Pathology of Lung Cancer

Part of the Medical Radiology book series (MEDRAD)


Over the past decade, the diagnosis, treatment and management of lung cancer has evolved substantially, in large part to the development of novel chemotherapeutic agents and targeted therapy in particular. As such, accurate classification of lung carcinomas from a histologic standpoint has become increasingly critical for appropriate patient management. Much of the focus of lung cancer pathology in the past decade has concentrated on adenocarcinoma. As such, the aim of this chapter will primarily focus on the evolution of this cancer subtype and review the recently published adenocarcinoma classification prepared jointly by the International Association for the Study of Lung Cancer, the American Thoracic Society and the European Respiratory Society. Squamous cell carcinoma will also be discussed, particularly in regard to accurate discrimination from adenocarcinoma. The role of the pathologist in molecular testing will be reviewed, particularly as it relates to specimens obtained from radiologic procedures. Finally, given that the scope of this publication is radiation oncology, the histologic changes and evaluation of tumors which have undergone radiation and/or neo-adjuvant therapy will be discussed.


Epidermal Growth Factor Receptor Epidermal Growth Factor Receptor Mutation Molecular Testing Mucinous Carcinoma Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Amin MB, Tamboli P et al (2002) Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol 26(3):358–364PubMedCrossRefGoogle Scholar
  2. Beasley MB, Brambilla E et al (2005) The 2004 World Health Organization classification of lung tumors. Semin Roentgenol 40(2):90–97PubMedCrossRefGoogle Scholar
  3. Borczuk AC (2009) Micropapillary histology: a frequent morphology of mutation-associated lung adenocarcinoma? Am J Clin Pathol 131(5):615–617PubMedCrossRefGoogle Scholar
  4. Borczuk AC, Qian F et al (2009) Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol 33(3):462–469PubMedCrossRefGoogle Scholar
  5. Brownlee NA, Mott RT et al (2005) Mucinous (colloid) adenocarcinoma of the lung. Arch Pathol Lab Med 129(1):121–122PubMedGoogle Scholar
  6. Camilo R, Capelozzi VL et al (2006) Expression of p63, keratin 5/6, keratin 7, and surfactant-A in non-small cell lung carcinomas. Hum Pathol 37(5):542–546PubMedCrossRefGoogle Scholar
  7. Cohen MH, Gootenberg J et al (2007) FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12(6):713–718PubMedCrossRefGoogle Scholar
  8. Copin MC, Buisine MP et al (2001) Mucinous bronchioloalveolar carcinomas display a specific pattern of mucin gene expression among primary lung adenocarcinomas. Hum Pathol 32(3):274–281PubMedCrossRefGoogle Scholar
  9. Dacic S (2008) EGFR assays in lung cancer. Adv Anat Pathol 15(4):241–247PubMedCrossRefGoogle Scholar
  10. Dacic S, Shuai Y et al (2010) Clinicopathological predictors of EGFR/KRAS mutational status in primary lung adenocarcinomas. Mod Pathol 23(2):159–168PubMedCrossRefGoogle Scholar
  11. Douillard JY, Shepherd FA et al (2010) Molecular predictors of outcome with gefitinib and docetaxel in previously treated non-small-cell lung cancer: data from the randomized phase III INTEREST trial. J Clin Oncol 28(5):744–752PubMedCrossRefGoogle Scholar
  12. Finberg KE, Sequist LV et al (2007) Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn 9(3):320–326PubMedCrossRefGoogle Scholar
  13. Gillespie JW, Best CJ et al (2002) Evaluation of non-formalin tissue fixation for molecular profiling studies. Am J Pathol 160(2):449–457PubMedCrossRefGoogle Scholar
  14. Hata A, Katakami N et al (2010) Frequency of EGFR and KRAS mutations in Japanese patients with lung adenocarcinoma with features of the mucinous subtype of bronchioloalveolar carcinoma. J Thorac Oncol 5(8):1197–1200PubMedCrossRefGoogle Scholar
  15. Hoshi R, Tsuzuku M et al (2004) Micropapillary clusters in early-stage lung adenocarcinomas: a distinct cytologic sign of significantly poor prognosis. Cancer 102(2):81–86PubMedCrossRefGoogle Scholar
  16. Inamura K, Satoh Y et al (2005) Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol 29(5):660–665PubMedCrossRefGoogle Scholar
  17. Junker K, Thomas M et al (1997a) Tumour regression in non-small-cell lung cancer following neoadjuvant therapy. Histological assessment. J Cancer Res Clin Oncol 123(9):469–477CrossRefGoogle Scholar
  18. Junker K, Thomas M et al (1997b) [Regression grading of neoadjuvant non-small-cell lung carcinoma treatment]. Pathologe 18(2):131–140CrossRefGoogle Scholar
  19. Junker K, Langner K et al (2001) Grading of tumor regression in non-small cell lung cancer : morphology and prognosis. Chest 120(5):1584–1591PubMedCrossRefGoogle Scholar
  20. Kamiya K, Hayashi Y et al (2008) Histopathological features and prognostic significance of the micropapillary pattern in lung adenocarcinoma. Mod Pathol 21(8):992–1001PubMedCrossRefGoogle Scholar
  21. Kargi A, Gurel D et al (2007) The diagnostic value of TTF-1, CK 5/6, and p63 immunostaining in classification of lung carcinomas. Appl Immunohistochem Mol Morphol 15(4):415–420PubMedCrossRefGoogle Scholar
  22. Kawakami T, Nabeshima K et al (2007) Micropapillary pattern and grade of stromal invasion in pT1 adenocarcinoma of the lung: usefulness as prognostic factors. Mod Pathol 20(5):514–521PubMedCrossRefGoogle Scholar
  23. Kuroda N, Hamaguchi N et al (2006) Lung adenocarcinoma with a micropapillary pattern: a clinicopathological study of 25 cases. APMIS 114(5):381–385PubMedCrossRefGoogle Scholar
  24. Lim E, Goldstraw P et al (2008) Proceedings of the IASLC International Workshop on Advances in Pulmonary Neuroendocrine Tumors 2007. J Thorac Oncol 3(10):1194–1201PubMedCrossRefGoogle Scholar
  25. Liu-Jarin X, Stoopler MB et al (2003) Histologic assessment of non-small cell lung carcinoma after neoadjuvant therapy. Mod Pathol 16(11):1102–1108PubMedCrossRefGoogle Scholar
  26. Loo PS, Thomas SC et al (2010) Subtyping of undifferentiated non-small cell carcinomas in bronchial biopsy specimens. J Thorac Oncol 5(4):442–447PubMedCrossRefGoogle Scholar
  27. Maemondo M, Inoue A et al (2010) Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 362(25):2380–2388PubMedCrossRefGoogle Scholar
  28. Makimoto Y, Nabeshima K et al (2005) Micropapillary pattern: a distinct pathological marker to subclassify tumours with a significantly poor prognosis within small peripheral lung adenocarcinoma (</=20 mm) with mixed bronchioloalveolar and invasive subtypes (Noguchi’s type C tumours). Histopathology 46(6):677–684PubMedCrossRefGoogle Scholar
  29. Mitsudomi T, Kosaka T et al (2005) Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol 23(11):2513–2520PubMedCrossRefGoogle Scholar
  30. Mitsudomi T, Morita S et al (2010) Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): an open label, randomised phase 3 trial. Lancet Oncol 11(2):121–128PubMedCrossRefGoogle Scholar
  31. Miyoshi T, Satoh Y et al (2003) Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol 27(1):101–109PubMedCrossRefGoogle Scholar
  32. Mok TS, Wu YL et al (2009) Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med 361(10):947–957PubMedCrossRefGoogle Scholar
  33. Nicholson AG, Gonzalez D et al (2010) Refining the diagnosis and EGFR status of non-small cell lung carcinoma in biopsy and cytologic material, using a panel of mucin staining, TTF-1, cytokeratin 5/6, and P63, and EGFR mutation analysis. J Thorac Oncol 5(4):436–441PubMedCrossRefGoogle Scholar
  34. Noguchi M, Morikawa A et al (1995) Small adenocarcinoma of the lung. Histologic characteristics and prognosis. Cancer 75(12):2844–2852PubMedCrossRefGoogle Scholar
  35. Pirker R, Herth FJ et al (2010) Consensus for EGFR mutation testing in non-small cell lung cancer: results from a European workshop. J Thorac Oncol 5(10):1706–1713PubMedCrossRefGoogle Scholar
  36. Rekhtman N, Brandt SM et al (2011) Suitability of thoracic cytology for new therapeutic paradigms in non-small cell lung carcinoma: high accuracy of tumor subtyping and feasibility of EGFR and KRAS molecular testing. J Thorac Oncol 6(3):451–458PubMedCrossRefGoogle Scholar
  37. Rodig SJ, Mino-Kenudson M et al (2009) Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res 15(16):5216–5223PubMedCrossRefGoogle Scholar
  38. Rossi G, Murer B et al (2004) Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol 28(4):442–452PubMedCrossRefGoogle Scholar
  39. Sakurai H, Dobashi Y et al (2004a) Bronchioloalveolar carcinoma of the lung 3 centimeters or less in diameter: a prognostic assessment. Ann Thorac Surg 78(5):1728–1733PubMedCrossRefGoogle Scholar
  40. Sakurai H, Maeshima A et al (2004b) Grade of stromal invasion in small adenocarcinoma of the lung: histopathological minimal invasion and prognosis. Am J Surg Pathol 28(2):198–206PubMedCrossRefGoogle Scholar
  41. Sartori G, Cavazza A et al (2009) EGFR and K-ras mutations along the spectrum of pulmonary epithelial tumors of the lung and elaboration of a combined clinicopathologic and molecular scoring system to predict clinical responsiveness to EGFR inhibitors. Am J Clin Pathol 131(4):478–489PubMedCrossRefGoogle Scholar
  42. Scagliotti GV, Parikh P et al (2008) Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol 26(21):3543–3551PubMedCrossRefGoogle Scholar
  43. Scagliotti G, Hanna N et al (2009a) The differential efficacy of pemetrexed according to NSCLC histology: a review of two Phase III studies. Oncologist 14(3):253–263PubMedCrossRefGoogle Scholar
  44. Scagliotti GV, Park K et al (2009b) Survival without toxicity for cisplatin plus pemetrexed versus cisplatin plus gemcitabine in chemonaive patients with advanced non-small cell lung cancer: a risk-benefit analysis of a large phase III study. Eur J Cancer 45(13):2298–2303PubMedCrossRefGoogle Scholar
  45. Soda M, Choi YL et al (2007) Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 448(7153):561–566PubMedCrossRefGoogle Scholar
  46. Srinivasan M, Sedmak D et al (2002) Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 161(6):1961–1971PubMedCrossRefGoogle Scholar
  47. Suzuki K, Asamura H et al (2002) “Early” peripheral lung cancer: prognostic significance of ground glass opacity on thin-section computed tomographic scan. Ann Thorac Surg 74(5):1635–1639PubMedCrossRefGoogle Scholar
  48. Terry J, Leung S et al (2010) Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol 34(12):1805–1811PubMedCrossRefGoogle Scholar
  49. Travis WD, Brambilla E et al (2004) Pathology and genetics: tumours of the lung, pleura, thymus and heart. IARC, LyonGoogle Scholar
  50. Travis WD, Brambilla E et al (2011) International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol 6(2):244–285PubMedCrossRefGoogle Scholar
  51. Wu M, Wang B et al (2003) p63 and TTF-1 immunostaining. A useful marker panel for distinguishing small cell carcinoma of lung from poorly differentiated squamous cell carcinoma of lung. Am J Clin Pathol 119(5):696–702PubMedCrossRefGoogle Scholar
  52. Yim J, Zhu LC et al (2007) Histologic features are important prognostic indicators in early stages lung adenocarcinomas. Mod Pathol 20(2):233–241PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Mount Sinai Medical CenterNew YorkUSA

Personalised recommendations