGoogle Scholar
  34. Epp ER, Boyer AL, Doppke KP (1977) Underdosing of lesions resulting from lack of electronic equilibrium in upper respiratory air cavities irradiated by 10 MV X-ray beams. Int J Radiat Oncol Biol Phys 2:613PubMedGoogle Scholar
  35. Fischer JJ, Moulder JE (1975) The steepness of the dose-response curve in radiation therapy. Radiology 117:179–184PubMedGoogle Scholar
  36. Followill D, Geis P, Boyer A (1997a) Errata: estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 39(3):783Google Scholar
  37. Followill D, Geis P, Boyer A (1997b) Estimates of whole-body dose equivalent produced by beam intensity modulated conformal therapy. Int J Radiat Oncol Biol Phys 38(3):667–672Google Scholar
  38. Foo ML, McCullough EC, Foote RL, Pisansky TM, Shaw EG (1993) Doses to radiation sensitive organs and structures located outside the radiotherapeutic target volume for four treatment situations. Int J Radiat Oncol Biol Phys 27:403–405PubMedGoogle Scholar
  39. Forrest LJ, Mackie TR, Ruchala K, Turek M, Kapatoes J, Jaradat H, Hui S, Balog J, Vail DM, Mehta MP (2004) The utility of megavoltage computed tomography images from a helical tomotherapy system for setup verification purposes. Int J Radiat Oncol Biol Phys 60(5):1639–1644PubMedGoogle Scholar
  40. Fraass BA, Tepper JE, Glatstein E, van de Geijn J (1983) Clinical use of a match line wedge for adjacent megavoltage radiation field matching. Int J Radiat Oncol Biol Phys 9:209–216PubMedGoogle Scholar
  41. Fraass BA, Kinsella TJ, Harrington ES, Glatstein E (1985) Peripheral dose to the testes: the design and clinical use of a practical and effective gonadal shield. Int J Radiat Oncol Biol Phys 11(3):609–616PubMedGoogle Scholar
  42. Fraass BA, Smathers J, Deye JA (2003) Summary and recommendations of a National Cancer Intitute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy. Med Phys 30(12):3206–3216PubMedGoogle Scholar
  43. Francois P, Beurtheret C, Dutreix A (1988) Calculation of the dose delivered to organs outside the radiation beams. Med Phys 15(6):879–883PubMedGoogle Scholar
  44. Frank SJ, Forster KM, Stevens CW, Cox JD, Komaki R, Liao Z, Tucker S, Wang X, Steadham RE, Brooks C, Starkschall G (2003) Treatment planning for lung cancer: traditional homogeneous point-dose prescription compared with heterogeneity-corrected dose-volume prescription. Int J Radiat Oncol Biol Phys 56(5):1308–1318PubMedGoogle Scholar
  45. Fuchs T, Szymanowski H, Oelfke U, Glinec Y, Rechatin C, Faure J, Malka V (2009) Treatment planning for laser-accelerated very-high energy electrons. Phys Med Biol 54:3315–3328PubMedGoogle Scholar
  46. Gagnon WF, Horton JL (1979) Physical factors affecting absorbed dose to the skin from cobalt-60 gamma rays and 25 MeV X-rays. Med Phys 6:285PubMedGoogle Scholar
  47. Galvin JM, Smith AR, Lally B (1993a) Characterization of a multileaf collimator system. IJROBP 25:181–192Google Scholar
  48. Galvin JM, Xuan-Gen C, Smith RM (1993b) Combining multileaf fields to modulate fluence distributions. Int J Radiat Oncol Biol Phys 27:697–705Google Scholar
  49. Georg D, Huekelom S, Venselaar J (2001) Formalisms for MU calculations, ESTRO booklet 3 versus NCS report 12. Radiother Oncol 60(3):319–328PubMedGoogle Scholar
  50. Georg D, Nyholm T, Olofsson J, Kjær-Kristoffersen F, Schnekenburger B, Winkler P, Nyström H, Ahnesjö A, Karlsson M (2007) Clinical evaluation of monitor unit software and the application of action levels. Radioth Oncol 85(2):306–315Google Scholar
  51. Georg D, Kragl G, Wetterstedt Sa, McCavana P, McClean B, Knoos T (2010) Photon beam quality variations of a flattening filter free linear accelerator. Med Phys 37(1):49–53PubMedGoogle Scholar
  52. Gerbi BJ, Khan FM (1990) Measurement of dose in the buildup region using fixed-separation plane-parallel ionization chambers. Med Phys 17:17–26PubMedGoogle Scholar
  53. Gerbi BJ, Meigooni A, Khan FM (1987) Dose buildup for obliquely incident photon beams. Med Phys 14:393–399PubMedGoogle Scholar
  54. Gibbons JP (ed) (2000) Monitor unit calculations for external photon and electron beams. Advanced Medical Publishing, Madison, WIGoogle Scholar
  55. Gillin MT, Kline RW (1980) Field separation between lateral and anterior fields on a 6 MV linear accelerator. Int J Radiat Oncol Biol Phys 6:233PubMedGoogle Scholar
  56. Hanson WF, Berkley LW (1980) Off-axis beam quality change in linear accelerator X-ray beams. Med Phys 7(2):145–146PubMedGoogle Scholar
  57. Hanson WF, Berkley LW, Peterson M (1980) Calculative technique to correct for the change in linear accelerator beam energy at off-axis points. Med Phys 7:147PubMedGoogle Scholar
  58. Henning W, Shank C (2010) Accelerators for America’s future. In: Energy U.S.D.o. (ed) Department of energy’s office of scienceGoogle Scholar
  59. Herring DF (1975) The consequences of dose response curves for tumor control and normal tissue injury on the precision necessary in patient management. Laryngos 85:119–125Google Scholar
  60. Herring DF, Compton DMJ (1971) The degree of precision required in radiation dose delivered in cancer radiotherapy. In: Glicksman AJ, Cohen M, Cunningham, JR (eds) Computers in radiotherapy. Br J Radiol Special Report Series No. 5Google Scholar
  61. Holt JD, Laughlin JS, Moroney JP (1970) The extension of the concept of tissue-air (TAR) to high energy X-ray beams. Radiology 96:437PubMedGoogle Scholar
  62. Hounsell AR, Sharrock PJ, Moore CJ, Shaw AJ, Wilkinson JM, Williams PC (1992) Computer-assisted generation of multileaf collimator settings for conformation therapy. Br J Radiol 65:321–326PubMedGoogle Scholar
  63. Hudson F, Coulshed D, D’Souza E, Baker C (2010) Effect of radiation therapy on the latest generation of pacemakers and implantable cardioverter defibrillators: a systematic review. J Med Imaging Radiat Oncol 54(1):53–61. doi: 10.1111/j.1754-9485.2010.02138.x PubMedGoogle Scholar
  64. Hurkmans CW, Scheepers E, Springorum BGF, Uiterwaal H (2005) Influence of radiotherapy on the latest generation of implantable cardioverter-defibrillators. Int J Radiat Oncol Biol Phys 63(1):282PubMedGoogle Scholar
  65. Hurkmans C, Budiharto T, Musat E, Poortmans P, Monti A, Bar-Deroma R, Bernstein Z, van Tienhoven G, Collette L, Davis B, Aird E, Slotman B, Vos P (2008) Staffing and equipment of RT centres; comparing the proposed EORTC guidelines to ESTRO and Dutch guidelines. Radioth and Oncol 88, Suppl 2:S118–S119Google Scholar
  66. ICRU (1987) Report No. 42, Use of computers in external beam radiotherapy procedures with high energy photons and electrons. International commission on radiation units and measurements, Bethesda, MDGoogle Scholar
  67. IMRTCWG (2001) NCI IMRT collaborative working group: intensity modulated radiation therapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51(4):880–914Google Scholar
  68. Islam MK, Purdie TG, Norrlinger BD, Alasti HM, Douglas J, Sharpe MB, Siewerdsen JH, Jaffray DA (2006) Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy. Med Phys 33(6):1573–1582PubMedGoogle Scholar
  69. Jaffray DA, Drake DG, Moreau M, Martinez AA, Wong JW (1999) A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets. Int J Radiat Oncol Biol Phys 45:773–789PubMedGoogle Scholar
  70. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiat Oncol Biol Phys 53(5):1337–1349PubMedGoogle Scholar
  71. Johns HE, Cunningham JR (1983) The physics of radiology, 4th edn. Charles C Thomas, Springfield, ILGoogle Scholar
  72. Johnson JM, Khan FM (1994) Dosimetric effects of abutting extended source to surface distance electron fields with photon fields in the treatment of head and neck cancers. Int J Radiat Oncol Biol Phys 28:741–747PubMedGoogle Scholar
  73. Kamino Y, Takayama K, Kokubo M, Narita Y, Hirai E, Kawawda N, Mizowaki T, Nagata Y, Nishidai T, Hiraoka M (2006) Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head. Int J Radiat Oncol Biol Phys 66(1):271–278PubMedGoogle Scholar
  74. Karzmark CJ, Deubert A, Loevinger R (1965) Tissue-phantom ratios-an aid to treatment planning. Br J Radiol 38:158–159Google Scholar
  75. Karzmark CJ, Nunan CS, Tanabe E (1993) Medical electron accelerators. McGraw-Hill, Inc., New YorkGoogle Scholar
  76. Keys R, Grigsby PW (1990) Gapping fields on sloping surfaces. Int J Radiat Oncol Biol Phys 18:1183–1190PubMedGoogle Scholar
  77. Khan F (1993) Dosimetry of wedged fields with asymmetric collimation. Med Phys 20:1447PubMedGoogle Scholar
  78. Khan FM (1994a) The physics of radiation therapy, 2nd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  79. Khan FM (1994b) The physics of radiation therapy, 3rd edn. Williams & Wilkins, BaltimoreGoogle Scholar
  80. Khan FM (2010) The physics of radiation therapy, 4th edn. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  81. Khan FM, Sewchand W, Lee J, Williamson JF (1980) Revision of tissue-maximum ratio and scatter-maximum ratio concepts for cobalt 60 and higher energy X-ray beams. Med Phys 7:230–237PubMedGoogle Scholar
  82. Kirkby C, Stanescu T, Rathee S, Carlone M, Murray B, Fallone BG (2008) Patient dosimetry for hybrid MRI-radiotherapy systems. Med Phys 35(3):1019–1027PubMedGoogle Scholar
  83. Klein EE, Kuske RR (1993) Changes in photon dosimetry due to breast prosthesis. Int J Radiat Oncol Biol Phys 25(3):541–549PubMedGoogle Scholar
  84. Klein EE, Purdy JA (1993) Entrance and exit dose regions for Clinac-2100C. Int J Radiat Oncol Biol Phys 27:429–435PubMedGoogle Scholar
  85. Klein EE, Rice RK, Mijnheer BJ, Chin LM (1988) Influence of aluminum and bone on dose distributions for photon beams (abstract). Med Phys 15:122Google Scholar
  86. Klein EE, Chin LM, Rice RK, Mijnheer BJ (1993) The influence of air cavities on interface doses for photon beams (abstract). Int J Radiat Oncol Biol Phys 27:419PubMedGoogle Scholar
  87. Klein EE, Taylor M, Michaletz-Lorenz M, Zoeller D, Umfleet W (1994) A mono-isocentric technique for breast and regional nodal therapy using dual asymmetric jaws. Int J Radiat Oncol Biol Phys 28:753–760PubMedGoogle Scholar
  88. Klein EE, Harms WB, Low DA, Willcut V, Purdy JA (1995) Clinical implementation of a commercial multileaf collimator: dosimetry, networking, simulation, and quality assurance. Int J Radiat Oncol Biol Phys 33:1195–1208PubMedGoogle Scholar
  89. Klein EE, Gerber R, Zhu XR, Oehmke F, Purdy JA (1998) Multiple machine implementation of enhanced dynamic wedge. Int J Radiat Oncol Biol Phys 40(4):977–985PubMedGoogle Scholar
  90. Klein EE, Maserang B, Wood R, Mansur D (2006) Peripheral doses from pediatric IMRT. Med Phys 33(7):2525–2531PubMedGoogle Scholar
  91. Kornelsen RO, Young MEJ (1982) Changes in the dose-profile of a 10 MV X-ray beam within and beyond low density material. Med Phys 9:114–116PubMedGoogle Scholar
  92. Kouloulias VE, Poortmans P, Antypas C, Kappas C, Sandilos P (2003) Field flatness and symmetry of photon beams: review of the current recommendations. Technol Health Care 11(4):283–288PubMedGoogle Scholar
  93. Kragl G, af Wetterstedt S, Knäusl B, Lind M, McCavana P, Knöös T, McClean B, Georg D (2009) Dosimetric characteristics of 6 and 10 MV unflattened photon beams. Radioth Oncol 93(1):141–146Google Scholar
  94. Kung JH, Chen GTY, Kuchnir FK (2000) A monitor unit verification calculation in intensity modulated radiotherapy as a dosimetry quality assurance. Med Phys 27(10):2226–2230PubMedGoogle Scholar
  95. Lam WC, Lam KS (1983) Errors in off-axis treatment planning for a 4 MeV machine. Med Phys 10:480–482PubMedGoogle Scholar
  96. Leavitt DD, Gibbs FA Jr (1992) Field shaping. In: Purdy JA (ed) Advances in radiation oncology physics: dosimetry, treatment planning, and brachytherapy. American Institute of Physics, New York, pp 500–523Google Scholar
  97. Leavitt DD, Martin M, Moeller JH, Lee WL (1990) Dynamic wedge field techniques through computer-controlled collimator motion and dose delivery. Med Phys 17:87–91PubMedGoogle Scholar
  98. Leksell L (1968) Cerebral radiosurgery: I Gammathalamotomy in two cases of intractable pain. Acta Chir Scand 134:585–595PubMedGoogle Scholar
  99. Lim MLF (1985) A study of four methods of junction change in the treatment of medulloblastoma. Am Assoc Med Dosim J 10:17–24Google Scholar
  100. Lim MLF (1986) Evolution of medulloblastoma treatment techniques. Am Assoc Med Dosim J 11:25–33Google Scholar
  101. Ling CC, Zhang P, Archambault Y, Bocanek J, Tang G, LoSasso T (2008) Commissioning and quality assurance of RapidArc radiotherapy delivery system. Int J Radiat Oncol Biol Phys 72(2):575–581PubMedGoogle Scholar
  102. Ling CC, Archambault Y, Bocanek J, Zhang P, LoSasso T, Tang G (2009) Scylla and charybdis: longer beam-on time or lesser conformality–the dilemma of tomotherapy. Int J Radiat Oncol Biol Phys 75(1):8–9Google Scholar
  103. Lomax AJ, Cella L, Weber D, Kurtz JM, Miralbell R (2003) Potential role of intensity-modulated photons and protons in the treatment of the breast and regional nodes. Int J Radiat Oncol Biol Phys 55(3):785–792PubMedGoogle Scholar
  104. LoSasso T, Kutcher GJ (1995) Multi-leaf collimation vs. cerrobend blocks: analysis of geometric accuracy. Int J Radiat Oncol Biol Phys 32:499–506PubMedGoogle Scholar
  105. LoSasso T, Chui CS, Kutcher GJ (1993) The use of a multi-leaf collimator for conformal radiotherapy of carcinomas of the prostate and nasopharynx. Int J Radiat Oncol Biol Phys 25:161–170PubMedGoogle Scholar
  106. Lydon JM (1998) Photon dose calculations in homogeneous media for a treatment planning system using a collapsed cone superposition convolution algorithm. Phys Med Biol 43:1813–1822PubMedGoogle Scholar
  107. Mackie TR, Scrimger JW, Battista JJ (1985) A convolution method of calculating dose for 15 MV X-rays. Med Phys 12:188–196PubMedGoogle Scholar
  108. Mackie TR, Holmes T, Swerdloff S, Reckwerdt P, Deasy JO, Yang J, Paliwal B, Kinsella T (1993) Tomotherapy: a new concept for the delivery of dynamic conformal radiotherapy. Med Phys 20(6):1709–1719PubMedGoogle Scholar
  109. Mackie TR, Reckwerdt P, McNutt T, Gehring M, Sanders C (1996) Photon beam dose computations. In: Palta J, Mackie TR (eds) Teletherapy: present and future. Advanced Medical Publishing, College Park, MD, pp 103–136Google Scholar
  110. Marbach JR, Sontag MR, Van Dyk J, Wolbarst AB (1994) Management of radiation oncology patients with implanted cardiac pacemakers: report of AAPM task group no. 34. Med Phys 21(1):85–90PubMedGoogle Scholar
  111. Marks LB, Ten Haken RK, Martel MK (2010) Guest editor’s introduction to QUANTEC: a users guide. Int J Radiat Oncol Biol Phys 76(3, Suppl 1):S1–S2PubMedGoogle Scholar
  112. Marshall M (1993) Three-field isocentric breast irradiation using asymmetric jaws and a tilt board. Radiother Oncol 28:228–232PubMedGoogle Scholar
  113. Mehta M, Hoban P, Mackie TR (2009) Commissioning and quality assurance of RapidArc radiotherapy delivery system: in regard to Ling et al. (Int J Radiat Oncol Biol Phys 2008;72;575-581): absence of data does not constitute proof; the proof is in tasting the pudding. Int J Radiat Oncol Biol Phys 75(1), 4-6 Google Scholar
  114. Mock U, Georg D, Bogner J, Auberger T, Potter R (2004) Treatment planning comparison of conventional, 3D conformal, and intensity-modulated photon (IMRT) and proton therapy for paranasal sinus carcinoma. Int J Radiat Oncol Biol Phys 58(1):147–154PubMedGoogle Scholar
  115. Mouton J, Huag A, Bridier A, Dodinot B, Eschwege F (2002) Influence of high-energy photon beam irradiation on pacemaker operation. Phys Med Biol 47(16):2879–2893PubMedGoogle Scholar
  116. NHLBI: national heart, lung, and blood institute (NHLBI): what is a pacemakerr? (2011a)
  117. NHLBI: national heart, lung, and blood institute (NHLBI): what is an implantable cardioverter defibrillator? (2011b)
  118. Nillson B, Schnell S (1976) Build-up effects at air cavities measured with thin thermoluminescent dosimeters. Acta Radiol Ther, Phys Biol 15:427–432Google Scholar
  119. Niroomand-Rad A, Cumberlin RL (1993) Measured dose to ovaries and testes from Hodgkin’s fields and determination of genetically significant dose. Int J Radiat Oncol Biol Phys 25(4):745–751PubMedGoogle Scholar
  120. Ostwald PM, Kron T, Hamilton CS (1996) Assessment of mucosal underdosing in larynx irradiation. Int J Radiat Oncol Biol Phys 36(1):181–187PubMedGoogle Scholar
  121. Palta JR, Ayyangar KM, Suntharalingam N (1988) Dosimetric characteristics of a 6 MV photon beam from a linear accelerator with asymmetric collimator jaws. Int J Radiat Oncol Biol Phys 14:383–387PubMedGoogle Scholar
  122. Palta JR, Yeung DK, Frouhar V (1996) Dosimetric considerations for a multileaf collimator system. Med Phys 23(7):1219–1224PubMedGoogle Scholar
  123. Papanikolaou N, Battista JJ, Boyer AL, Kappas C, Klein EE, Mackie TR, Sharpe M, Van Dyk J (2004) AAPM report 85: tissue inhomogeneity corrections for megavoltage photon beams. Report of the AAPM radiation therapy committee task group 65Google Scholar
  124. Pawlicki T, Yoo S, Court LE, McMillan SK, Rice RK, Russell JD, Pacyniak JM, Woo MK, Basran PS, Shoales J, Boyer AL (2008) Moving from IMRT QA measurements toward independent computer calculations using control charts. Radioth Oncol 89(3):330–337Google Scholar
  125. Petti PL, Siddon RL (1985) Effective wedge angles with a universal wedge. Phys Med Biol 30(9):985–991PubMedGoogle Scholar
  126. Petti PL, Chuang CF, Smith V, Larson DA (2006) Peripheral doses in CyberKnife radiosurgery. Med Phys 33(6):1770–1779PubMedGoogle Scholar
  127. Podgorsak EB, Metcalfe P, Van Dyk J (1999) Medical accelerators. In: Van Dyk J (ed) The modern technology of radiation oncology. Medical Physics Publishing, Madison, WI, pp 349–435Google Scholar
  128. Powers WE, Kinzie JJ, Demidecki AJ, Bradfield JS, Feldman A (1973) A new system of field shaping for external-beam radiation therapy. Radiology 108:407–411PubMedGoogle Scholar
  129. Powlis WD, Smith AR, Cheng E, Galvin JM, Villari F, Bloch P, Kligerman MM (1993) Initiation of multileaf collimator conformal radiation therapy. Int J Radiat Oncol Biol Phys 25:171–179PubMedGoogle Scholar
  130. Purdy JA (1986) Buildup/surface dose and exit dose measurements for 6 MV linear accelerator. Med Phys 13:259PubMedGoogle Scholar
  131. Purdy JA (2008) Dose to normal tissues outside the radiation therapy patient’s treated volume: a review of different radiation therapy techniques. Health Phys 95(5):666–676PubMedGoogle Scholar
  132. Ramsey CR, Seibert R, Mahan SL, Desai D, Chase D (2006) Out-of-field dosimetry measurements for a helical tomotherapy system. J Appl Clin Med Phys 7(3):1–11PubMedGoogle Scholar
  133. Rao M, Yang W, Chen F, Sheng K, Ye J, Mehta V, Shepard D, Cao D (2010) Comparison of Elekta VMAT with helical tomotherapy and fixed field IMRT: plan quality, delivery efficiency and accuracy. Med Phys 37(3):1350–1359PubMedGoogle Scholar
  134. Rice RK, Mijnheer BJ, Chin LM (1988) Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 15:399–409PubMedGoogle Scholar
  135. Rosenberg I, Chu JC, Saxena V (1995) Calculation of monitor units for a linear accelerator with asymmetric jaws. Med Phys 22:55–61PubMedGoogle Scholar
  136. Rosenow UF, Valentine ES, Davis LW (1990) A technique for treating local breast cancer using a single set-up point and asymmetric collimation. Int J Radiat Oncol Biol Phys 19:183–188PubMedGoogle Scholar
  137. Rustgi SN, Rodgers JE (1985) Improvement in the buildup characteristics of a 10 MV photon beam with electron filters. Phys Med Biol 30:587Google Scholar
  138. Schulz-Ertner D, Jakel O, Schlegel W (2006) Radiation therapy with charged particles. Sem Radiat Oncol 16(4):249–259Google Scholar
  139. Sewchand W, Khan FM, Williamson J (1978) Variations in depth-dose data between open and wedge fields for 4 MV X-rays. Radiology 127:789–792PubMedGoogle Scholar
  140. Sibata CH, Mota HC, Hoggins PD, Gaissen D, Saxton JP, Shin KH (1990) Influence of hip prostheses on high energy photon dose distribution. Int J Radiat Oncol Biol Phys 18:455–461PubMedGoogle Scholar
  141. Siddon RL, Tonnesen GL, Svensson GK (1981) Three-field techniques for breast treatment using a rotatable half-beam block. Int J Radiat Oncol Biol Phys 7:1473–1477PubMedGoogle Scholar
  142. Siebers JV, Keall PJ, Kawrakow I (2005) Monte Carlo dose calculations for external beam radiation therapy. In: Dyk JV (ed) The modern technology of radiation oncology—a compendium for medical physicists and radiation oncologists (volume 2). Medical Physics Publishing, Madison, WI, pp 91–130Google Scholar
  143. Slessinger ED, Gerber RG, Harms WB, Klein EE, Purdy JA (1993) Independent collimator dosimetry for a dual photon energy linear accelerator. Int J Radiat Oncol Biol Phys 27(3):681–687PubMedGoogle Scholar
  144. Sohn JW, Suh JH, Pohar S (1995) A method for delivering accurate and uniform radiation dosages to the head and neck with asymmetric collimators and a single isocenter. Int J Radiat Oncol Biol Phys 32:809–814PubMedGoogle Scholar
  145. Solan AN, Solan MJ, Bednarz G, Goodkin MB (2004) Treatment of patients with cardiac pacemakers and implantable cardioverter-defibrillators during radiotherapy. Int J Radiat Oncol Biol Phys 59(3):897–904PubMedGoogle Scholar
  146. Sontag MR, Cunningham JR (1978) The equivalent tissue-air ratio needed for making absorbed dose calculations in a heterogeneous medium. Radiology 129:787–794PubMedGoogle Scholar
  147. Stern RL, Heaton R, Fraser MW, Goddu SM, Kirby TH, Lam KL, Molineu A, Zhu TC (2011) Verification of monitor unit calculations for non-IMRT clinical radiotherapy: report of AAPM task group 114. Med Phys 38(1):504–530PubMedGoogle Scholar
  148. Stewart J, Jackson A (1975) The steepness of the dose response curve for both tumor cure and normal tissue injury. Laryngoscope 85:1107–1111PubMedGoogle Scholar
  149. Stovall M, Blackwell CR, Cundiff J, Novack DH, Palta JR, Wagner LK, Webster EW, Shalek RJ (1995) Fetal dose from radiotherapy with photon beams: report of AAPM radiation therapy committee task group no. 36. Med Phys 22:63–82PubMedGoogle Scholar
  150. Sundar S, Symonds RP, Deehan C (2005) Radiotherapy to patients with artificial cardiac pacemakers. Cancer Treat Rev 31(6):474–486PubMedGoogle Scholar
  151. Takahaski S (1965) Conformation radiotherapy-rotation techniques as applied to radiography and radiotherapy of cancer. Acta Radiol Suppl 242:1–142Google Scholar
  152. Thatcher M (1984) Perturbation of Cobalt 60 radiation doses by metal objects implanted during oral and maxillofactial surgery. J Oral Maxillofac Surg 42:108–110Google Scholar
  153. van der Giessen PH (1996) A simple and generally applicable method to estimate the peripheral dose in radiation teletherapy with high energy X-rays or gamma radiation. Int J Radiat Oncol Biol Phys 35(5):1059–1068PubMedGoogle Scholar
  154. van der Giessen P-H (2001) Peridose, a software program to calculate the dose outside the primary beam in radiation therapy. Radiother Oncol 58(2):209–213PubMedGoogle Scholar
  155. Van Dyk J, Jenkin RDT, Leung PMK, Cunningham JR (1977) Medulloblastoma: treatment technique and radiation dosimetry. Int J Radiat Oncol Biol Phys 2:993–1005PubMedGoogle Scholar
  156. Verhaegen F, Seuntjens J (2003) Monte Carlo modelling of external radiotherapy photon beams (Topical Review). Phys Med Biol 48(21):R107–R164PubMedGoogle Scholar
  157. Williams P, Hounsell R (2001) X-ray leakage considerations for IMRT (Correspondence). Br J Radiol 74:98–102PubMedGoogle Scholar
  158. Williamson TJ (1979) A technique for matching orthogonal megavoltage fields. Int J Radiat Oncol Biol Phys 5:111PubMedGoogle Scholar
  159. Xu XG, Bednarz B, Paganetti H (2008) A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys Med Biol 53(13):R193–R241PubMedGoogle Scholar
  160. Yang Y, Xing L, Li JG, Palta J, Chen Y, Luxton G, Boyer A (2003) Independent dosimetric calculation with inclusion of head scatter and MLC transmission for IMRT. Med Phys 30(11):2937–2947PubMedGoogle Scholar
  161. Yang J, Li J, Chen L, Price R, McNeeley S, Qin L, Wang L, Xiong W, Ma CM (2005) Dosimetric verification of IMRT treatment planning using Monte Carlo simulations for prostate cancer. Phys Med Biol 50(5):869–878PubMedGoogle Scholar
  162. Young MEJ, Gaylord JD (1970) Experimental tests of corrections for tissue inhomogeneities in radiotherapy. Br J Radiol 43:349–355PubMedGoogle Scholar
  163. Yu CX (1995) Intensity modulated arc therapy with dynamic multileaf collimation: an alternative to tomotherapy. Phys Med Biol 40(9):1435–1449PubMedGoogle Scholar
  164. Yu CX, Tang G (2011) Intensity-modulated arc therapy: principles, technologies and clinical implementation. Phys Med Biol 56(5):R31–R54PubMedGoogle Scholar
  165. Zhu Y, Boyer AL, Desorby GE (1992) Dose distributions of X-ray fields as shaped with multileaf collimators. Phys Med Biol 37:163–173PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • James A. Purdy
    • 1
  • Philip Poortmans
    • 2
  • Carlos A. Perez
    • 3
  • Seymour H. Levitt
    • 4
  1. 1.Department of Radiation OncologyUniversity of California Davis Medical CenterSacramentoUSA
  2. 2.Department of Radiation OncologyInstitute VerbeetenTilburgThe Netherlands
  3. 3.Department of Radiation OncologyMallinckrodt Institute of Radiology, Washington University School of MedicineSt. LouisUSA
  4. 4.Department of Therapeutic Radiation OncologyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations