Advertisement

Molecular Biology and Genetics of Lung Cancer

  • Dusan Milanovic
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

DNA Microarray technology allowed analysis of gene expression profile of lung cancer (NSCLC and SCLC). Better understanding of the molecular and biological basis of this disease has led to the identification of a number of druggable targets. In the last years, targeted therapies with small molecule kinase inhibitors showed promising clinical activity in lung carcinoma but after some period of time development of resistance was common event observed in patients treated with these drugs. There is an urgent need not only to clarify important molecular-biological mechanism that contributes to the development of resistance to molecular targeted therapies but also to identify other important druggable targets which are crucial for development and progression of this disease.

Keywords

Lung Adenocarcinoma Anaplastic Lymphoma Kinase KRAS Mutation EGFR Mutation Anaplastic Lymphoma Kinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Allen TD, Zhu CQ, Jones KD et al (2011) Interaction between MYC and MCL1 in the genesis and outcome of non-small-cell lung cancer. Cancer Res 71:2212–2221PubMedCrossRefGoogle Scholar
  2. Amati B, Brooks MW, Levy N (1993) Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72:233–245PubMedCrossRefGoogle Scholar
  3. Balak MN, Gong Y, Riely GJ et al (2006) Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors. Clin Cancer Res 12:6494–6501PubMedCrossRefGoogle Scholar
  4. Barbie DA, Tamayo P, Boehm JS et al (2009) Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature 2009 462:108–112Google Scholar
  5. Bean J, Riely GJ, Balak M et al (2008) Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res 2008 14(22):7519–7525Google Scholar
  6. Beggs AD, Latchford AR, Vasen HF et al (2010) Peutz–Jeghers syndrome: a systematic review and recommendations for management. Gut 59:975–986PubMedCrossRefGoogle Scholar
  7. Berghmans T, Paesmans M, Mascaux C et al (2006) Thyroid transcription factor 1-a new prognostic factor in lung cancer: a meta-analysis. Ann Oncol 17:1673–1676PubMedCrossRefGoogle Scholar
  8. Birchmeier C, Birchmeier W, Gherardi E et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925PubMedCrossRefGoogle Scholar
  9. Bladt F, Riethmacher D, Isenmann S et al (1995) Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud. Nature 376:768–771PubMedCrossRefGoogle Scholar
  10. Bodner SM, Minna J, Jensen SM et al (1992) Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 7:743–749PubMedGoogle Scholar
  11. Brognard J, Clark AS, Ni Y et al (2001) Akt/protein kinase B is constitutively active in non-small cell lung cancer cells and promotes cellular survival and resistance to chemotherapy and radiation. Cancer Res 61:3986–3997PubMedGoogle Scholar
  12. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419PubMedCrossRefGoogle Scholar
  13. Choi YL, Soda M, Yamashita Y, Ueno T et al (2010) EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 363:1734–1739Google Scholar
  14. Costa DB, Schumer ST, Tenen DG et al (2008) Differential responses to erlotinib in epidermal growth factor receptor (EGFR)-mutated lung cancers with acquired resistance to gefitinib carrying the L747S or T790M secondary mutations. J Clin Oncol 26:1182–1184PubMedCrossRefGoogle Scholar
  15. Davis AC, Wims M, Spotts GD et al (1993) A null c-myc mutation causes lethality before 10.5 days of gestation in homozygotes and reduced fertility in heterozygous female mice. Genes Dev 7:671–682PubMedCrossRefGoogle Scholar
  16. Downward J (2003) Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 3:11–22PubMedCrossRefGoogle Scholar
  17. Engelman JA, Zejnullahu K, Mitsudomi T et al (2007) MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science 316:1039–1043PubMedCrossRefGoogle Scholar
  18. Fulzele SV, Chatterjee A, Shaik MS et al (2006) Inhalation delivery and anti-tumor activity of celecoxib in human orthotopic non-small cell lung cancer xenograft model. Pharm Res: 2094–2106Google Scholar
  19. Gandhi L, Camidge DR, Ribeiro de Oliveira M et al (2011) Phase I study of Navitoclax (ABT-263), a novel Bcl-2 family inhibitor, in patients with small-cell lung cancer and other solid tumors. J Clin Oncol 29:909–916Google Scholar
  20. Garraway LA, Sellers WR (2006) Lineage dependency and lineage-survival oncogenes in human cancer. Nat Rev Cancer 6:593–602PubMedCrossRefGoogle Scholar
  21. Godin-Heymann N, Bryant I, Rivera MN et al (2007) Oncogenic activity of epidermal growth factor receptor kinase mutant alleles is enhanced by the T790M drug resistance mutation. Cancer Res 67:7319–7326PubMedCrossRefGoogle Scholar
  22. Guazzi S, Price M, De Felice M et al (1990) Thyroid nuclear factor 1 (TTF-1) contains a homeodomain and displays a novel DNA binding specificity. EMBO J 9:3631–3639PubMedGoogle Scholar
  23. Hynes NE, Lane HA (2005) ERBB receptors and cancer: the complexity of targeted inhibitors. Nat Rev Cancer 5:341–354PubMedCrossRefGoogle Scholar
  24. Inukai M, Toyooka S, Ito S et al (2006) Presence of epidermal growth factor receptor gene T790M mutation as a minor clone in non-small cell lung cancer. Cancer Res 66:7854–7858PubMedCrossRefGoogle Scholar
  25. Iwakawa R, Kohno T, Kato M et al (2011) MYC amplification as a prognostic marker of early-stage lung adenocarcinoma identified by whole genome copy number analysis. Clin Cancer Res 17:1481–1489PubMedCrossRefGoogle Scholar
  26. Jansen M, Ten Klooster JP, Offerhaus GJ et al (2009) LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89:777–798PubMedCrossRefGoogle Scholar
  27. Ji H, Ramsey MR, Hayes DN, Fan C et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448:807–810PubMedCrossRefGoogle Scholar
  28. Jiang SX, Sato Y, Kuwao S et al (1995) Expression of bcl-2 oncogene protein is prevalent in small cell lung carcinomas. J Pathol 177:135–138PubMedCrossRefGoogle Scholar
  29. Katayama R, Khan TM, Benes C et al (2011) Therapeutic strategies to overcome crizotinib resistance in non-small cell lung cancers harboring the fusion oncogene EML4-ALK. Proc Natl Acad Sci U S A 108:7535–7540PubMedCrossRefGoogle Scholar
  30. Kawano O, Sasaki H, Endo K et al (2006) PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer 54:209–215PubMedCrossRefGoogle Scholar
  31. Kimura S, Hara Y, Pineau T et al (1996) The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 10: 60–69PubMedCrossRefGoogle Scholar
  32. Koch A, Bergman B, Holmberg E et al (2011) Effect of celecoxib on survival in patients with advanced non-small cell lung cancer: a double blind randomised clinical phase III trial (CYCLUS study) by the Swedish Lung Cancer Study Group. Eur J Cancer 47:1546–1555PubMedCrossRefGoogle Scholar
  33. Koivunen JP, Mermel C, Zejnullahu K et al (2008) EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res 14:4275–4283PubMedCrossRefGoogle Scholar
  34. Kosaka T, Yatabe Y, Endoh H et al (2006) Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib. Clin Cancer Res 12(19):5764–5769PubMedCrossRefGoogle Scholar
  35. Kwak EL, Bang YJ, Camidge DR et al (2010) Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 363:1693–1703PubMedCrossRefGoogle Scholar
  36. Kwei KA, Kim YH, Girard L et al (2008) Genomic profiling identifies TITF1 as a lineage-specific oncogene amplified in lung cancer. Oncogene 27:3635–3640PubMedCrossRefGoogle Scholar
  37. Linardou H, Dahabreh IJ, Kanaloupiti D et al (2008) Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced non-small-cell lung cancer and metastatic colorectal cancer. Lancet Oncol 9:962–972PubMedCrossRefGoogle Scholar
  38. Liu B, Neufeld AH (2007) Activation of epidermal growth factor receptors in astrocytes: from development to neural injury. J Neurosci Res 85:3523–3529PubMedCrossRefGoogle Scholar
  39. Loriot Y, Mordant P, Deutsch E (2009) Are RAS mutations predictive markers of resistance to standard chemotherapy? Nat Rev Clin Oncol 6:528–534PubMedCrossRefGoogle Scholar
  40. Ma PC, Jagadeeswaran R, Jagadeesh S et al (2005) Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res 65:1479–1488PubMedCrossRefGoogle Scholar
  41. Ma PC, Tretiakova MS, Nallasura V et al (2007) Downstream signalling and specific inhibition of c-MET/HGF pathway in small cell lung cancer: implications for tumour invasion. Br J Cancer 97:368–377PubMedCrossRefGoogle Scholar
  42. Maina F, Klein R (1999) Hepatocyte growth factor, a versatile signal for developing neurons. Nat Neurosci 2:213–217PubMedCrossRefGoogle Scholar
  43. Martin B, Paesmans M, Berghmans T et al (2003) Role of Bcl-2 as a prognostic factor for survival in lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 89:55–64PubMedCrossRefGoogle Scholar
  44. Mascaux C, Iannino N, Martin B et al (2005) The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer 92:131–139PubMedCrossRefGoogle Scholar
  45. Matlashewski G, Lamb P, Pim D et al (1984) Isolation and characterization of a human p53 cDNA clone: expression of the human p53 gene. EMBO J 3:3257–3262PubMedGoogle Scholar
  46. Matsumoto K, Nakamura T (2001) Hepatocyte growth factor: renotropic role and potential therapeutics for renal diseases. Kidney Int 59:2023–2038PubMedGoogle Scholar
  47. Matsumoto S, Iwakawa R, Takahashi K et al (2007) Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 26(40):5911–5918PubMedCrossRefGoogle Scholar
  48. Mazzone M, Comoglio PM (2006) The Met pathway: master switch and drug target in cancer progression. FASEB J 20(10):1611–1621PubMedCrossRefGoogle Scholar
  49. Meert AP, Martin B, Delmotte P et al (2002) The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J 20:975–981PubMedCrossRefGoogle Scholar
  50. Michalopoulos GK, DeFrances MC (1997) Liver regeneration. Science 276:60–66PubMedCrossRefGoogle Scholar
  51. Millau JF, Bastien N, Drouin R (2008) P53 transcriptional activities: a general overview and some thoughts. Mutat Res 681:118–133PubMedGoogle Scholar
  52. Mok TS, Wu YL, Thongprasert S et al (2009) Gefitinib or carboplatin–paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957PubMedCrossRefGoogle Scholar
  53. Mulloy R, Ferrand A, Kim Y et al (2007) Epidermal growth factor receptor mutants from human lung cancers exhibit enhanced catalytic activity and increased sensitivity to gefitinib. Cancer Res 67(5):2325–2330PubMedCrossRefGoogle Scholar
  54. Nakamura T, Mizuno S, Matsumoto K et al (2000) Myocardial protection from ischemia/reperfusion injury by endogenous and exogenous HGF. J Clin Invest 106:1511–1519PubMedCrossRefGoogle Scholar
  55. Olivier M, Eeles R, Hollstein M et al (2002) The IARC TP53 database: new online mutation analysis and recommendations to users. Hum Mutat 19:607–614PubMedCrossRefGoogle Scholar
  56. Pao W, Miller V, Zakowski M, Doherty J et al (2004) EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A 101(36):13306–13311PubMedCrossRefGoogle Scholar
  57. Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776PubMedCrossRefGoogle Scholar
  58. Pezzella F, Turley H, Kuzu I et al (1993) bcl-2 protein in non-small-cell lung carcinoma. N Engl J Med 329:690–694PubMedCrossRefGoogle Scholar
  59. Pratilas CA, Hanrahan AJ, Halilovic E et al (2008) Genetic predictors of MEK dependence in non-small cell lung cancer. Cancer Res 68:9375–9383PubMedCrossRefGoogle Scholar
  60. Salgia R, Skarin AT (1998) Molecular abnormalities in lung cancer. J Clin Oncol 16:1207–1217PubMedGoogle Scholar
  61. Sanchez-Cespedes M, Parrella P, Esteller M et al (2002) Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 62:3659–3662PubMedGoogle Scholar
  62. Schmidt C, Bladt F, Goedecke S et al (1995) Scatter factor/hepatocyte growth factor is essential for liver development. Nature 373:699–702PubMedCrossRefGoogle Scholar
  63. Shaik MS, Chatterjee A, Jackson T et al (2006) Enhancement of antitumor activity of docetaxel by celecoxib in lung tumors. Int J Cancer 118:396–404PubMedCrossRefGoogle Scholar
  64. Sharma SV, Lee DY, Li B et al (2010) A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141:69–80PubMedCrossRefGoogle Scholar
  65. Shimizu E, Coxon A, Otterson GA et al (1994) RB protein status and clinical correlation from 171 cell lines representing lung cancer, extrapulmonary small cell carcinoma, and mesothelioma. Oncogene 9:2441–2448PubMedGoogle Scholar
  66. Sibilia M, Wagner EF (1995) Strain-dependent epithelial defects in mice lacking the EGF receptor. Science 269:234–238PubMedCrossRefGoogle Scholar
  67. Soda M, Choi YL, Enomoto M, Takada S et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448:561–566PubMedCrossRefGoogle Scholar
  68. Soda M, Takada S, Takeuchi K et al (2008) A mouse model for EML4-ALK-positive lung cancer. Proc Natl Acad Sci U S A 105:19893–19897PubMedCrossRefGoogle Scholar
  69. Sos ML, Koker M, Weir BA et al (2009) PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res 69:3256–3261Google Scholar
  70. Soucek L, Whitfield J, Martins CP et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683Google Scholar
  71. Spigel DR, Ervin TJ, Ramlau R et al (2011) Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol 29:(suppl; abstr 7505)Google Scholar
  72. Sunaga N, Imai H, Shimizu K et al (2011) Oncogenic KRAS-induced interleukin-8 overexpression promotes cell growth and migration and contributes to aggressive phenotypes of non-small cell lung cancer. Int J Cancer (Epub ahead of print: 4 May, 2011)Google Scholar
  73. Talbot SG, Estilo C, Maghami E et al (2005) Gene expression profiling allows distinction between primary and metastatic squamous cell carcinomas in the lung. Cancer Res 65:3063–3071PubMedGoogle Scholar
  74. Tanaka H, Yanagisawa K, Shinjo K et al (2007) Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res 67:6007–6011PubMedCrossRefGoogle Scholar
  75. Vakiani E, Solit DB (2011) KRAS and BRAF: drug targets and predictive biomarkers. J Pathol 223:219–229PubMedCrossRefGoogle Scholar
  76. Vennstrom B, Sheiness D, Zabielski J et al (1982) Isolation and characterization of c-myc, a cellular homolog of the oncogene (v-myc) of avian myelocytomatosis virus strain 29. J Virol 42:773–779PubMedGoogle Scholar
  77. Voortman J, Lee JH, Killian JK et al (2010) Array comparative genomic hybridization-based characterization of genetic alterations in pulmonary neuroendocrine tumors. Proc Natl Acad Sci U S A 107(29):13040–13045PubMedCrossRefGoogle Scholar
  78. Wagner PL, Stiedl AC, Wilbertz T et al (2011) Frequency and clinicopathologic correlates of KRAS amplification in non-small cell lung carcinoma. Lung Cancer (Epub ahead of print: 7 Apr, 2011)Google Scholar
  79. Weir BA, Woo MS, Getz G et al (2007) Characterizing the cancer genome in lung adenocarcinoma. Nature 450: 893–398PubMedCrossRefGoogle Scholar
  80. Winslow MM, Dayton TL, Verhaak RG et al (2011) Suppression of lung adenocarcinoma progression by Nkx2-1. Nature 473:101–104PubMedCrossRefGoogle Scholar
  81. Wistuba I, Behrens C, Virmani AK et al (2000) High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res 60:1949–1960PubMedGoogle Scholar
  82. Wolff H, Saukkonen K, Anttila S et al (1998) Expression of cyclooxygenase-2 in human lung carcinoma. Cancer Res 58:4997–5001PubMedGoogle Scholar
  83. Wong DW, Leung EL, So KK et al (2009) The EML4-ALK fusion gene is involved in various histologic types of lung cancers from nonsmokers with wild-type EGFR and KRAS. Cancer 115(8):1723–1733PubMedCrossRefGoogle Scholar
  84. Wu JY, Wu SG, Yang CH et al (2008) Lung cancer with epidermal growth factor receptor exon 20 mutations is associated with poor gefitinib treatment response. Clin Cancer Res 14:4877–4882PubMedCrossRefGoogle Scholar
  85. Yatabe Y, Mitsudomi T, Takahashi T (2002) TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol 26:767–773PubMedCrossRefGoogle Scholar
  86. Zhao X, Weir BA, LaFramboise T et al (2005) Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res 65:5561–5570PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Radiation OncologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations