3D Radiation Treatment Planning and Execution

  • Mary K. Martel
Part of the Medical Radiology book series (MEDRAD)


Technological advances have become commercially available and widely implemented. In particular, 3D conformal therapy has become the first step in improving the targeting of dose to the tumor while sparing dose to normal tissue. The treatment planning process including beam design, treatment planning objectives, and dose calculation issues for 3D radiation treatment planning will be reviewed. Topics such as target volume definition, use of imaging, set-up uncertainties, respiration control, and normal tissue tolerance are briefly introduced.


Target Volume Planning Target Volume Dose Distribution Intensity Modulate Radiation Therapy Gross Tumor Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Armstrong JG (1998) Target volume definition for three-dimensional conformal radiation therapy of lung cancer. Br J Radiol 71:587–594PubMedGoogle Scholar
  2. Armstrong JG, Zelefsky MJ, Leibel SA et al (1995) Strategy for dose escalation using 3-dimensional conformal radiation therapy for lung cancer. Ann Oncol 6:693–697PubMedGoogle Scholar
  3. Armstrong J, Raben A, Zelefsky M et al (1997) Promising survival with three-dimensional conformal radiation therapy for non-small cell lung cancer. Radioth Oncol 44:17–22CrossRefGoogle Scholar
  4. Belderbos JS, De Jaeger K, Heemsbergen WD et al (2003) First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy. Radiother Oncol 66:119–126PubMedCrossRefGoogle Scholar
  5. Bentzen SM, Constine LS, Deasy JO et al (2010) Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys 76:S3–S9PubMedCrossRefGoogle Scholar
  6. Bowden P, Fisher R, Mac Manus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573PubMedCrossRefGoogle Scholar
  7. Chetty IJ, Charland PM, Tyagi N et al (2003) Photon beam relative dose validation of the DPM Monte Carlo code in lung-equivalent media. Med Phys 30:563–573PubMedCrossRefGoogle Scholar
  8. Cox JD, Azarnia N, Byhardt RW et al (1990) A randomized phase I/II trial of hyperfractionated radiation therapy with total doses of 60.0 Gy to 79.2 Gy: possible survival benefit with greater than or equal to 69.6 Gy in favorable patients with Radiation Therapy Oncology Group stage III non-small-cell lung carcinoma: report of Radiation Therapy Oncology Group 83-11. J Clin Oncol 8:1543–1555PubMedGoogle Scholar
  9. De Jaeger K, Hoogeman MS, Engelsman M et al (2003) Incorporating an improved dose-calculation algorithm in conformal radiotherapy of lung cancer: re-evaluation of dose in normal lung tissue. Radiother Oncol 69:691–710Google Scholar
  10. Ekstrand KE, Barnes WH (1990) Pitfalls in the use of high energy X rays to treat tumors in the lung. Int J Radiat Oncol Biol Phys 18:249–252PubMedCrossRefGoogle Scholar
  11. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122PubMedCrossRefGoogle Scholar
  12. Fowler JF, Chaell R (2000) Non small cell lung tumors repopulate rapidly during radiation therapy. Int J Radiat Oncol Biol Phys 46:516–517PubMedCrossRefGoogle Scholar
  13. Giraud P, Antoine M, Larrouy A (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48:1015–1024PubMedCrossRefGoogle Scholar
  14. Graham MV, Purdy JA, Emami B et al (1995) Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 33:993–1000PubMedCrossRefGoogle Scholar
  15. Graham MV, Purdy JA, Emami BE et al (1999) Clinical dose volume histogram analysis for pneumonitis after 3D treatment for non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 45:323–329PubMedCrossRefGoogle Scholar
  16. Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890PubMedCrossRefGoogle Scholar
  17. Harris KM, Adams H, Lloyd DCF et al (1993) The effect of apparent size of simulated pulmonary nodules of using three standard CT window settings. Clin Radiol 47:241–244PubMedCrossRefGoogle Scholar
  18. Hayman JA, Martel MK, Ten Haken RK et al (2001) Dose escalation in non-small-cell lung cancer using three-dimensional conformal radiation therapy: update of a phase I trial. J Clin Oncol 19:127–136PubMedGoogle Scholar
  19. Hazuka MB, Turrisi AT 3rd, Lutz ST et al (1993) Results of high-dose thoracic irradiation incorporating beam’s eye view display in non-small cell lung cancer: a retrospective multivariate analysis. Int J Radiat Oncol Biol Phys 27:273–284PubMedCrossRefGoogle Scholar
  20. ICRU (1993) Prescribing, recording and reporting photon beam therapy, Report 50, ICRU Press, BethesdaGoogle Scholar
  21. ICRU (1999) Prescribing, recording and reporting photon beam therapy (Su lement to ICRU Report 50) ICRU Press, BethesdaGoogle Scholar
  22. Klein EE, Morrison A, Purdy JA et al (1997) A volumetric study of measurements and calculations of lung density corrections for 6 and 18 MV photons. Int J Radiat Oncol Biol Phys 37:1163–1170PubMedCrossRefGoogle Scholar
  23. Kong FM, Hayman JA, Griffith KA et al (2006) Final toxicity results of a radiation-dose escalation study in patients with non-small-cell lung cancer (NSCLC): predictors for radiation pneumonitis and fibrosis. Int J Radiat Oncol Biol Phys 65:1075–1086PubMedCrossRefGoogle Scholar
  24. Kubo HD, Len PM, Minohara S et al (2000) Breathing-synchronized radiotherapy program at the University of California Davis Cancer Center. Med Phys 27:346–353PubMedCrossRefGoogle Scholar
  25. Kwa SL, Lebesque JV, Theuws JC et al (1998) Radiation pneumonitis as a function of mean lung dose: an analysis of pooled data of 540 patients. Int J Radiat Oncol Biol Phys 42:1–9PubMedCrossRefGoogle Scholar
  26. Mackie TR, el-Khatib E, Battista J et al (1985) Lung dose corrections for 6 and 15 MV X rays. Med Phys 12:327–332PubMedCrossRefGoogle Scholar
  27. Marks LB, Munley MT, Bentel GC et al (1997) Physical and biological predictors of changes in whole-lung function following thoracic irradiation. Int J Radiat Oncol Biol Phys 39:563–570PubMedCrossRefGoogle Scholar
  28. Martel MK, Ten Haken RK, Hazuka MB et al (1994) Dose-volume histogram and 3-D treatment planning evaluation of patients with pneumonitis. Int J Radiat Oncol Biol Phys 28:575–581PubMedCrossRefGoogle Scholar
  29. Martel MK, Ten Haken RK, Hazuka MB et al (1999) Estimation of tumor control probability model parameters from 3-D dose distributions of non-small cell lung cancer patients. Lung Cancer 24:31–37PubMedCrossRefGoogle Scholar
  30. McShan DL, Fraass BA, Lichter AS (1990) Full integration of the beam’s eye view concept into computerized treatment planning. Int J Radiat Oncol Biol Phys 18:1485–1494PubMedCrossRefGoogle Scholar
  31. Mehta M, Scrimger R, Mackie R et al (2001) A new approach to dose escalation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 49:23–33PubMedCrossRefGoogle Scholar
  32. Narayan S, Henning GT, Ten Haken RK et al (2004) Results following treatment to dose of 92.4 or 102.9 Gy on a phase I dose escalation study for non-small cell lung cancer. Lung Cancer 44:79–88PubMedCrossRefGoogle Scholar
  33. Oetzel D, Schraube P, Hensley F et al (1995) Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Int J Radiat Oncol Biol Phys 33:455–460PubMedCrossRefGoogle Scholar
  34. Pelizzari CA (1998) Image processing in stereotactic planning: volume visualization and image registration. Med Dosim 23:137–145PubMedCrossRefGoogle Scholar
  35. Radiation Therapy Oncology Group RTOG 93-11 (1993) A phase I/II dose escalation study using three dimensional conformal radiation therapy in patients with inoperable nonsmall cell lung cancer web page:
  36. Rice RK, Mijnheer BJ, Chin LM (1988) Benchmark measurements for lung dose corrections for X-ray beams. Int J Radiat Oncol Biol Phys 15:399–409PubMedCrossRefGoogle Scholar
  37. Robertson JM, Ten Haken RK, Hazuka MB et al (1997) Dose escalation for non-small cell lung cancer using conformal radiation therapy. Int J Radiat Oncol Biol Phys 37:1079–1085PubMedCrossRefGoogle Scholar
  38. Rosenzweig KE, Mychalczak B, Fuks Z et al (2000) Final report of the 70.2 and 75.6 Gy dose levels of a phase I dose escalation study using three-dimensional conformal radiotherapy in the treatment of inoperable non-small cell lung cancer. Cancer J 6:82–87PubMedGoogle Scholar
  39. Senan S, de Koste J, Samson M et al (1999) Evaluation of a target contouring protocol for 3D conformal radiotherapy in non-small cell lung cancer. Radiother Oncol 53:247–255PubMedCrossRefGoogle Scholar
  40. Senan S, De Ruysscher D, Giraud P et al (2004) Literature-based recommendations for treatment planning and execution in high dose radiotherapy for lung cancer. Radiother Oncol 71:139–146PubMedCrossRefGoogle Scholar
  41. Sepenwoolde Y, Lebesque JV, de Jaeger K et al (2003) Comparing different NTCP models that predict the incidence of radiation pneumonitis. Normal tissue complication probability. Int J Radiat Oncol Biol 55:724–735CrossRefGoogle Scholar
  42. Sibley GS, Mundt AJ, Shapiro C et al (1995) The treatment of stage III nonsmall cell lung cancer using high dose conformal radiotherapy. Int J Radiat Oncol Biol Phys 33:1001–1007PubMedCrossRefGoogle Scholar
  43. Ten Haken RK, Martel MK, Kessler ML et al (1993) Use of Veff and iso-NTCP in the implementation of dose escalation protocols. Int J Radiat Oncol Biol Phys 27:689–695PubMedCrossRefGoogle Scholar
  44. Timmerman R, Papiez L, McGarry R et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955PubMedCrossRefGoogle Scholar
  45. Wang L, Yorke E, Chui CS (2002) Monte Carlo evaluation of 6 MV intensity modulated radiotherapy plans for head and neck and lung treatments. Med Phys 29:2705–2717PubMedCrossRefGoogle Scholar
  46. Wong JW, Sharpe MB, Jaffray DA et al (1999) The use of active breathing control (ABC) to reduce margin for breathing motion. Int J Radiat Oncol Biol Phys 44:911–919PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Department of Radiation PhysicsDivision of Radiation Oncology, University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations