Total Body Irradiation Conditioning Regimens in Stem Cell Transplantation

Part of the Medical Radiology book series (MEDRAD)


Total body irradiation (TBI) is often used in the preparative regimens of stem cell transplants. The goal of TBI is to administer a specific dose of irradiation to the entire body. Technically this is complicated by limitations in field sizes obtainable on a linear accelerator and the resultant need to treat at extended distances. Variations in patient thickness and decreased attenuation through the lung are additional technical challenges. This chapter describes the techniques in use at the University of Minnesota for accomplishing TBI.


Stem Cell Transplantation Conditioning Regimen Total Body Irradiation Lung Dose Isodose Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. AAPM, American Association of Physicists in Medicine (task Group 2) (1986) The physical aspects of total and half body photon irradiation. AAPM Report no 17Google Scholar
  2. Abraham R et al (1999) Intensification of the stem cell transplant induction regimen results in increased treatment-related mortality without improved outcome in multiple myeloma. Bone Marrow Transpl 24:1291–1297CrossRefGoogle Scholar
  3. Almond PR et al (1999) AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams. Med Phys 26:1847PubMedCrossRefGoogle Scholar
  4. Aristei C et al (2002) Cataracts in patients receiving stem cell transplantation after conditioning with total body irradiation. Bone Marrow Transpl 29:503–507CrossRefGoogle Scholar
  5. Auner HW et al (2002) Infectious complications after autologous hematopoietic stem cell transplantation: comparison of patients with acute myeloid leukemia, malignant lymphoma, and multiple myeloma. Ann Hematol 81:374–377PubMedCrossRefGoogle Scholar
  6. Beavis AW (2004) Is tomotherapy the future of IMRT? Br J Radiol 77:285–295PubMedCrossRefGoogle Scholar
  7. Bhatia S et al (1996) Malignant neoplasms following bone marrow transplantation. Blood 87:3633–3639PubMedGoogle Scholar
  8. Borini A, Suriano R, Barberi M, Dal Prato L, Bulletti C (2011) Oocyte donation programs: strategy for improving results. Ann N Y Acad Sci 1221:27–31.  doi: 10.1111/j.1749-6632.2010.05934.x Google Scholar
  9. Cardozo BL et al (1985) Lung damage following bone marrow transplantation: I. the contribution of irradiation. Int J Radiat Oncol Biol Phys 11:907–914PubMedCrossRefGoogle Scholar
  10. Carlson K et al (1994) Pulmonary function and complications subsequent to autologous bone marrow transplantation. Bone Marrow Transpl 14:805–811Google Scholar
  11. Carruthers SA, Wallington MM (2004) Total body irradiation and pneumonitis risk: a review of outcomes. Br J Cancer 90:2080–2084PubMedGoogle Scholar
  12. Cobo A, Meseguer M, Remohí J, Pellicer A (2010) Use of cryo-banked oocytes in an ovum donation programme: a prospective, randomized, controlled, clinical trial. Hum Reprod 25(9):2239–2246 [Epub ahead of print: 30 June 2010]Google Scholar
  13. Cole CH et al (1994) Intensive conditioning regimen for bone marrow transplantation in children with high-risk haematological malignancies. Med Pediatr Oncol 23:464–469PubMedCrossRefGoogle Scholar
  14. Colombat P et al (2000) Value of autologous stem cell transplantation with purged bone marrow as first-line therapy for follicular lymphoma with high tumor burden: a GOELAMS phase II study. Bone Marrow Transpl 26:971–977CrossRefGoogle Scholar
  15. Confer D, Robinett P (2008) The US National Marrow Donor Program role in unrelated donor hematopoietic cell transplantation. Bone Marrow Transpl 42(Suppl 1):S3–S5CrossRefGoogle Scholar
  16. Cowen D et al (1992) Regimen-related toxicity in patients undergoing BMT with total body irradiation using a sweeping beam technique. Bone Marrow Transpl 10:515–519Google Scholar
  17. Curtis RE, Rowlings PA, Deeg HJ, Shriner DA, Socie G, Travis LB, Horowitz MM, Witherspoon RP, Hoover RN, Sobocinski KA, Fraumeni JF Jr, Boice JD Jr (1997) Solid cancers after bone marrow transplantation. N Engl J Med 336(13):897–904PubMedCrossRefGoogle Scholar
  18. Dusenbery KE et al (1996) Autologous bone marrow transplantation in acute myeloid leukemia: the University of Minnesota experience. Int J Radiat Oncol Biol Phys 36:335–343PubMedCrossRefGoogle Scholar
  19. Emmanouilides C et al (2003) Localized radiation increases morbidity and mortality after TBI-containing autologous stem cell transplantation in patients with lymphoma. Bone Marrow Transpl 32:863–867CrossRefGoogle Scholar
  20. Emminger W et al (1991) Is treatment intensification by adding etoposide and carboplatin to fractionated total body irradiation and melphalan acceptable in children with solid tumors with respect to toxicity? Bone Marrow Transpl 8:119–123Google Scholar
  21. Faraci M et al (2002) Severe neurologic complications after hematopoietic stem cell transplantation in children. Neurology 59:1895–1904 [erratum (2003) 60:1055]PubMedCrossRefGoogle Scholar
  22. Fassas AB, Tricot G (2001) Myelodysplastic syndromes complicating hematopoietic stem cell transplantation. Cancer Treat Res 108:169–184PubMedCrossRefGoogle Scholar
  23. Fehr T, Sykes M (2004) Tolerance induction in clinical transplantation. Transpl Immunol 13(2):117–130PubMedCrossRefGoogle Scholar
  24. Freedman AS et al (1998) High-dose chemoradiotherapy and anti-B-cell monoclonal antibody-purged autologous bone marrow transplantation in mantle-cell lymphoma: no evidence for long-term remission (comment). J Clin Oncol 16:13–18PubMedGoogle Scholar
  25. Gatti RA et al (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2:1366–1369PubMedCrossRefGoogle Scholar
  26. Gopal R, Ha CS, Tucker SL, Khouri IF, Giralt SA, Gajewski JL, Andersson BS, Cox JD, Champlin RE (2001) Comparison of two total body irradiation fractionation regimens with respect to acute and late pulmonary toxicity. Cancer. 92(7):1949–1958PubMedCrossRefGoogle Scholar
  27. Gerbi BJ, Dusenbery KE (1995) Design specifications for a treatment stand used for total body photon irradiation with patients in a standing position. Med Dosim 20(1):25–30PubMedCrossRefGoogle Scholar
  28. Hall EJ (2001) Radiobiology for the radiologist, 4th edn. J.B. Lippincott, PhiladelphiaGoogle Scholar
  29. Hawley RG et al (1996) Retroviral vectors for production of interleukin-12 in the bone marrow to induce a graft-versus-leukemia effect. Ann NY Acad Sci 795:341–345PubMedCrossRefGoogle Scholar
  30. Heslop HE, Rooney CM, Brenner MK (1995) Gene-marking and haemopoietic stem-cell transplantation. Blood Rev 9:220–225PubMedCrossRefGoogle Scholar
  31. Holm K, Nysom K, Rasmussen MH, Hertz H, Jacobsen N, Skakkebaek NE, Krabbe S, Muller J (1990) Growth, growth hormone and final height after BMT Possible recovery of irradiation-induced growth hormone insufficiency. Bone Marrow Transpl 18(1):163–170 1996Google Scholar
  32. Holmstrom G, Borgstrom B, Calissendorff B (2002) Cataract in children after bone marrow transplantation: relation to conditioning regimen. Acta Ophthalmol Scand 80(2):211–215 2002 AprPubMedCrossRefGoogle Scholar
  33. Hui SK, Kapatoes J, Fowler J, Henderson D, Olivera G, Manon RR, Gerbi B, Mackie TR, Welsh JS (2005) Feasibility study of helical tomotherapy for total body or total marrow irradiation. Med Phys 32(10):3214–3224PubMedCrossRefGoogle Scholar
  34. Iannone R et al (2003) Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transpl 9:519–528CrossRefGoogle Scholar
  35. Imamura M, Hashino S, Tanaka J (1996) Graft-versus-leukemia effect and its clinical implications. Leuk Lymphoma 23:477–492PubMedCrossRefGoogle Scholar
  36. Khan FM, Moore VC, Burns DJ (1970) The construction of compensators for cobalt teletherapy. Radiology 96:187–192PubMedGoogle Scholar
  37. Khan FM et al (1980) Basic data for dosage calculation and compensation. Int J Radiat Oncol Biol Phys 6:745–751PubMedCrossRefGoogle Scholar
  38. Kim TH et al (1985) Interstitial pneumonitis following total body irradiation for bone marrow transplantation using two different dose rates. Int J Radiat Oncol Biol Phys 11:1285–1291PubMedCrossRefGoogle Scholar
  39. Kirby TH, Hanson WF, Cates DA (1988) Verification of total body photon irradiation dosimetry techniques. Med Phys 15:364–369PubMedCrossRefGoogle Scholar
  40. Klingemann HG (1996) Role of postinduction immunotherapy in acute myeloid leukemia. Leukemia 10(Suppl 1):S21–S22PubMedGoogle Scholar
  41. Korbling M et al (1991) Autologous blood stem cell (ABSCT) versus purged bone marrow transplantation (pABMT) in standard risk AML: influence of source and cell composition of the autograft on hemopoietic reconstitution and disease-free survival. Bone Marrow Transpl 7:343–349Google Scholar
  42. Krishnamurti L et al (2003) Availability of unrelated donors for hematopoietic stem cell transplantation for hemoglobinopathies. Bone Marrow Transpl 31:547–550CrossRefGoogle Scholar
  43. Lane PH et al (1994) Outcome of dialysis for acute renal failure in pediatric bone marrow transplant patients. Bone Marrow Transpl 13:613–617Google Scholar
  44. Lawton CA et al (1989) Technical modifications in hyperfractionated total body irradiation for T-lymphocyte deplete bone marrow transplant. Int J Radiat Oncol Biol Phys 17:319–322PubMedCrossRefGoogle Scholar
  45. Lawton CA et al (1992) Influence of renal shielding on the incidence of late renal dysfunction associated with T-lymphocyte deplete bone marrow transplantation in adult patients. Int J Radiat Oncol Biol Phys 23:681–686PubMedCrossRefGoogle Scholar
  46. Leshem B, Vourka-Karussis U, Slavin S (2000) Correlation between enhancement of graft-versus-leukemia effects following allogeneic bone marrow transplantation by rIL-2 and increased frequency of cytotoxic T-lymphocyte precursors in murine myeloid leukemia. Cytokines Cell Mol Ther 6:141–147PubMedGoogle Scholar
  47. Mackie TR et al (2003) Image guidance for precise conformal radiotherapy. Int J Radiat Oncol Biol Phys 56:89–105PubMedCrossRefGoogle Scholar
  48. Maeda G, Yokoyama R, Ohtomo K, Takayama J, Beppu Y, Fukuma H, Ohira M (1996) Osteochondroma after total body irradiation in bone marrow transplant recipients: report of two cases. Jpn J Clin Oncol 26(6):480–483PubMedCrossRefGoogle Scholar
  49. Mahmoud HK et al (1985) Bone marrow transplantation for chronic granulocytic leukaemia. Klin Wochenschr 63:560–564PubMedCrossRefGoogle Scholar
  50. Miralbell R et al (1996) Renal toxicity after allogeneic bone marrow transplantation: the combined effects of total-body irradiation and graft-versus-host disease. J Clin Oncol 14:579–585PubMedGoogle Scholar
  51. Molls M, Budach V, Bamberg M (1986) Total body irradiation: the lung as critical organ. Strahlenther Onkol 162:226–232PubMedGoogle Scholar
  52. Moulder JE, Fish BL (1991) Influence of nephrotoxic drugs on the late renal toxicity associated with bone marrow transplant conditioning regimens. Int J Radiat Oncol Biol Phys 20:333–337PubMedCrossRefGoogle Scholar
  53. Moulder JE, Fish BL, Abrams RA (1987) Renal toxicity following total-body irradiation and syngeneic bone marrow transplantation. Transplantation 43:589–592PubMedCrossRefGoogle Scholar
  54. Parr MD, Messino MJ, McIntyre W (1991) Allogeneic bone marrow transplantation: procedures and complications. Am J Hospital Pharmacy 48:127–137Google Scholar
  55. Peters C et al (2003) Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transpl 31:229–239CrossRefGoogle Scholar
  56. Petersdorf E et al (1998) Effect of HLA matching on outcome of related and unrelated donor transplantation therapy for chronic myelogenous leukemia. Hematol Oncol Clin North Am 12:107–121PubMedCrossRefGoogle Scholar
  57. Quaranta BP et al (2004) The incidence of testicular recurrence in boys with acute leukemia treated with total body and testicular irradiation and stem cell transplantation. Cancer 101:845–850PubMedCrossRefGoogle Scholar
  58. Remberger M et al (2002) The graft-versus-leukaemia effect in haematopoietic stem cell transplantation using unrelated donors. Bone Marrow Transpl 30:761–768CrossRefGoogle Scholar
  59. Rubin J et al (2005) Acute neurological complications after hematopoietic stem cell transplantation in children. Pediatr Transpl 9:62–67CrossRefGoogle Scholar
  60. Schouten HC et al (2000) The CUP trial: a randomized study analyzing the efficacy of high dose therapy and purging in low-grade non-Hodgkin’s lymphoma (NHL). Ann Oncol 11(Suppl 1):91–94PubMedCrossRefGoogle Scholar
  61. Shank B et al (1983) Hyperfractionated total body irradiation for bone marrow transplantation. Results in seventy leukemia patients with allogeneic transplants. Int J Radiat Oncol Biol Phys 9:1607–1611PubMedCrossRefGoogle Scholar
  62. Shueng PW, Lin SC, Chong NS, Lee HY, Tien HJ, Wu LJ, Chen CA, Lee JJ, Hsieh CH (2009) Total marrow irradiation with helical tomotherapy for bone marrow transplantation of multiple myeloma: first experience in Asia. Technol Cancer Res Treat 8(1):29–38PubMedGoogle Scholar
  63. Standke E (1989) Fundamentals, trends and our experiences with total body irradiation (TBI) before bone marrow transplantation (BMT). Folia Haematologica—Internationales Magazin fur Klinische und Morphologische Blutforschung 116:481–485Google Scholar
  64. Steingrimsdottir H et al (2000) Immune reconstitution after autologous hematopoietic stem cell transplantation in relation to underlying disease, type of high-dose therapy and infectious complications. Haematologica 85:832–838PubMedGoogle Scholar
  65. Storek J et al (2003) Interleukin-7 improves CD4 T-cell reconstitution after autologous CD34 cell transplantation in monkeys. Blood 101:4209–4218PubMedCrossRefGoogle Scholar
  66. Thomas ED (1997) Pros and cons of stem cell transplantation for autoimmune disease. J Rheumatol 48(Suppl):100–102Google Scholar
  67. Thomas O, Mahe M, Campion L, Bourdin S, Milpied N, Brunet G, Lisbona A, Le Mevel A, Moreau P, Harousseau J, Cuilliere J (2001) Long-term complications of total body irradiation in adults. Int J Radiat Oncol Biol Phys 49(1):125–131PubMedCrossRefGoogle Scholar
  68. Valls A et al (1989) Total body irradiation in bone marrow transplantation: fractionated vs single dose. Acute toxicity and preliminary results. Bulletin du Cancer 76:797–804PubMedGoogle Scholar
  69. van Besien K et al (2003) Comparison of autologous and allogeneic hematopoietic stem cell transplantation for follicular lymphoma. Blood 102:3521–3529PubMedCrossRefGoogle Scholar
  70. Van Dyk J, Keane TJ, Rider WD (1982) Lung density as measured by computerized tomography: implications for radiotherapy. Int J Radiat Oncol Biol Phys 8:1363PubMedCrossRefGoogle Scholar
  71. Wong JY, Rosenthal J, Liu A, Schultheiss T, Forman S, Somlo G (2009) Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation. Int J Radiat Oncol Biol Phys 73(1):273–279PubMedCrossRefGoogle Scholar
  72. Wood KJ, Prior TG (2001) Gene therapy in transplantation. Curr Opin Mol Therapeut 3:390–398Google Scholar
  73. Zecca M et al (2002) Chronic graft-versus-host disease in children: incidence, risk factors, and impact on outcome. Blood 100:1192–1200PubMedCrossRefGoogle Scholar
  74. Zhu KE, Hu JY, Zhang T, Chen J, Zhong J, Lu YH (2008) Incidence, risks, and outcome of idiopathic pneumonia syndrome early after allogeneic hematopoietic stem cell transplantation. Eur J Haematol 81(6):461–466PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2011

Authors and Affiliations

  1. 1.Therapeutic Radiology – Radiation OncologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations