Imaging in Radiation Therapy

Part of the Medical Radiology book series (MEDRAD)


Favorable clinical outcomes after radiotherapy are dependent on the technical performance of delivery. As a result, systems have evolved with a dedicated emphasis on the quality with which they can deliver the radiation dose to a specified target. In parallel, imaging systems have advanced at an accelerated pace of innovation bringing outstanding performance in cancer characterization and diagnosis. Hallmarks of quality in diagnostic imaging have focused on distinguishing tissue contrasts for categorization of disease, high throughput, and low radiation exposure. However, as these images are now increasingly integrated in the radiotherapy workflow, it is important to now define what constitutes high-quality imaging for the purpose of radiotherapy guidance.


Positron Emission Tomography Apparent Diffusion Coefficient Standardize Uptake Value Compute Tomography Number Positron Emission Tomography Examination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abouzied MM, Crawford ES, Nabi HA (2005) 18F-FDG imaging: pitfalls and artifacts. J Nucl Med Technol 33:145–155 quiz 162–163PubMedGoogle Scholar
  2. Ahmed M, Schmidt M, Sohaib A, Kong C, Burke K, Richardson C, Usher M, Brennan S, Riddell A, Davies M, Newbold K, Harrington KJ, Nutting CM (2010) The value of magnetic resonance imaging in target volume delineation of base of tongue tumours—a study using flexible surface coils. Radiother Oncol 94(2):161–167PubMedGoogle Scholar
  3. Ares C, Popowski Y, Pampallona S, Nouet P, Dipasquale G, Bieri S, Ozsoy O, Rouzaud M, Khan H, Miralbell R (2009) Hypofractionated boost with high-dose-rate brachytherapy and open magnetic resonance imaging-guided implants for locally aggressive prostate cancer: a sequential dose-escalation pilot study. Int J Radiat Oncol Biol Phys 75(3):656–663PubMedGoogle Scholar
  4. Berger D, Dimopoulos J, Pötter R, Kirisits C (2009) Direct reconstruction of the Vienna applicator on MR images. Radiother Oncol 93(2):347–351 (Epub 2009 Jul 20)PubMedGoogle Scholar
  5. Beriwal S, Kim H, Coon D, Mogus R, Heron DE, Li X, Huq MS (2009) Single magnetic resonance imaging vs magnetic resonance imaging/computed tomography planning in cervical cancer brachytherapy. Clin Oncol (R Coll Radiol) 21(6):483–487 (Epub 2009 May 6)Google Scholar
  6. Bloch F, Hanson WW, Packard M (1946) Nuclear induction. Phys Rev 69:127Google Scholar
  7. Bury T, Corhay JL, Duysinx B, Daenen F, Ghaye B, Barthelemy N, Rigo P, Bartsch P (1999) Value of FDG-PET in detecting residual or recurrent nonsmall cell lung cancer. Eur Respir J 14:1376–1380PubMedGoogle Scholar
  8. Caldwell CB, Mah K, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, Ehrlich LE (2001) Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: the impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51:923–931PubMedGoogle Scholar
  9. Cao Y (2011) The promise of dynamic contrast-enhanced imaging in radiation therapy. Semin Radiat Oncol 21(2):147–156PubMedGoogle Scholar
  10. Chatziioannou AF (2002) PET scanners dedicated to molecular imaging of small animal models. Mol Imaging Biol 4:47–63PubMedGoogle Scholar
  11. Chen L, Price RA, Nguyen T-B, Wang L, Si JS, Qin L, Ding M, Palacia E, Ma C-M, Pollack A (2004) Dosimetric evaluation of MRI-based treatment planning for prostate cancer. Phys Med Biol 49:5157–5170PubMedGoogle Scholar
  12. Constantinou C, Harrington JC et al (1992) An electron density calibration phantom for CT-based treatment planning computers. Med Phys 19(2):325–327PubMedGoogle Scholar
  13. Coolens C, Breen S et al (2009) Implementation and characterization of a 320-slice volumetric CT scanner for simulation in radiation oncology. Med Phys 36(11):5120–5127PubMedGoogle Scholar
  14. Damadian RV (1971) Tumor detection by nuclear magnetic resonance. Science 171:1151–1153PubMedGoogle Scholar
  15. D’Amico A, Cormack R, Kumar S, Tempany CM (2000) Real-time magnetic resonance imaging-guided brachytherapy in the treatment of selected patients with clinically localized prostate cancer. J Endourol 14(4):367–370PubMedGoogle Scholar
  16. Dawson LA, Ménard C (2010) Imaging in radiation oncology: a perspective. Oncologist 15(4):338–349PubMedGoogle Scholar
  17. de Crevoisier R, Tucker SL, Dong L et al (2005) Increased risk of biochemical and local failure in patients with distended rectum on the planning CT for prostate cancer radiotherapy [see comment]. Int J Radiat Oncol Biol Phys 62:965–973PubMedGoogle Scholar
  18. Dimopoulos JC, Kirisits C, Petric P, Georg P, Lang S, Berger D, Pötter R (2006) The Vienna applicator for combined intracavitary and interstitial brachytherapy of cervical cancer: clinical feasibility and preliminary results. Int J Radiat Oncol Biol Phys 66(1):83–90PubMedGoogle Scholar
  19. Doran SJ, Charles-Edwards L, Reinsberg SA, Leach MO (2005) A complete distortion correction for MR images: 1 Gradient warp correction. Phys Med Biol 50(7):1343–1361PubMedGoogle Scholar
  20. Dubois DF, Prestidge BR, Hotchkiss LA, Prete JJ, Bice WS Jr (1998) Intraobserver and interobserver variability of MR imaging- and CT-derived prostate volumes after transperineal interstitial permanent prostate brachytherapy. Radiology 207(3):785–789PubMedGoogle Scholar
  21. Eccles CL, Haider EA, Haider MA, Fung S, Lockwood G, Dawson LA (2009) Change in diffusion weighted MRI during liver cancer radiotherapy: preliminary observations. Acta Oncol 48:1034–1043PubMedGoogle Scholar
  22. Eccles CL, Patel R, Simeonov AK, Lockwood G, Haider M, Dawson LA (2011) Comparison of liver tumor motion with and without abdominal compression using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 79(2):602–608PubMedGoogle Scholar
  23. Emami B, Sethi A, Petruzzelli GJ (2003) Influence of MRI on target volume delineation and IMRT planning in nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 57(2):481–488PubMedGoogle Scholar
  24. Eschmann SM, Friedel G, Paulsen F, Reimold M, Hehr T, Scheiderbauer J, Budach W, Kotzerke J, Bares R (2007) Impact of staging with 18F-FDG-PET on outcome of patients with stage III non-small cell lung cancer: PET identifies potential survivors. Eur J Nucl Med Mol Imaging 34:54–59PubMedGoogle Scholar
  25. Eubank WB (2007) Diagnosis of recurrent and metastatic disease using f-18 fluorodeoxyglucose-positron emission tomography in breast cancer. Radiol Clin North Am 45:659–667PubMedGoogle Scholar
  26. Fabrikant JI, Lyman JT, Frankel KA (1985) Heavy charged-particle Bragg peak radiosurgery for intracranial vascular disorders. Radiat Res Suppl 8:S244–S258Google Scholar
  27. Ford EC, Mageras GS et al (2003) Respiration-correlated spiral CT: a method of measuring respiratory-induced anatomic motion for radiation treatment planning. Med Phys 30(1):88–97PubMedGoogle Scholar
  28. Fraass BA, McShan DL, Diaz RF et al (1987) Integration of magnetic resonance imaging into radiation therapy treatment planning: I. Technical considerations. Int J Radiat Oncol Biol Phys 13(12):1897–1908PubMedGoogle Scholar
  29. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93SPubMedGoogle Scholar
  30. Garroway AN, Grannell PK, Mansfield P (1974) Image formation in NMR by a selective irradiative process. J Phys C Solid State Phys 7:L457–L462Google Scholar
  31. Ghilezan MJ, Jaffray DA, Siewerdsen JH et al (2005) Prostate gland motion assessed with cine-magnetic resonance imaging (cine-MRI). Int J Radiat Oncol Biol Phys 62(2):406–417PubMedGoogle Scholar
  32. Grosu AL, Weber WA, Franz M, Stark S, Piert M, Thamm R, Gumprecht H, Schwaiger M, Molls M, Nieder C (2005) Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 63:511–519PubMedGoogle Scholar
  33. Grosu A, Astner S, Riedel E, Nieder C, Lumenta C, Schwaiger M, Molls M, Wester HJ, Weber W (2010) O-(2-(18F)Fluorethyl)-l-tyrosine and L-(Methyl-11C)-Methionine PET for determination of tumor extension in gliomas and brain metastases. Int J Radiat Oncol Biol PhysGoogle Scholar
  34. Haack S, Nielsen SK, Lindegaard JC, Gelineck J, Tanderup K (2009) Applicator reconstruction in MRI 3D image-based dose planning of brachytherapy for cervical cancer. Radiother Oncol 91(2):187–193 (Epub 2008 Oct 30)PubMedGoogle Scholar
  35. Hamstra DA, Chenevert TL, Moffat BA, Johnson TD, Meyer CR, Mukherji SK, Quint DJ, Gebarski SS, Fan S, Tsien CI, Lawrence TS, Junck L, Rehemtulla A, Ross BD (2005) Evaluation of the functional diffusion map as an early biomarker of time-to-progression and overall survival in high-grade glioma. PNAS 102:16759–16764PubMedGoogle Scholar
  36. Hanvey S, Glegg M, Foster J (2009) Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils. Phys Med Biol 54(18):5381–5394 (Epub 2009 Aug 18)PubMedGoogle Scholar
  37. Hellebust TP, Kirisits C, Berger D, Pérez-Calatayud J, De Brabandere M, De Leeuw A, Dumas I, Hudej R, Lowe G, Wills R, Tanderup K, Gynaecological (GYN) GEC-ESTRO Working Group (2010) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group: considerations and pitfalls in commissioning and applicator reconstruction in 3D image-based treatment planning of cervix cancer brachytherapy. Radiother Oncol 96(2):153–160PubMedGoogle Scholar
  38. Hellwig D, Groschel A, Graeter TP, Hellwig AP, Nestle U, Schafers HJ, Sybrecht GW, Kirsch CM (2006) Diagnostic performance and prognostic impact of FDG-PET in suspected recurrence of surgically treated non-small cell lung cancer. Eur J Nucl Med Mol Imaging 33:13–21PubMedGoogle Scholar
  39. Hellwig D, Baum RP, Kirsch C (2009) FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer: a systematic review. Nuklearmedizin 48:59–69 quiz N8-9PubMedGoogle Scholar
  40. Hermans R, Meijerink M et al (2003) Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 57(5):1351–1356PubMedGoogle Scholar
  41. Hicks RJ, Kalff V, MacManus MP, Ware RE, McKenzie AF, Matthews JP, Ball DL (2001) The utility of 18F-FDG PET for suspected recurrent non-small cell lung cancer after potentially curative therapy: impact on management and prognostic stratification. J Nucl Med 42:1605–1613PubMedGoogle Scholar
  42. Houdek PV, Schwade JG, Medina AJ et al (1989) MR technique for localization and verification procedures in episcleral brachytherapy. Int J Radiat Oncol Biol Phys 17(5):1111–1114PubMedGoogle Scholar
  43. Hounsfield GN (1976) Historical notes on computerized axial tomography. J Can Assoc Radiol 27(3):135–142PubMedGoogle Scholar
  44. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243(1):28–53PubMedGoogle Scholar
  45. Huebner RH, Park KC, Shepherd JE, Schwimmer J, Czernin J, Phelps ME, Gambhir SS (2000) A meta-analysis of the literature for whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41:1177–1189PubMedGoogle Scholar
  46. Huisman HJ, Fütterer JJ, van Lin EN, Welmers A, Scheenen TW, van Dalen JA, Visser AG, Witjes JA, Barentsz JO (2005) Prostate cancer: precision of integrating functional MR imaging with radiation therapy treatment by using fiducial gold markers. Radiology 236(1):311–317PubMedGoogle Scholar
  47. Humm JL, Rosenfeld A, Del Guerra A (2003) From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 30:1574–1597PubMedGoogle Scholar
  48. Jaffray DA, Caroline M, Menard C, Breen S (2010) Image-guided Radiation therapy: emergence of mr-guided radiation treatment (MRgRT) systems. 2010 SPIE ProceedingsGoogle Scholar
  49. Jena R, Price SJ, Baker C et al (2005) Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol (R Coll Radiol) 17(8):581–590Google Scholar
  50. Karlsson M, Karlsson MG, Nyholm T, Amies C, Zackrisson B (2009) Dedicated magnetic resonance imaging in the radiotherapy clinic. Int J Radiat Oncol Biol Phys 74:644–651PubMedGoogle Scholar
  51. Keall PJ, Mageras GS et al (2006) The management of respiratory motion in radiation oncology report of AAPM Task Group 76. Med Phys 33(10):3874–3900PubMedGoogle Scholar
  52. Khoo VS, Adams EJ, Saran F, Bedford JL, Perks JR, Warrington AP, Brada M (2000) A Comparison of clinical target volumes determined by CT and MRI for the radiotherapy planning of base of skull meningiomas. Int J Radiat Oncol Biol Phys 46(5):1309–1317PubMedGoogle Scholar
  53. Kim S, Loevner L, Quon H, Sherman E, Weinstein G, Kilger A, Poptani H (2009a) Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 15:986–994PubMedGoogle Scholar
  54. Kim SH, Lee JM, Hong SH, Kim GH, Lee JY, Han JK, Choi BI (2009b) Locally advanced rectal cancer: added value of diffusion-weighted MR imaging in the evaluation of tumor response to neoadjuvant chemo- and radiation therapy. Radiology 253:116–125PubMedGoogle Scholar
  55. Kirilova A, Lockwood G, Choi P, Bana N, Haider MA, Brock KK, Eccles C, Dawson LA (2008) Three-dimensional motion of liver tumors using cine-magnetic resonance imaging. Int J Radiat Oncol Biol Phys 71(4):1189–1195PubMedGoogle Scholar
  56. Krempien RC, Schubert K, Zierhut D et al (2002) Open low-field magnetic resonance imaging in radiation therapy treatment planning. Int J Radiat Oncol Biol Phys 53(5):1350–1360PubMedGoogle Scholar
  57. Kupelian PA, Willoughby TR, Reddy CA et al (2008) Impact of image guidance on outcomes after external beam radiotherapy for localized prostate cancer. Int J Radiat Oncol Biol Phys 70:1146–1150PubMedGoogle Scholar
  58. Lagendijk JJ et al (2008) MRI/linac integration. Radiother Oncol 86:25–29PubMedGoogle Scholar
  59. Lauterbur PC (1973) Image formation by induced local interactions: examples of employing nuclear magnetic resonance. Nature 242:190–191Google Scholar
  60. Le HQ, Molloi S (2011) Segmentation and quantification of materials with energy discriminating computed tomography: a phantom study. Med Phys 38(1):228–237PubMedGoogle Scholar
  61. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, Koutcher JA (2000) Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 47:551–560PubMedGoogle Scholar
  62. Liu HH, Koch N, Starkschall G et al (2004) Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part II-margin reduction of internal target volume. Int J Radiat Oncol Biol Phys 60(5):1473–1483PubMedGoogle Scholar
  63. Liu T, Xu W, Yan WL, Ye M, Bai YR, Huang G (2007) FDG-PET, CT, MRI for diagnosis of local residual or recurrent nasopharyngeal carcinoma, which one is the best? A systematic review. Radiother Oncol 85:327–335PubMedGoogle Scholar
  64. Liu Y, Bai R, Sun H, Liu H, Zhao X, Li Y (2009) Diffusion-weighted imaging in predicting and monitoring the response of uterine cervical cancer to combined chemoradiation. Clin Radiol 64:1067–1074PubMedGoogle Scholar
  65. Lucignani G, Paganelli G, Bombardieri E (2004) The use of standardized uptake values for assessing FDG uptake with PET in oncology: a clinical perspective. Nucl Med Commun 25:651–656PubMedGoogle Scholar
  66. MacFadden D, Zhang B, Brock KK, Hodaie M, Laperriere N, Schwartz M, Tsao M, Stainsby J, Lockwood G, Mikulis D, Ménard C (2010) Clinical evaluation of stereotactic target localization using 3-Tesla MRI for radiosurgery planning. Int J Radiat Oncol Biol Phys 76(5):1472–1479PubMedGoogle Scholar
  67. MacManus MP, Hicks RJ, Matthews JP, Hogg A, McKenzie AF, Wirth A, Ware RE, Ball DL (2001) High rate of detection of unsuspected distant metastases by pet in apparent stage III non-small-cell lung cancer: implications for radical radiation therapy. Int J Radiat Oncol Biol Phys 50:287–293PubMedGoogle Scholar
  68. MacManus MP, Bayne M, Fimmell N, Reynolds J, Everitt S, Ball D, Pitman A, Ware R, Lau E, RH (2007) Reproducibility of “intelligent” contouring of gross tumor volume in non-small cell lung cancer on PET/CT images using a standardized visual method internat. J Radiat Oncol Biol Phys 69:S154–S155Google Scholar
  69. Mayr NA, Magnotta VA, Ehrhardt JC et al (1996) Usefulness of tumor volumetry by magnetic resonance imaging in assessing response to radiation therapy in carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 35(5):915–924PubMedGoogle Scholar
  70. Mayr NA, Yuh WT, Arnholt JC et al (2000) Pixel analysis of MR perfusion imaging in predicting radiation therapy outcome in cervical cancer. J Magn Reson Imaging 12(6):1027–1033PubMedGoogle Scholar
  71. Ménard C, Susil RC, Choyke P, Gustafson G, Kammerer W, Ning H, Miller RW, Sears UllmanK, Crouse N, Smith S, Lessard E, Pouliot J, Wright V, McVeigh E, Coleman CN, Camphausen K (2004) MRI-guided HDR prostate brachytherapy in a standard 1.5T scanner. Int J Radiat Oncol Biol Phys 59(5):1414–1423PubMedGoogle Scholar
  72. Mijnhout GS, Hoekstra OS, van Tulder MW, Teule GJ, Deville WL (2001) Systematic review of the diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography in melanoma patients. Cancer 91:1530–1542PubMedGoogle Scholar
  73. Miles KA (1991) Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol 64(761):409–412PubMedGoogle Scholar
  74. Milosevic M, Voruganti S, Blend R, Alasti H, Warde P, McLean M, Catton P, Catton C, Gospodarowicz M (1998) Magnetic resonance imaging (MRI) for localization of the prostatic apex: comparison to computed tomography (CT) and urethrography. Radiother Oncol 47(3):277–284PubMedGoogle Scholar
  75. Milot L, Guindi M, Gallinger S, Moulton CA, Brock KK, Dawson LA, Haider MA (2010) MR imaging correlates of intratumoral tissue types within colorectal liver metastases: a high-spatial-resolution fresh ex vivo radiologic-pathologic correlation study. Radiology 254(3):747–754PubMedGoogle Scholar
  76. Mizowaki T, Nagata Y, Okajima K et al (1996) Development of an MR simulator: experimental verification of geometric distortion and clinical application. Radiology 199(3):855–860PubMedGoogle Scholar
  77. Muehllehner G, Karp JS (2006) Positron emission tomography. Phys Med Biol 51:R117–R137PubMedGoogle Scholar
  78. Mutic S, Palta JR et al (2003) Quality assurance for computed-tomography simulators and the computed-tomography-simulation process: report of the AAPM Radiation Therapy Committee Task Group No. 66. Med Phys 30(10):2762–2792PubMedGoogle Scholar
  79. Nestle U, Walter K, Schmidt S, Licht N, Nieder C, Motaref B, Hellwig D, Niewald M, Ukena D, Kirsch CM, Sybrecht GW, Schnabel K (1999) 18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis. Int J Radiat Oncol Biol Phys 44:593–597PubMedGoogle Scholar
  80. Nestle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rübe C, Kirsch CM (2005) Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. J Nucl Med 46:1342–1348PubMedGoogle Scholar
  81. Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25PubMedGoogle Scholar
  82. Nutt R (2002) The history of Positron emission tomography. Mol Imaging Biol 4:11–26PubMedGoogle Scholar
  83. Pan T, Lee TY et al (2004) 4D-CT imaging of a volume influenced by respiratory motion on multi-slice CT. Med Phys 31(2):333–340PubMedGoogle Scholar
  84. Perez-Calatayud J, Kuipers F, Ballester F, Granero D, Richart J, Rodriguez S, Tormo A, Santos M (2009) Exclusive MRI-based tandem and colpostats reconstruction in gynaecological brachytherapy treatment planning. Radiother Oncol 91(2):181–186 Epub 2008 Oct 22PubMedGoogle Scholar
  85. Picchio M, Giovannini E, Crivellaro C, Gianolli L, di Muzio N, Messa C (2010) Clinical evidence on PET/CT for radiation therapy planning in prostate cancer. Radiother Oncol 96:347–350PubMedGoogle Scholar
  86. Pickett B, Kurhanewicz J, Coakley F, Shinohara K, Fein B, Roach M 3rd (2004) Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 60(4):1047–1055PubMedGoogle Scholar
  87. Plathow C, Weber WA (2008) Tumor cell metabolism imaging. J Nucl Med 49(Suppl 2):43S–63SPubMedGoogle Scholar
  88. Plathow C, Ley S, Fink C et al (2004) Analysis of intrathoracic tumor mobility during whole breathing cycle by dynamic MRI. Int J Radiat Oncol Biol Phys 59(4):952–959PubMedGoogle Scholar
  89. Prakash V, Stainsby JA, Satkunasingham J, Craig T, Catton C, Chan P, Dawson L, Hensel J, Jaffray D, Milosevic M, Nichol A, Sussman MS, Lockwood G, Ménard C (2008) Validation of supervised automated algorithm for fast quantitative evaluation of organ motion on magnetic resonance imaging. Int J Radiat Oncol Biol Phys 71(4):1253–1260PubMedGoogle Scholar
  90. Purcell E, Torrey HC, Pound RV (1946) REsonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37–38Google Scholar
  91. Raaymakers BW, Raaijmakers AJ, Kotte AN, Jette D, Lagendijk JJ (2004) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol 49:4109–4118PubMedGoogle Scholar
  92. Ragan DP, He T et al (1993) CT-based simulation with laser patient marking. Med Phys 20(2 Pt 1):379–380PubMedGoogle Scholar
  93. Rasch CR, Steenbakkers RJ, Fitton I, Duppen JC, Nowak PJ, Pameijer FA, Eisbruch A, Kaanders JH, Paulsen F, van Herk M (2010) Decreased 3D observer variation with matched CT-MRI, for target delineation in nasopharynx cancer. Radiat Oncol 5:21PubMedGoogle Scholar
  94. Reinsberg SA, Doran SJ, Charles-Edwards EM, Leach MO (2005) A complete distortion correction for MR images: II. Rectification of static-field inhomogeneities by similarity-based profile mapping. Phys Med Biol 50(11):2651–2661PubMedGoogle Scholar
  95. Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Moller P, Glatting G, Perner S (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254PubMedGoogle Scholar
  96. Rosewall T, Kong V, Vesprini D, Catton C, Chung P, Ménard C, Bayley A (2009) Prostate delineation using CT and MRI for radiotherapy patients with bilateral hip prostheses. Radiother Oncol 90(3):325–330PubMedGoogle Scholar
  97. Ruiz-Hernandez G, Delgado-Bolton RC, Fernandez-Perez C, Lapena-Gutierrez L, Carreras-Delgado JL (2005) Meta-analysis of the diagnostic efficacy of FDG-PET in patients with suspected ovarian cancer recurrence. Rev Esp Med Nucl 24:161–173PubMedGoogle Scholar
  98. Schaefer A, Kremp S, Hellwig D, Rube C, Kirsch CM, UN (2008) Target volumes derived from FDG-PET in lung cancer: phantom measurements for delineation of contours. Eur J Nucl Med (in press)Google Scholar
  99. Shuman WP, Griffin BR, Haynor DR, Johnson JS, Jones DC, Cromwell LD, Moss AA (1985) MR imaging in radiation therapy planning. Work in progress. Radiology 156(1):143–147PubMedGoogle Scholar
  100. Smith WL, Lewis C, Bauman G, Rodrigues G, D’Souza D, Ash R, Ho D, Venkatesan V, Downey D, Fenster A (2007) Prostate volume contouring: a 3D analysis of segmentation using 3DTRUS, CT, and MR. Int J Radiat Oncol Biol Phys 67(4):1238–1247PubMedGoogle Scholar
  101. Song SE, Cho NB, Fischer G, Hata N, Tempany C, Fichtinger G, Iordachita I (2010) Development of a pneumatic robot for mri-guided transperineal prostate biopsy and brachytherapy: new approaches. IEEE Int Conf Robot Autom 2010:2580–2585PubMedGoogle Scholar
  102. Sorensen AG (2006) Magnetic resonance as a cancer imaging biomarker. J Clin Oncol 24(20):3274–3281PubMedGoogle Scholar
  103. Stanescu T, Hans-Sonke J, Wachowicz K, Fallone BG (2010) Investigation of a 3D system distortion correction method in MR images. J Appl Clin Med Phys 11(1):200–216Google Scholar
  104. Steenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp LJ, Comans EF, Uitterhoeve AL, Rodrigus PT, Kramer GW, Bussink J, De Jaeger K, Belderbos JS, Nowak PJ, van Herk M, Rasch CR (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–448PubMedGoogle Scholar
  105. Stoianovici D, Song D, Petrisor D, Ursu D, Mazilu D, Muntener M, Schar M, Patriciu A (2007) “MRI Stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol 16(4):241–248 (Erratum in: Minim Invasive Ther Allied Technol. 2007;16(6):370)PubMedGoogle Scholar
  106. Susil RC, Camphausen K, Choyke P, McVeigh ER, Gustafson GS, Ning H, Miller RW, Atalar E, Coleman CN, Ménard C (2004) System for prostate brachytherapy and biopsy in a standard 1.5 T MRI scanner. Magn Reson Med 52(3):683–687PubMedGoogle Scholar
  107. Ten Haken RK, Thornton AF Jr, Sandler HM, LaVigne ML, Quint DJ, Fraass BA, Kessler ML, McShan DL (1992) A quantitative assessment of the addition of MRI to CT-based, 3-D treatment planning of brain tumors. Radiother Oncol 25(2):121–133PubMedGoogle Scholar
  108. Tofts PS, Kermode AG (1991) Measurement of the blood-brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med 17(2):357–367PubMedGoogle Scholar
  109. Tsien C, Galbán CJ, Chenevert TL, Johnson TD, Hamstra DA, Sundgren PC, Junck L, Meyer CR, Rehemtulla A, Lawrence T, Ross BD (2010) Parametric response map as an imaging biomarker to distinguish progression from pseudoprogression in high-grade glioma. J Clin Oncol 28(13):2293–2299PubMedGoogle Scholar
  110. van den Bosch MR, Moman MR, van Vulpen M, Battermann JJ, Duiveman E, van Schelven LJ, de Leeuw H, Lagendijk JJ, Moerland MA (2010) MRI-guided robotic system for transperineal prostate interventions: proof of principle. Phys Med Biol 55(5):N133–N140PubMedGoogle Scholar
  111. van Lin EN, Fütterer JJ, Heijmink SW, van der Vight LP, Hoffmann AL, van Kollenburg P, Huisman HJ, Scheenen TW, Witjes JA, Leer JW, Barentsz JO, Visser AG (2006) IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 65(1):291–303PubMedGoogle Scholar
  112. Wacker FK, Hillenbrand CM, Duerk JL, Lewin JS (2005) MR-guided endovascular interventions: device visualization, tracking, navigation, clinical applications, and safety aspects. Magn Reson Imaging Clin N Am 13(3):431–439 ReviewPubMedGoogle Scholar
  113. Wang D, Doddrell DM, Cowin G (2004) A novel phantom and method for comprehensive 3-dimensional measurement and correction of geometric distortion in magnetic resonance imaging. Magn Reson Imaging 22(4):529–542PubMedGoogle Scholar
  114. Wang J, Wu N et al (2009) Tumor response in patients with advanced non-small cell lung cancer: perfusion CT evaluation of chemotherapy and radiation therapy. AJR Am J Roentgenol 193(4):1090–1096PubMedGoogle Scholar
  115. Weber WA (2009) Assessing tumor response to therapy. J Nucl Med 50(Suppl 1):1S–10SPubMedGoogle Scholar
  116. Weber WA, Wester HJ, Grosu AL, Herz M, Dzewas B, Feldmann HJ, Molls M, Stocklin G, Schwaiger M (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and L-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549PubMedGoogle Scholar
  117. Weber WA, Grosu AL, Czernin J (2008) Technology Insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol 5:160–170PubMedGoogle Scholar
  118. Webster GJ, Kilgallon JE, Ho KF, Rowbottom CG, Slevin NJ, Mackay RI (2009) A novel imaging technique for fusion of high-quality immobilised MR images of the head and neck with CT scans for radiotherapy target delineation. Br J Radiol 82(978):497–503 (Epub 2009 Feb 16)PubMedGoogle Scholar
  119. Wieler HJ, Coleman RE (2000) PET in clinical oncologyGoogle Scholar
  120. Wienhard K, Wagner R, Heiss WD (1989) PET Grundlagen und Anwendungen der Positronen Emissions TomographieGoogle Scholar
  121. Wills R, Lowe G, Inchley D, Anderson C, Beenstock V, Hoskin P (2010) Applicator reconstruction for HDR cervix treatment planning using images from 0.35 T open MR scanner. Radiother Oncol 94(3):346–352PubMedGoogle Scholar
  122. Wong JW, Sharpe MB et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44(4):911–919PubMedGoogle Scholar
  123. Zahra MA, Hollingsworth KG, Sala E, Lomas DJ, Tan LT (2007) Dynamic contrast-enhanced MRI as a predictor of tumour response to radiotherapy. Lancet Oncol 8(1):63–74PubMedGoogle Scholar
  124. Zelefsky MJ, Yamada Y, Cohen GN et al (2007) Intraoperative real-time planned conformal prostate brachytherapy: Post-implantation dosimetric outcome and clinical implications. Radiother Oncol 84:185–189PubMedGoogle Scholar
  125. Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, Kraus S, Turnbull L (2008) Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJUI 103:883–888Google Scholar
  126. Zhang B, MacFadden D, Damyanovich AZ, Rieker M, Stainsby J, Bernstein M, Jaffray DA, Mikulis D, Ménard C (2010) Development of a geometrically accurate imaging protocol at 3 Tesla MRI for stereotactic radiosurgery treatment planning. Phys Med Biol 55(22):6601–6615PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Princess Margaret Hospital, University of TorontoTorontoCanada
  2. 2.University Hospital FreiburgFreiburg im BreisgauGermany

Personalised recommendations