Advertisement

Radiation Time, Dose, and Fractionation in the Treatment of Lung Cancer

  • Daniel Gomez
  • Melenda D. Jeter
  • Ritsuko Komaki
  • James D. Cox
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Radiation therapy has been an important component of potentially curative treatment of lung cancer for more than 40 years. The radiosensitivity of normal tissues in the thorax, especially the normal lung and esophagus, has led to efforts to enhance the antitumor effects of radiation while reducing its acute and late adverse effects on normal tissues. Improving local control of medically inoperable or locally advanced unresectable disease (stage III non-small cell lung cancer or limited-stage small cell lung cancer, defined as disease confined to one hemithorax and the ipsilateral supraclavicular lymph nodes) can favorably influence overall survival rates. The therapeutic ratio of radiation for the treatment of lung cancer can be improved by increasing the biological dose to maintain local control while protecting normal tissues. One way of doing so is through the use of fractionation, that is, manipulating the time interval and dose of radiation to optimize the therapeutic ratio. Topics covered in this chapter include dose escalation with standard fractionation or hyperfractionation; large-dose fractionation and stereotactic body radiation therapy; accelerated fractionation; means of reducing the target volume by using techniques such as 3-dimensional conformal or intensity-modulated radiation therapy; proton therapy; the importance of accounting for tumor motion; and the use of combined thoracic radiation and concurrent chemotherapy.

Keywords

Stereotactic Body Radiation Therapy Radiation Therapy Oncology Group Concurrent Chemotherapy Proton Therapy Prophylactic Cranial Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

Supported in part by National Cancer Institute grants CA 16672 and 06294 and the Texas Tobacco Settlement.

References

  1. Arriagada R, le Chevalier T, Ruffie P, Baldeyrou P, De Cremoux H, Martin M et al (1990) Alternating radiotherapy and chemotherapy in 173 consecutive patients with limited small cell lung carcinoma. GROP and the French Cancer Center’s Lung Group. Int J Radiat Oncol Biol Phys 19(5):1135–1138PubMedCrossRefGoogle Scholar
  2. Arriagada R, Le Chevalier T, Quiox E, Ruffie P, De Cremoux H, Douillard JY et al (1991a) ASTRO plenary: effect of chemotherapy on locally advanced non-small cell lung carcinoma: a randomized study of 353 patients. Int J Radiat Oncol Biol Phys 20(6):1183–1190Google Scholar
  3. Arriagada R, Le Chevalier T, Quoix E, Ruffie P, de Cremoux H, Douillard JY et al (1991b) ASTRO (American Society for Therapeutic Radiology and Oncology) plenary: effect of chemotherapy on locally advanced non-small cell lung carcinoma: a randomized study of 353 patients. GETCB (Groupe d’Etude et Traitement des Cancers Bronchiques), FNCLCC (Federation Nationale des Centres de Lutte contre le Cancer) and the CEBI trialists. Int J Radiat Oncol Biol Phys, 20(6):1183–1190Google Scholar
  4. Arriagada R, Rutqvist LE, Mattsson A, Kramer A, Rotstein S (1995) Adequate locoregional treatment for early breast cancer may prevent secondary dissemination. J Clin Oncol 13(12):2869–2878PubMedGoogle Scholar
  5. Arriagada R, LeChevalier T, Rekacewicz C, Quoix E, De Cremoux H, Douillard JY et al (1997) Cisplatin-based chemotherapy (CT) in patients with locally advanced non-small cell lung cancer (NSCLC): late analysis of a French randomized trial. Proc ASCO 16:446aGoogle Scholar
  6. Auperin A, Le Pechoux C (2003) Meta-analysis of randomized trials evaluating cisplatin or carboplatin-based concomitant chemoradiation versus radiotherapy alone in locally advanced non-small cell lung cancer. Paper presented at the 10th World Conference on Lung Cancer, Vancouver, CanadaGoogle Scholar
  7. Auperin A, Arriagada R, Pignon JP, Le Pechoux C, Gregor A, Stephens RJ et al (1999) Prophylactic cranial irradiation for patients with small-cell lung cancer in complete remission. Prophylactic Cranial Irradiation Overview Collaborative Group. N Engl J Med 341(7):476–484PubMedCrossRefGoogle Scholar
  8. Belderbos JS, De Jaeger K, Heemsbergen WD, Seppenwoolde Y, Baas P, Boersma LJ et al (2003) First results of a phase I/II dose escalation trial in non-small cell lung cancer using three-dimensional conformal radiotherapy. Radiother Oncol 66:119–126PubMedCrossRefGoogle Scholar
  9. Belderbos JS, Kepka L, Kong FM, Martel MK, Videtic GM, Jeremic B (2009) Elective nodal irradiation (ENI) in locally advanced non-small-cell lung cancer (NSCLC): evidence versus opinion? Int J Radiat Oncol Biol Phys 74(1):322 author reply 322–323.PubMedCrossRefGoogle Scholar
  10. Bogart JA, Herndon JE II, Lyss AP, Watson D, Miller AA, Lee ME et al (2004) 70 Gy thoracic radiotherapy is feasible concurrent with chemotherapy for limited-stage small-cell lung cancer: analysis of Cancer and Leukemia Group B study 39808. Int J Radiat Oncol Biol Phys 59(2):460–468PubMedCrossRefGoogle Scholar
  11. Bradley J, Graham MV, Winter K, Purdy JA, Komaki R, Roa WH et al (2005) Toxicity and outcome results of RTOG 9311: a phase I–II dose-escalation study using three-dimensional conformal radiotherapy in patients with inoperable non-small-cell lung carcinoma. Int J Radiat Oncol Biol Phys 61(2):318–328PubMedCrossRefGoogle Scholar
  12. Bradley JD, Moughan J, Graham MV, Byhardt R, Govindan R, Fowler J et al (2010) A phase I/II radiation dose escalation study with concurrent chemotherapy for patients with inoperable stages I to III non-small-cell lung cancer: phase I results of RTOG 0117. Int J Radiat Oncol Biol Phys 77(2):367–372PubMedCrossRefGoogle Scholar
  13. Chang JY, Zhang X, Wang X, Kang Y, Riley B, Bilton S et al (2006) Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 65(4):1087–1096PubMedCrossRefGoogle Scholar
  14. Chang JY, Komaki R, Wen HY, De Gracia B, Bluett JB, McAleer MF et al (2011) Toxicity and patterns of failure of adaptive/ablative proton therapy for early-stage, medically inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys [Epub ahead of print] Google Scholar
  15. Choi NC, Herndon JE II, Rosenman J, Carey RW, Chung CT, Bernard S et al (1998) Phase I study to determine the maximum-tolerated dose of radiation in standard daily and hyperfractionated-accelerated twice-daily radiation schedules with concurrent chemotherapy for limited-stage small-cell lung cancer. J Clin Oncol 16(11):3528–3536PubMedGoogle Scholar
  16. Christian JA, Bedford JL, Webb S, Brada M (2007) Comparison of inverse-planned three-dimensional conformal radiotherapy and intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67(3):735–741PubMedCrossRefGoogle Scholar
  17. Cox JD (1985) Large dose fractionation (hypofractionation). Cancer 55:2105–2111PubMedCrossRefGoogle Scholar
  18. Cox JD, Gingerelli F, Ream NW, Maier JG (1972) Total pulmonary irradiation for metastases from testicular carcinoma. Radiology 105:163–167PubMedGoogle Scholar
  19. Diener-West M, Pajak TF, Bauer M, Cox JD (1991) Randomized dose searching phase ILE/II trials of fractionation in radiation therapy for cancer. J Natl Cancer Instit 83:1065–1071CrossRefGoogle Scholar
  20. Din OS, Lester J, Cameron A, Ironside J, Gee A, Falk S et al (2008) Routine use of continuous, hyperfractionated, accelerated radiotherapy for non-small-cell lung cancer: a five-center experience. Int J Radiat Oncol Biol Phys 72(3):716–722PubMedCrossRefGoogle Scholar
  21. Fu KK, Pajak TF, Trotti A, Jones CU, Spencer SA, Phillips TL et al (2000) A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int J Radiat Oncol Biol Phys 48(1):7–16PubMedCrossRefGoogle Scholar
  22. Goto K, Nishiwaki Y, Takada M et al (1999) Final results of a phase III study of concurrent versus sequential thoracic radiotherapy (TRT) in combination with cisplatin (P) and etoposide (E) for limited-stage small cell lung cancer (LD-SCLC): the Japan Clinical Oncology Group (JCOG) study (abstract). Proc ASCO 18:A1805Google Scholar
  23. Graham MV, Purdy JA, Emami B, Matthews JW, Harms WB (1995) Preliminary results of a prospective trial using three dimensional radiotherapy for lung cancer. Int J Radiat Oncol Biol Phys 33:993–1000PubMedCrossRefGoogle Scholar
  24. Grills IS, Yan D, Martinez AA, Vicini FA, Wong JW, Kestin LL (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57(3):875–890PubMedCrossRefGoogle Scholar
  25. Grutters JP, Joore MA, Wiegman EM, Langendijk JA, de Ruysscher D, Hochstenbag M et al (2010) Health-related quality of life in patients surviving non-small cell lung cancer. Thorax 65(10):903–907PubMedCrossRefGoogle Scholar
  26. Janaki L, Rector D, Turrisi A et al (1994) Patterns of failure and second malignancies from SWOG-8629: concurrent cisplatin, etoposide, vincristine, and once daily radiotherapy for the treatment of limited small cell lung cancer (abstract). Proc ASCO 13:331Google Scholar
  27. Jeremic B, Milicic B (2008) From conventionally fractionated radiation therapy to hyperfractionated radiation therapy alone and with concurrent chemotherapy in patients with early-stage nonsmall cell lung cancer. Cancer 112(4):876–884PubMedCrossRefGoogle Scholar
  28. Komaki R, Swann RS, Ettinger D (2003) Phase I study of thoracic radiation dose-escalation with concurrent chemotherapy for patients with limited small cell lung cancer (LSCLC): Radiation Therapy Oncology Group (RTOG) Protocol 9712. Proc ASCO 22:631Google Scholar
  29. Komaki R, Scott C, Ettinger D, Lee JS, Fossella FV, Curran W et al (1997) Randomized study of chemotherapy/radiation therapy combinations for favorable patients with locally advanced inoperable nonsmall cell lung cancer: Radiation Therapy Oncology Group (RTOG). Int J Radiat Oncol Biol Phys 38:149–155PubMedCrossRefGoogle Scholar
  30. Lee JS, Scott CB, Komaki R, Ettinger DS, Sause WT (2002) Impact of institutional experience on survival outcome of patients undergoing combined chemoradiation therapy for inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 52(2):362–370PubMedCrossRefGoogle Scholar
  31. Liao Z, Komaki R, Stevens C (2002) Twice daily irradiation increases locoregional control in patients with medically inoperable or surgically unresectable stage II–IIIB non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 53(3):558–565PubMedCrossRefGoogle Scholar
  32. Liao ZX, Komaki RR, Thames HD Jr, Liu HH, Tucker SL, Mohan R et al (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76(3):775–781PubMedCrossRefGoogle Scholar
  33. Liu HH, Balter P, Tutt T, Choi B, Zhang J, Wang C et al (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiat Oncol Biol Phys 68(2):531–540PubMedCrossRefGoogle Scholar
  34. McCracken JD, Janaki LM, Crowley JJ (1990) Concurrent chemotherapy/radiotherapy for limited small-cell lung carcinoma: a Southwest Oncology Group Study. J Clin Oncol 8:892–898PubMedGoogle Scholar
  35. Michalski D, Sontag M, Li F, de Andrade RS, Uslene I, Brandner ED et al (2008) Four-dimensional computed tomography-based interfractional reproducibility study of lung tumor intrafractional motion. Int J Radiat Oncol Biol Phys 71(3):714–724PubMedCrossRefGoogle Scholar
  36. Murray N, Coy P, Pater JL, Hodson I, Arnold A, Zee BC et al (1993) Importance of timing for thoracic irradiation in the combined modality treatment of limited-stage small-cell lung cancer. The National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 11(2):336–344PubMedGoogle Scholar
  37. Perez CA, Stanley K, Rubin P, Kramer S, Brady L, Perez-Tamayo R et al (1988) A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-small cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 45:2744–2753CrossRefGoogle Scholar
  38. Pignon JP, Arriagada R, Ihde DC, Johnson DH, Perry MC, Souhami RL et al (1992) A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327(23):1618–1624PubMedCrossRefGoogle Scholar
  39. Pijls-Johannesma M, De Ruysscher D, Vansteenkiste J, Kester A, Rutten I, Lambin P (2007) Timing of chest radiotherapy in patients with limited stage small cell lung cancer: a systematic review and meta-analysis of randomised controlled trials. Cancer Treat Rev 33(5):461–473PubMedCrossRefGoogle Scholar
  40. Qiao X, Tullgren O, Ingmar L, Sirzen F, Lewensohn R (2003) The role of radiotherapy in treatment of stage I non-small cell lung cancer. Lung Cancer 41:1–11PubMedCrossRefGoogle Scholar
  41. Rosenzweig KE, Sim SE, Mychalczak B, Braban LE, Schindelheim R, Leibel SA (2001) Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 50(3):681–685PubMedCrossRefGoogle Scholar
  42. Rosenzweig KE, Sura S, Jackson A, Yorke E (2007) Involved-field radiation therapy for inoperable non small-cell lung cancer. J Clin Oncol 25(35):5557–5561PubMedCrossRefGoogle Scholar
  43. Saunders MI (2000) The implications of the CHART trial for the treatment of non-small cell lung cancer. Lung Cancer 2:177–178Google Scholar
  44. Saunders MI, Dische S, Barret S, Harvey A, Gibson D, Parmar M (1997) Continuous hyperfractionated accelerated radiotherapy versus conventional radiotherapy in small-cell lung cancer: a randomized multicentre trial. Lancet 350:161–165PubMedCrossRefGoogle Scholar
  45. Sause WT, Scott C, Taylor S, Johnson D, Livingston R, Komaki R et al (1995) Radiation Therapy Oncology Group (RTOG) 88-08 and Eastern Cooperative Oncology Group (ECOG) 4588: Preliminary results of a phase III trial in regionally advanced, unresectable non-small cell lung cancer. J Natl Cancer Inst 87(3):198–205PubMedCrossRefGoogle Scholar
  46. Schaake-Koning C, van den Bogaert W, Dalesio O, Festen J, Hoogenhourt J, van Houtte P et al (1992) Effects of concomitant cisplatin and radiotherapy on inoperable non-small cell lung cancer. N Engl J Med 326:524–530PubMedCrossRefGoogle Scholar
  47. Sejpal S, Komaki R, Tsao A, Chang JY, Liao Z, Wei X et al (2011) Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. CancerGoogle Scholar
  48. Spiro SG, James LE, Rudd RM, Trask CW, Tobias JS, Snee M et al (2006) Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London Lung Cancer Group multicenter randomized clinical trial and meta-analysis. J Clin Oncol 24(24):3823–3830PubMedCrossRefGoogle Scholar
  49. Thames HD, Peters LJ, Withers HR, Fletcher GH (1983) Accelerated fractionation versus hyperfractionation: rationales for several treatments per day. Int J Radiat Oncol Biol Phys 9:127–138PubMedCrossRefGoogle Scholar
  50. Timmerman R, Papiez L, McGarry R, Likes L, DesRosiers C, Frost S et al (2003) Extracranial stereotactic radioablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124(5):1946–1955PubMedCrossRefGoogle Scholar
  51. Timmerman R, McGarry R, Yiannoutsos C, Papiez L, Tudor K, DeLuca J et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24(30):4833–4839PubMedCrossRefGoogle Scholar
  52. Timmerman R, Paulus R, Galvin J, Michalski J, Straube W, Bradley J et al (2010) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303(11):1070–1076PubMedCrossRefGoogle Scholar
  53. Turrisi AT III, Kim K, Blum R, Sause WT, Livingston RB, Komaki R et al (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 340(4):265–271PubMedCrossRefGoogle Scholar
  54. Uematsu M, Shioda A, Suda A et al (2001) Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small-cell lung cancer: a 5-year experience. Int J Radiat Oncol Biol Phys 51(3):666–670PubMedCrossRefGoogle Scholar
  55. Warde P, Payne D (1992) Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10:890–895PubMedGoogle Scholar
  56. Yuan S, Sun X, Li M, Yu J, Ren R, Yu Y et al (2007) A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am J Clin Oncol 30(3):239–244PubMedCrossRefGoogle Scholar
  57. Zhang X, Li Y, Pan X, Xiaoqiang L, Mohan R, Komaki R et al (2010) Intensity-modulated proton therapy reduces the dose to normal tissue compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small-cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys 77(2):357–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Gomez
    • 1
  • Melenda D. Jeter
    • 1
  • Ritsuko Komaki
    • 1
  • James D. Cox
    • 1
  1. 1.Division of Radiation Oncology, Unit 97The University of Texas MD Anderson Cancer CenterHoustonUSA

Personalised recommendations