Advertisement

Spinal Cord Toxicity

  • Timothy E. Schultheiss
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Radiation myelopathy is a feared and generally avoidable complication of thoracic irradiation. A better understanding of the radiation response of the spinal cord and advances in radiation therapy delivery techniques mean that this complication should be preventable in nearly all treatment situations. A better understanding of the pathogenesis of the injury has lead to the protection of the spinal cord from radiation in experimental studies and to the possible treatment of radiation myelopathy.

Keywords

Spinal Cord Vascular Endothelial Growth Factor Radiation Injury Radiation Necrosis Boron Neutron Capture Therapy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abadir R (1980) Radiation myelitis: can diagnosis be unequivocal with histological evidence? Int J Radiat Oncol Biol Phys 6:649–650PubMedCrossRefGoogle Scholar
  2. Alfonso ER, De Gregorio MA, Mateo P, Esco R, Bascon N, Morales F, Bellosta R, Lopez P, Gimeno M, Roca M, Villavieja JL (1997) Radiation myelopathy in over-irradiated patients: MR imaging findings. Eur Radiol 7:400–404PubMedCrossRefGoogle Scholar
  3. Ang KK, van der Kogel AJ, van der Schueren E (1983) The effect of small radiation doses on the rat spinal cord: the concept of partial tolerance. Int J Radiat Oncol Biol Phys 9:1487–1491PubMedCrossRefGoogle Scholar
  4. Ang KK, Price RE, Stephens LC, Jiang GL, Feng Y, Schultheiss TE, Peters LJ (1993) The tolerance of primate spinal cord to re-irradiation. Int J Radiat Oncol Biol Phys 25:459–464PubMedCrossRefGoogle Scholar
  5. Ang KK, Jiang GL, Feng Y, Stephens LC, Tucker SL, Price RE (2001) Extent and kinetics of recovery of occult spinal cord injury. Int J Radiat Oncol Biol Phys 50:1013–1020PubMedCrossRefGoogle Scholar
  6. Asscher AW, Anson SG (1962) Arterial hypertension and irradiation damage to the nervous system. Lancet II:1343–1346Google Scholar
  7. Austin JP, Urie MM, Cardenosa G, Munzenrider JE (1993) Probable causes of recurrence in patients with chordoma and chondrosarcoma of the base of skull and cervical spine. Int J Radiat Oncol Biol Phys 25:439–444PubMedCrossRefGoogle Scholar
  8. Baekmark UB (1975) Neurologic complications after irradiation of the cervical spinal cord for malignant tumour of the head and neck. Acta Radiol Ther Phys Biol 14:33–41PubMedCrossRefGoogle Scholar
  9. Black MJ, Kagan AR (1980) Transverse myelitis. Laryngoscope 90:847–852PubMedCrossRefGoogle Scholar
  10. Blakemore WF, Palmer AC (1982) Delayed Infraction of Spinal Cord White Matter Following X-irradiation. J Pathol 137:273–280PubMedCrossRefGoogle Scholar
  11. Chouchair AK (1991) Myelopathies in the cancer patient: incidence, presentation, diagnosis and management. Oncology 5:25–37Google Scholar
  12. Coderre JA, Morris GM, Micca PL, Hopewell JW, Verhagen I, Kleiboer BJ, van der Kogel AJ (2006) Late effects of radiation on the central nervous system: role of vascular endothelial damage and glial stem cell survival. Radiat Res 166:495–503PubMedCrossRefGoogle Scholar
  13. Coy P, Dolman CL (1971) Radiation myelopathy in relation to oxygen level. Br J Radiol 44:705–707PubMedCrossRefGoogle Scholar
  14. Dische S, Saunders MI (1989) Continuous, hyperfractionated, accelerated radiotherapy (CHART): an interim report upon late morbidity. Radiother Oncol 16:65–72PubMedCrossRefGoogle Scholar
  15. Dische S, Saunders MI, Warburton MF (1986) Hemoglobin, radiation, morbidity and survival. Int J Radiat Oncol Biol Phys 12:1335–1337PubMedCrossRefGoogle Scholar
  16. Dorfman LS, Donaldson SS, Gupta PR, Bosley TM (1982) Electrophysiologic evidence of subclinical injury to the posterior columns of the human spinal cord after therapeutic radiation. Cancer 50:2815–2819PubMedCrossRefGoogle Scholar
  17. Feldmann E, Posner JB (1986) Episodic neurologic dysfunction in patients with Hodgkin’s disease. Arch Neurol 43:1227–1233PubMedCrossRefGoogle Scholar
  18. Gibbs IC, Patil C, Gerszten PC, Adler JR Jr, Burton SA (2009) Delayed radiation-induced myelopathy after spinal radiosurgery. Neurosurg 64:A67–A72CrossRefGoogle Scholar
  19. Gonzalez J, Kumar AJ, Conrad CA, Levin VA (2007) Effect of bevacizumab on radiation necrosis of the brain. Int J Radiat Oncol Biol Phys 67:323–326PubMedCrossRefGoogle Scholar
  20. Holdorff B (1980) Dose effect relationships in cervical and thoracic radiation myelopathies. Acta Radiol Oncol 19:271–277PubMedCrossRefGoogle Scholar
  21. Hopewell JW, van der Kogel AJ (1999) Pathophysiological mechanisms leading to the development of late radiation-induced damage to the central nervous system. Front Radiat Ther Oncol 33:265–275PubMedCrossRefGoogle Scholar
  22. Hopewell JW, Wright EA (1970) The nature of latent cerebral irradiation damage and its modification by hypertension. Br J Radiol 43:161–167PubMedCrossRefGoogle Scholar
  23. Hornsey S, White A (1980) Isoeffect curve for radiation myelopathy. Br J Radiol 53:168–169PubMedCrossRefGoogle Scholar
  24. Hornsey S, Myers R, Coultas PG, Rogers MA, White A (1981) Turnover of proliferative cells in the spinal cord after X- irradiation and its relation to time-dependent repair of radiation damage. Br J Radiol 54:1081–1085PubMedCrossRefGoogle Scholar
  25. Hornsey S, Myers S, Jenkinson T (1990) The reduction of radiation damage to the spinal cord by post-irradiation administration of vasoactive drugs. Int J Radiat Oncol Biol Phys 18:1437–1442PubMedCrossRefGoogle Scholar
  26. Hubbard BM, Hopewell JW (1979) Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation. Br J Radiol 52:816–821PubMedCrossRefGoogle Scholar
  27. Kim YH, Fayos JV (1981) Radiation tolerance of the cervical spinal cord. Radiology 139:473–478PubMedGoogle Scholar
  28. Kitamura HK, Kameda Y, Yoshimura Y, Magaoka S, Takai S, Nagatsuka A (1979) Delayed radiation myelopathy. Yokohama Medical Bulletin 30:61–69Google Scholar
  29. Knowles JF (1983) The radiosensitivity of the guinea pig spinal cord to X-rays: the effect of retreatment at 1 year and the effect of age at the time of irradiation. Int J Radiat Biol 44:433–442CrossRefGoogle Scholar
  30. Koehler PJ, Verbiest H, Jager J, Vecht CJ (1996) Delayed radiation myelopathy: serial MR-imaging and pathology. Clin Neurol Neurosurg 98:197–201PubMedCrossRefGoogle Scholar
  31. Kramer S (1968) The hazards of therapeutic irradiation of the central nervous system. Clin Neurosurg 15:301–318PubMedGoogle Scholar
  32. Lechevalier B, Humeau F, Houteville JP (1973) Myelopathies radiotherapiques ‘hypertenphiantes’. A propos de cinq observations dont une anatome clinique. Revue Neurologique 129:119–132PubMedGoogle Scholar
  33. Levin VA, Luc B, Ping H, Ashok JK, Jeffrey SW, Bekele BN, Sujit P, Monica L, Mark RG, Edward FJ (2010) Randomized Double-Blind Placebo-Controlled Trial of Bevacizumab Therapy for Radiation Necrosis of the Central Nervous System. Int J Radiat Oncol Biol Phys 79:1487–1495.CrossRefGoogle Scholar
  34. Liu AK, Macy ME, Foreman NK (2009) Bevacizumab as therapy for radiation necrosis in four children with pontine gliomas. Int J Radiat Oncol Biol Phys 75:1148–1154PubMedCrossRefGoogle Scholar
  35. Lyubimova N, Hopewell JW (2004) Experimental evidence to support the hypothesis that damage to vascular endothelium plays the primary role in the development of late radiation-induced CNS injury. Br J Radiol 77:488–492PubMedCrossRefGoogle Scholar
  36. Marcus RG, Million RR (1990) The incidence of myelitis after irradiation of the cervical spinal cord. Radiology 93:3–8Google Scholar
  37. Marks RD Jr, Agarwal SK, Constable WC (1973) Increased rate of complications as a result of treating only one prescribed field daily. Radiology 107:615–619PubMedGoogle Scholar
  38. Marty R, Minckler DS (1973) Radiation myelitis simulating tumor. Arch Neurol 29:352–354PubMedCrossRefGoogle Scholar
  39. Masselos K, Begbie S, Lees JN (2009) Spinal cord infarction in a patient with metastatic non-small cell lung cancer, receiving chemotherapy combined with bevacizumab. Asia-Pacific J Clin Oncol 5:151–153CrossRefGoogle Scholar
  40. Masuda K, Reid BO, Withers HR (1977) Dose effect relationship for epilation and late effects on spinal cord in rates exposed to gamma rays. Radiology 122:239–242PubMedGoogle Scholar
  41. Morris GM, Coderre JA, Hopewell JW, Micca PL, Nawrocky MM, Liu HB, Bywaters A (1994a) Response of the central nervous system to boron neutron capture irradiation: evaluation using rat spinal cord model. Radiother Oncol 32:249–255PubMedCrossRefGoogle Scholar
  42. Morris GM, Coderre JA, Whitehouse EM, Micca P, Hopewell JW (1994b) Boron neutron capture therapy: a guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord. Int J Radiat Oncol Biol Phys 28:1107–1112PubMedCrossRefGoogle Scholar
  43. Morris GM, Coderre JA, Bywaters A, Whitehouse E, Hopewell JW (1996) Boron neutron capture irradiation of the rat spinal cord: histopathological evidence of a vascular-mediated pathogenesis. Radiat Res 146:313–320PubMedCrossRefGoogle Scholar
  44. Morris GM, Coderre JA, Hopewell JW, Rezvani M, Micca PL, Fisher CD (1997a) Response of the central nervous system to fractionated boron neutron capture irradiation: studies with borocaptate sodium. Int J Radiat Biol 71:185–192PubMedCrossRefGoogle Scholar
  45. Morris GM, Coderre JA, Micca PL, Fisher CD, Capala J, Hopewell JW (1997b) Central nervous system tolerance to boron neutron capture therapy with p-boronophenylalanine. Br J Cancer 76:1623–1629PubMedCrossRefGoogle Scholar
  46. Morris GM, Coderre JA, Hopewell JW, Micca PL, Wielopolski L (1998) Boron neutron capture therapy: re-irradiation response of the rat spinal cord. Radiother Oncol 48:313–317PubMedCrossRefGoogle Scholar
  47. Myers R, Rogers MA, Hornsey S (1986) A reappraisal of the roles of glial and vascular elements in the development of white matter necrosis in irradiated rat spinal cord. Br J Cancer-Supple 7:221–223Google Scholar
  48. Nieder C, Price RE, Rivera B, Andratschke N, Ang KK (2005) Effects of insulin-like growth factor-1 (IGF-1) and amifostine in spinal cord reirradiation. Strahlenther Oncol 181:691–695PubMedCrossRefGoogle Scholar
  49. Nordal RA, Wong CS (2005) Molecular targets in radiation-induced blood-brain barrier disruption. Int J Radiat Oncol Biol Phys 62:279–287PubMedCrossRefGoogle Scholar
  50. Nordal RA, Nagy A, Pintilie M, Wong CS (2004) Hypoxia and hypoxia-inducible factor-1 target genes in central nervous system radiation injury: a role for vascular endothelial growth factor. Clin Cancer Res 10:3342–3353PubMedCrossRefGoogle Scholar
  51. Otsuka S, Coderre JA, Micca PL, Morris GM, Hopewell JW, Rola R, Fike JR (2006) Depletion of neural precursor cells after local brain irradiation is due to radiation dose to the parenchyma, not the vasculature. Radiat Res 165:582–591PubMedCrossRefGoogle Scholar
  52. Philippo H, Huiskamp R, Winter AM, Gharbaran B, van der Kogel AJ (2000) Age dependence of the radiosensitivity of glial progenitors for In vivo fission-neutron and X irradiation. Radiat Res 154:44–53PubMedCrossRefGoogle Scholar
  53. Philippo H, Winter EA, van der Kogel AJ, Huiskamp R (2005) Recovery capacity of glial progenitors after in vivo fission-neutron or X irradiation: age dependence, fractionation and low-dose-rate irradiations. Radiat Res 163:636–643PubMedCrossRefGoogle Scholar
  54. Ruifrok AC, Stephens LC, van der Kogel AJ (1994) Radiation response of the rat cervical spinal cord after irradiation at different ages: tolerance, latency and pathology. Int J Radiat Oncol Biol Phys 29:73–79PubMedCrossRefGoogle Scholar
  55. Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, Rosenblum M, Kim JH (2007) Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer 109:628–636PubMedCrossRefGoogle Scholar
  56. Sahgal A, Ma L, Gibbs I, Gerszten PC, Ryu S, Soltys S, Weinberg V, Wong S, Chang E, Fowler J, Larson DA (2010) Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys 77:548–553PubMedCrossRefGoogle Scholar
  57. Schultheiss TE (2008) The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys 71:1455–1459PubMedCrossRefGoogle Scholar
  58. Schultheiss TE, Stephens LC (1992) Permanent Radiation Myelopathy. Br J Radiol 65:737–753PubMedCrossRefGoogle Scholar
  59. Schultheiss TE, Orton CG, Peck RA (1983) Models in radiotherapy: volume effects. Med Phys 10:410–415PubMedCrossRefGoogle Scholar
  60. Schultheiss TE, Higgins EH, El-Mahdi AM (1984a) The latent period in clinical radiation myelopathy. Int J Radiat Oncol Biol Phys 10:1109–1115PubMedCrossRefGoogle Scholar
  61. Schultheiss TE, Higgins EM, El-Mahdi AM (1984b) Extrinsic versus intrinsic dose dependence of latency in radiation myelopathy. Int J Radiat Oncol Biol Phys 10:2389PubMedCrossRefGoogle Scholar
  62. Schultheiss TE, Stephens LC, Peters LJ (1986) Survival in radiation myelopathy. Int J Radiat Oncol Biol Phys 12:1765–1769PubMedCrossRefGoogle Scholar
  63. Schultheiss TE, Stephens LC, Maor MH (1988) Analysis of the histopathology of radiation myelopathy. Int J Radiat Oncol Biol Phys 14:27–32PubMedCrossRefGoogle Scholar
  64. Schultheiss TE, Stephens LC, Jiang GL, Ang KK, Peters LJ (1990) Radiation myelopathy in primates treated with conventional fractionation. Int J Radiat Oncol Biol Phys 19:935–940PubMedCrossRefGoogle Scholar
  65. Schultheiss TE, Stephens LC, Ang KK, Jardine JH, Peters LJ (1992) Neutron RBE for primate spinal cord treated with clinical regimens. Radiat Res 129:212–217PubMedCrossRefGoogle Scholar
  66. Schultheiss TE, Stephens LC, Ang KK, Price RE, Peters LJ (1994) Volume effects in rhesus monkey spinal cord. Int J Radiat Oncol Biol Phys 29:67–72PubMedCrossRefGoogle Scholar
  67. Schultheiss TE, Kun LE, Ang KK, Stephens LC (1995) Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys 31:1093–1112PubMedCrossRefGoogle Scholar
  68. Snooks SJ, Swash M (1985) Motor conduction velocity in the human spinal cord: slowed conduction in multiple sclerosis and radiation myelopathy. J Neurol Neurosurg Psychiatry 48:1135–1139PubMedCrossRefGoogle Scholar
  69. Stephens LC, Hussey DH, Raulston GL, Jardine JH, Gray KN, Almond PR (1983) Late effects of 50 MeV neutron and cobalt-60 irradiation of rhesus monkey cervical spinal cord. Int J Radiat Oncol Biol Phys 9:859–865PubMedCrossRefGoogle Scholar
  70. Thames HD (1989) Repair kinetics in tissues: alternative models. Radiother Oncol 14:321–327PubMedCrossRefGoogle Scholar
  71. Thames HD, Ang KK, Stewart FA, van der Schueren E (1988) Does incomplete repair explain the apparent failure of the basic LQ model to predict spinal cord and kidney responses to low doses per fraction? Int J Radiat Biol 54:13–19PubMedCrossRefGoogle Scholar
  72. van den Brenk HAS, Richter W, Hurley RH (1968) Radiosensitivity of the human oxygenated cervical spinal cord based on analysis of 357 cases receiving 4 MeV X- rays in hyperbaric oxygen. Br J Radiol 41:205–214CrossRefGoogle Scholar
  73. van der Kogel AJ (1974) Late effects of spinal cord irradiation with 300 kV X-Rays and 15 MeV neutrons. Br J Radiol 45:393–398CrossRefGoogle Scholar
  74. van der Kogel AJ (1977) Radiation tolerance of the rat spinal cord: time-dose relationships. Radiology 122:505–509PubMedGoogle Scholar
  75. van der Kogel AJ (1979) Late effects of radiation on the spinal cord. Dose-effect relationships and pathogenesis. Unpublished Ph.D. Thesis, University of Amsterdam, Amsterdam, HollandGoogle Scholar
  76. van der Kogel AJ (1991) Central nervous system radiation injury in small animal models. In: Gutin PH, Leibel SA, Sheline GE (eds) Radiation Injury to the Nervous System. Raven Press, New York, pp 91–111Google Scholar
  77. van der Maazen RW, Verhagen I, van der Kogel AJ (1990) An in vitro clonogenic assay to assess radiation damage in rat CNS glial progenitor cells. Int J Radiat Biol 58:835–844PubMedCrossRefGoogle Scholar
  78. van der Maazen RW, Verhagen I, Kleiboer BJ, van der Kogel AJ (1991) Radiosensitivity of glial progenitor cells of the perinatal and adult rat optic nerve studied by an in vitro clonogenic assay. Radiother Oncol 20:258–264PubMedCrossRefGoogle Scholar
  79. van der Maazen RW, Verhagen I, Kleiboer BJ, van der Kogel AJ (1992) Repopulation of O-2A progenitor cells after irradiation of the adult rat optic nerve analyzed by an in vitro clonogenic assay. Radiat Res 132:82–86PubMedCrossRefGoogle Scholar
  80. van der Maazen RW, Kleiboer BJ, Verhagen I, van der Kogel AJ (1993) Repair capacity of adult rat glial progenitor cells determined by an in vitro clonogenic assay after in vitro or in vivo fractionated irradiation. Int J Radiat Biol 63:661–666PubMedCrossRefGoogle Scholar
  81. Verity GL (1968) Tissue tolerance: central nervous system. Radiology 91:1221–1225PubMedGoogle Scholar
  82. Wang PY, Shen WC, Jan JS (1992) Magnetic resonance imaging in radiation myelopathy. AJNR 13:1049–1055PubMedGoogle Scholar
  83. Wong CS, Van Dyk J, Simpson WJ (1991) Myelopathy following hyperfractionated accelerated radiotherapy for anaplastic thyroid carcinoma. Radiother Oncol 20:3–9PubMedCrossRefGoogle Scholar
  84. Wong CS, Minkin S, Hill RP (1992) Linear quadratic model underestimates sparing effect of small doses per fraction in rat spinal cord. Radiother Oncol 23:176–184PubMedCrossRefGoogle Scholar
  85. Wong ET, Huberman M, Lu XQ, Mahadevan A (2008) Bevacizumab reverses cerebral radiation necrosis. J Clin Oncol 26:5649–5650PubMedCrossRefGoogle Scholar
  86. Worthington BS (1979) Diffuse cord enlargement in radiation myelopathy. Clin Radiol 30:117–119PubMedCrossRefGoogle Scholar
  87. Zulch KJ, Oeser H (1974) Delayed spinal radionecrosis-a juridical error? Neuroradiology 8:173–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.City of Hope National Medical CenterDuarteUSA

Personalised recommendations