Stereotactic Ablative Radiotherapy for Early Stage Lung Cancer

  • John H. Heinzerling
  • Robert D. Timmerman
Part of the Medical Radiology book series (MEDRAD)


Stereotactic ablative radiotherapy (SABR), also known as stereotactic body radiation therapy (SBRT) utilizes advanced techniques of immobilization, image guidance, and unique field arrangements to deliver precise, oligofractionated radiotherapy to a variety of tumor types. SABR has been established as a technologically innovative therapy for early stage non-small cell lung cancer (NSCLC) and has emerged as the standard treatment option for medically inoperable patients through utilization of prospective, multi-institutional trials. Recent trials continue to evaluate the role of SABR in the medically operable and borderline operable population, and will compare surgical resection and SABR as treatment modalities in these patients. This chapter reviews the techniques utilized in SABR, the evidence for use of SABR in early stage lung cancer, its extension of use to medically operable patients, and the toxicities associated with this emerging technique.


Maximum Tolerate Dose Stereotactic Body Radiation Therapy Local Control Rate Tumor Motion Inoperable Patient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balter JM, Wright JN, Newell LJ et al (2005) Accuracy of a wireless localization system for radiotherapy. Int J Radiate Oncol Biol Phys 61:933–937CrossRefGoogle Scholar
  2. Baumann P, Nyman J, Lax I et al (2006) Factors important for efficacy of stereotactic body radiotherapy of medically inoperable stage I lung cancer. A retrospective analysis of patients treated in the Nordic countries. Acta Oncol 45:787–795PubMedCrossRefGoogle Scholar
  3. Baumann P, Nyman J, Hoyer M et al (2009) Outcome in a prospective phase II trial of medically inoperable stage I non-small-cell lung cancer patients treated with stereotactic body radiotherapy. J Clin Oncol 27:3290–3296PubMedCrossRefGoogle Scholar
  4. Benedict SH, Lin PS, Zwicker RD, Huang DT, Schmidt-Ullrich RK (1997) The biological effectiveness of intermittent irradiation as a function of overall treatment time: development of correction factors for linac-based stereotactic radiotherapy. Int J Radiate Oncol Biol Phys 37:765–769CrossRefGoogle Scholar
  5. Benedict SH, Yenice KM, Followill D et al (2010) Stereotactic body radiation therapy: the report of AAPM task group 101. Med Phys 37:4078–4101PubMedCrossRefGoogle Scholar
  6. Blomgren H, Lax I, Naslund I, Svanstrom R (1995) Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol 34:861–870PubMedCrossRefGoogle Scholar
  7. Bortfeld T, Paganetti H (2006) The biologic relevance of daily dose variations in adaptive treatment planning. Int J Radiate Oncol Biol Phys 65:899–906CrossRefGoogle Scholar
  8. Cardinale RM, Wu Q, Benedict SH, Kavanagh BD, Bump E, Mohan R (1999) Determining the optimal block margin on the planning target volume for extracranial stereotactic radiotherapy. Int J Radiate Oncol Biol Phys 45:515–520CrossRefGoogle Scholar
  9. Chawla S, Chen Y, Katz AW et al (2009) Stereotactic body radiotherapy for treatment of adrenal metastases. Int J Radiate Oncol Biol Phys 75:71–75CrossRefGoogle Scholar
  10. Chang SD, Main W, Martin DP, Gibbs IC, Heilbruon MP (2003) An analysis of the accuracy of the cyberknife: a robotic frameless stereotactic radio surgical system. Neurosurgery 52:140–146 discussion 6–7PubMedGoogle Scholar
  11. Chang EL, Shiu AS, Lii MF et al (2004) Phase I clinical evaluation of near-simultaneous computed tomographic image-guided stereotactic body radiotherapy for spinal metastases. Int J Radiate Oncol Biol Phys 59:1288–1294CrossRefGoogle Scholar
  12. Chen QS, Weinhous MS, Deibel FC, Ciezki JP, Macklis RM (2001) Fluoroscopic study of tumor motion due to breathing: facilitating precise radiation therapy for lung cancer patients. Med Phys 28:1850–1856PubMedCrossRefGoogle Scholar
  13. Chen GT, Kung JH, Beudette KP (2004) Artifacts in computed tomography scanning of moving objects. Semin Radiate Oncol 14:19–26CrossRefGoogle Scholar
  14. Curiel TJ (2007) Tregs and rethinking cancer immunotherapy. J Clin Invest 117:1167–1174PubMedCrossRefGoogle Scholar
  15. Dunlap NE, Cai J, Biedermann GB et al (2010) Chest wall volume receiving >30 Gy predicts risk of severe pain and/or rib fracture after lung stereotactic body radiotherapy. Int J Radiate Oncol Biol Phys 76:796–801CrossRefGoogle Scholar
  16. Fakiris AJ, McCarrty RC, Yiannoutsos CT et al (2009) Stereotactic body radiation therapy for early-stage non-small-cell lung carcinoma: four-year results of a prospective phase II study. Int J Radiate Oncol Biol Phys 75:677–682CrossRefGoogle Scholar
  17. Fowler JF, Welsh JS, Howard SP (2004) Loss of biological effect in prolonged fraction delivery. Int J Radiate Oncol Biol Phys 59:242–249CrossRefGoogle Scholar
  18. Fritz P, Kraus HJ, Blaschke T et al (2008) Stereotactic, high single-dose irradiation of stage I non-small cell lung cancer (NSCLC) using four-dimensional CT scans for treatment planning. Lung Cancer 60:193–199PubMedCrossRefGoogle Scholar
  19. Fuks Z, Kolesnick R (2005) Engaging the vascular component of the tumor response. Cancer Cell 8:89–91PubMedCrossRefGoogle Scholar
  20. Fuss M, Salter BJ, Cheek D, Sadeghi A, Hevesy JM, Herman TS (2004) Repositioning accuracy of a commercially available thermoplastic mask system. Radiother Oncol 71:339–345PubMedCrossRefGoogle Scholar
  21. Ginsberg RJ, Rubinstein LV (1995) Randomized trial of lobectomy versus limited resection for T1 N0 non-small cell lung cancer. Lung cancer study group. Ann Thorac Surg 60:615–622 discussion 22–23PubMedCrossRefGoogle Scholar
  22. Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49:4825–4835PubMedCrossRefGoogle Scholar
  23. Hall EJ, Gross W, Dvorak RF, Kellerer AM, Rossi EH (1972) Survival curves and age response functions for Chinese hamster cells exposed to x-rays or high LET alpha-particles. Radiate Res 52:88–98CrossRefGoogle Scholar
  24. Hara R, Itami J, Kondo T et al (2006) Clinical outcomes of single-fraction stereotactic radiation therapy of lung tumors. Cancer 106:1347–1352PubMedCrossRefGoogle Scholar
  25. Heinzerling JH, Anderson JF, Papiez L et al (2008) Four-dimensional computed tomography scan analysis of tumor and organ motion at varying levels of abdominal compression during stereotactic treatment of lung and liver. Int J Radiate Oncol Biol Phys 70:1571–1578CrossRefGoogle Scholar
  26. Herfarth KK, Debus J, Lohr F et al (2001) Stereotactic single-dose radiation therapy of liver tumors: results of a phase I/II trial. J Clin Oncol 19:164–170PubMedGoogle Scholar
  27. Hof H, Muenter M, Oetzel D, Hoess A, Debus J, Herfarth K (2007) Stereotactic single-dose radiotherapy (radiosurgery) of early stage non-small-cell lung cancer (NSCLC). Cancer 110:148–155PubMedCrossRefGoogle Scholar
  28. Jaffray DA, Siewerdsen JH, Wong JW, Martinez AA (2002) Flat-panel cone-beam computed tomography for image-guided radiation therapy. Int J Radiate Oncol Biol Phys 53:1337–1349CrossRefGoogle Scholar
  29. Kaskowitz L, Graham MV, Emami B, Halverson KJ, Rush C (1993) Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiate Oncol Biol Phys 27:517–523CrossRefGoogle Scholar
  30. Kimura T, Hirokawa Y, Murakami Y et al (2004) Reproducibility of organ position using voluntary breath-hold method with spirometer for extracranial stereotactic radiotherapy. Int J Radiate Oncol Biol Phys 60:1307–1313CrossRefGoogle Scholar
  31. Kini VR, Vedam SS, Keall PJ, Patil S, Chen C, Mohan R (2003) Patient training in respiratory-gated radiotherapy. Med Dosim 28:7–11PubMedCrossRefGoogle Scholar
  32. Kirkpatrick JP, Dewhirst MW (2008) Analytic solution to steady-state radial diffusion of a substrate with first-order reaction kinetics in the tissue of a Krogh’s cylinder. Radiate Res 169:350–354CrossRefGoogle Scholar
  33. Kooch N, Liu HE, Starkschall G et al (2004) Evaluation of internal lung motion for respiratory-gated radiotherapy using MRI: Part I—correlating internal lung motion with skin fiducial motion. Int J Radiate Oncol Biol Phys 60:1459–1472CrossRefGoogle Scholar
  34. Koong AC, Le QT, Ho A et al (2004) Phase I study of stereotactic radiosurgery in patients with locally advanced pancreatic cancer. Int J Radiate Oncol Biol Phys 58:1017–1021CrossRefGoogle Scholar
  35. Kuriyama K, Onishi H, Sano N et al (2003) A new irradiation unit constructed of self-moving gantry-CT and linac. Int J Radiate Oncol Biol Phys 55:428–435CrossRefGoogle Scholar
  36. Koto M, Takai Y, Ogawa Y et al (2007) A phase II study on stereotactic body radiotherapy for stage I non-small cell lung cancer. Radiother Oncol 85:429–434PubMedCrossRefGoogle Scholar
  37. Lagerwaard FJ, Van Sornsen de Koste JR, Nijssen-Visser MR et al (2001) Multiple “slow” CT scans for incorporating lung tumor mobility in radiotherapy planning. Int J Radiate Oncol Biol Phys 51:932–937CrossRefGoogle Scholar
  38. Lagerwaard FJ, Haasbeek CJ, Smit EF, Slotman BJ, Senan S (2008) Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer. Int J Radiate Oncol Biol Phys 70:685–692CrossRefGoogle Scholar
  39. Lax I, Blomgren H, Naslund I, Svanstorm R (1994) Stereotactic radiotherapy of malignancies in the abdomen. Methodological aspects. Acta Oncol 33:677–683PubMedCrossRefGoogle Scholar
  40. Lee Y, Auh SL, Wang Y et al (2009) Therapeutic effects of ablative radiation on local tumor require CD8 + T cells: changing strategies for cancer treatment. Blood 114:589–595PubMedCrossRefGoogle Scholar
  41. Leskell L (1951) The stereotactic method and radiosurgery of the brain. Acta Chir Scand 102:316–319Google Scholar
  42. Liu R, Buatti JM, Howes TL, Dill J, Modrick JM, Meeks SL (2006) Optimal number of beams for stereotactic body radiotherapy of lung and liver lesions. Int J Radiate Oncol Biol Phys 66:906–912CrossRefGoogle Scholar
  43. Liu HH, Balter P, Tutt T et al (2007) Assessing respiration-induced tumor motion and internal target volume using four-dimensional computed tomography for radiotherapy of lung cancer. Int J Radiate Oncol Biol Phys 68:531–540CrossRefGoogle Scholar
  44. Loo BW, Chang JY, Dawson LA et al (2011) Stereotactic ablative radiotherapy: what’s in a name? Pract Radiate Oncol 1:38–39CrossRefGoogle Scholar
  45. Madsen BL, Hsi RA, Pham HT, Fowler JR, Esagui L, Corman J (2007) Stereotactic hypofractionated accurate radiotherapy of the prostate (SHARP), 33.5 Gy in five fractions for localized disease: first clinical trial results. Int J Radiate Oncol Biol Phys 67:1099–1105CrossRefGoogle Scholar
  46. Mageras GS, Yorke E (2004) Deep inspiration breath hold and respiratory gating strategies for reducing organ motion in radiation treatment. Semin Radiate Oncol 14:65–75CrossRefGoogle Scholar
  47. Mageras GS, Pevsner A, Yorke ED et al (2004) Measurement of lung tumor motion using respiration-correlated CT. Int J Radiate Oncol Biol Phys 60:933–941Google Scholar
  48. Marks LB (1995) Extrapolating hypofractionated radiation schemes from radiosurgery data: regarding Hall et al. IJROBP 21:819–824; 1991 and Hall and Brenner (1993) IJROBP 25:381–385. Int J Radiat Oncol Biol Phys 1995; 32:274–276Google Scholar
  49. Martinez AA, Yan D, Lockman D et al (2001) Improvement in dose escalation using the process of adaptive radiotherapy combined with three-dimensional conformal or intensity-modulated beams for prostate cancer. Int J Radiate Oncol Biol Phys 50:1226–1234CrossRefGoogle Scholar
  50. Matsuo Y, Nagata Y, Mizowaki T et al (2007) Evaluation of mass-like consolidation after stereotactic body radiation therapy for lung tumors. Int J Clin Oncol 12:356–362PubMedCrossRefGoogle Scholar
  51. McGarry RC, Papiez L, Williams M, Whit ford T, Timmerman RD (2005) Stereotactic body radiation therapy of early-stage non-small-cell lung carcinoma: phase I study. Int J Radiate Oncol Biol Phys 63:1010–1015CrossRefGoogle Scholar
  52. Murphy MJ (1997) An automatic six-degree-of-freedom image registration algorithm for image-guided frameless stereotaxic radiosurgery. Med Phys 24:857–866PubMedCrossRefGoogle Scholar
  53. Murphy MJ, Martin D, Whyte R, Hai J, Ozhasoglu C, Le QT (2002) The effectiveness of breath-holding to stabilize lung and pancreas tumors during radiosurgery. Int J Radiate Oncol Biol Phys 53:475–482CrossRefGoogle Scholar
  54. Nagata Y, Takayama K, Matsuo Y et al (2005) Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiate Oncol Biol Phys 63:1427–1431CrossRefGoogle Scholar
  55. Naruke T, Goya T, Tsuchiya R, Suemasu K (1988) Prognosis and survival in resected lung carcinoma based on the new international staging system. J Thorax Cardiovascular Surge 96:440–447Google Scholar
  56. Negoro Y, Nagata Y, Aoki T et al (2001) The effectiveness of an immobilization device in conformal radiotherapy for lung tumor: reduction of respiratory tumor movement and evaluation of the daily setup accuracy. Int J Radiate Oncol Biol Phys 50:889–898CrossRefGoogle Scholar
  57. Nesbitt J, Putnam JB Jr, Walsh GL, Roth JA, Mountain CF (1995) Survival in early-stage non-small cell lung cancer. Ann Thorax Surge 60:466–472CrossRefGoogle Scholar
  58. Nyman J, Johansson KA, Hulten U (2006) Stereotactic hypo fractionated radiotherapy for stage I non-small cell lung cancer—mature results for medically inoperable patients. Lung Cancer 51:97–103PubMedCrossRefGoogle Scholar
  59. O’Dell WG, Schell MC, Reynolds D, Okunieff R (2002) Dose broadening due to target position variability during fractionated breath-held radiation therapy. Med Phys 29:1430–1437PubMedCrossRefGoogle Scholar
  60. Onishi H, Araki T, Shirato H et al (2004) Stereotactic hypo fractionated high-dose irradiation for stage I nonsmall cell lung carcinoma: clinical outcomes in 245 subjects in a Japanese multiinstitutional study. Cancer 101:1623–1631PubMedCrossRefGoogle Scholar
  61. Papiez L, Timmerman R, DesRosiers C, Randall M (2003) Extracranial stereotactic radioablation: physical principles. Acta Oncol 42:882–894PubMedCrossRefGoogle Scholar
  62. Park C, Papiez L, Zhang S, Story M, Timmerman RD (2008) Universal survival curve and single fraction equivalent dose: useful tools in understanding potency of ablative radiotherapy. Int J Radiate Oncol Biol Phys 70:847–852CrossRefGoogle Scholar
  63. Pennathur A, Luketich JD, Burton S et al (2007) Stereotactic radiosurgery for the treatment of lung neoplasm: initial experience. Ann Thorac Surg 83:1820–1824 discussion 4–5PubMedCrossRefGoogle Scholar
  64. Potters L, Steinberg M, Rose C et al (2004) American Society for Therapeutic Radiology and Oncology and American College of Radiology practice guideline for the performance of stereotactic body radiation therapy. Int J Radiate Oncol Biol Phys 60:1026–1032CrossRefGoogle Scholar
  65. Potti A, Mukherjee S, Petersen R et al (2006) A genomic strategy to refine prognosis in early-stage non-small-cell lung cancer. N Engl J Med 355:570–580PubMedCrossRefGoogle Scholar
  66. Rossi HH, Kellerer AM (1972) Radiation carcinogenesis at low doses. Science 175:200–202PubMedCrossRefGoogle Scholar
  67. Rusthoven KE, Kavanagh BD, Burri SH et al (2009a) Multi-institutional phase I/II trial of stereotactic body radiation therapy for lung metastases. J Clin Oncol 27:1579–1584CrossRefGoogle Scholar
  68. Rusthoven KE, Kavanagh BD, Cardenes H et al (2009b) Multi-institutional phase I/II trial of stereotactic body radiation therapy for liver metastases. J Clin Oncol 27:1572–1578CrossRefGoogle Scholar
  69. Schweikard A, Shiomi H, Adler J (2004) Respiration tracking in radiosurgery. Med Phys 31:2738–2741PubMedCrossRefGoogle Scholar
  70. Sharp GC, Jiang SB, Shimizu S, Shirato H (2004) Prediction of respiratory tumour motion for real-time image-guided radiotherapy. Phys Med Biol 49:425–440PubMedCrossRefGoogle Scholar
  71. Shirato H, Shimizu S, Shimizu T, Nishioka T, Miyasaka K (1999) Real-time tumour-tracking radiotherapy. Lancet 353:1331–1332PubMedCrossRefGoogle Scholar
  72. Shirato H, Shimizu S, Kunieda T et al (2000) Physical aspects of a real-time tumor-tracking system for gated radiotherapy. Int J Radiate Oncol Biol Phys 48:1187–1195CrossRefGoogle Scholar
  73. Sonke JJ, Zijp L, Remeijer P, van Herk M (2005) Respiratory correlated cone beam CT. Med Phys 32:1176–1186PubMedCrossRefGoogle Scholar
  74. Song W, Schaly B, Bauman G, Battista J, Van Dyk J (2005) Image-guided adaptive radiation therapy (IGART): radiobiological and dose escalation considerations for localized carcinoma of the prostate. Med Phys 32:2193–2203PubMedCrossRefGoogle Scholar
  75. Stevens CW, Munden RF, Forster KM et al (2001) Respiratory-driven lung tumor motion is independent of tumor size, tumor location, and pulmonary function. Int J Radiate Oncol Biol Phys 51:62–68CrossRefGoogle Scholar
  76. Takeda A, Kunieda E, Takeda T et al (2008) Possible misinterpretation of demarcated solid patterns of radiation fibrosis on CT scans as tumor recurrence in patients receiving hypofractionated stereotactic radiotherapy for lung cancer. Int J Radiate Oncol Biol Phys 70:1057–1065CrossRefGoogle Scholar
  77. Timmerman RD, Story M (2006) Stereotactic body radiation therapy: a treatment in need of basic biological research. Cancer J 12:19–20PubMedCrossRefGoogle Scholar
  78. Timmerman R, Papiez L, Suntharalingam M (2003a) Extracranial stereotactic radiation delivery: expansion of technology beyond the brain. Techno Cancer Res Treat 2:153–160Google Scholar
  79. Timmerman R, Papiez L, McGarry R et al (2003b) Extracranial stereotactic radio ablation: results of a phase I study in medically inoperable stage I non-small cell lung cancer. Chest 124:1946–1955CrossRefGoogle Scholar
  80. Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24:4833–4839PubMedCrossRefGoogle Scholar
  81. Timmerman RD, Kavanagh BD, Cho LC, Papiez L, Xing L (2007a) Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol 25:947–952CrossRefGoogle Scholar
  82. Timmerman RD, Park C, Kavanagh BD (2007b) The North American experience with stereotactic body radiation therapy in non-small cell lung cancer. J Thorac Oncol 2:S101–S112CrossRefGoogle Scholar
  83. Timmerman R, Paulus R, Galvin J (2010a) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303(11):1170–1176CrossRefGoogle Scholar
  84. Timmerman R, Paulus R, Galvin J et al (2010b) Stereotactic body radiation therapy for inoperable early stage lung cancer. JAMA 303:1070–1076CrossRefGoogle Scholar
  85. Uematsu M, Shioda A, Suda A et al (2001) Computed tomography-guided frameless stereotactic radiotherapy for stage I non-small cell lung cancer: a 5-year experience. Int J Radiate Oncol Biol Phys 51:666–670CrossRefGoogle Scholar
  86. Uematsu M, Shioda A, Tahara K et al (1998) Focal, high dose, and fractionated modified stereotactic radiation therapy for lung carcinoma patients: a preliminary experience. Cancer 82:1062–1070PubMedCrossRefGoogle Scholar
  87. Vedam SS, Keall PJ, Kini VR, Mohan R (2001) Determining parameters for respiration-gated radiotherapy. Med Phys 28:2139–2146PubMedCrossRefGoogle Scholar
  88. Verrellen D, Soete G, Linthout N et al (2003) Quality assurance of a system for improved target localization and patient set-up that combines real-time infrared tracking and stereoscopic x-ray imaging. Radiothermy Oncol 67:129–141CrossRefGoogle Scholar
  89. Wang LT, Solberg TD, Medin PM, Boone R (2001) Infrared patient positioning for stereotactic radiosurgery of extracranial tumors. Comput Biol Med 31:101–111PubMedCrossRefGoogle Scholar
  90. Wang L, Fienberg S, Chen L, Pasklev K, Ma CC (2006) Benefit of three-dimensional image-guided stereotactic localization in the hypofractionated treatment of lung cancer. Int J Radiate Oncol Biol Phys 66:738–747CrossRefGoogle Scholar
  91. Wang Z, Wu QJ, Marks LB, Larrier N, Yin FF (2007) Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions. Int J Radiate Oncol Biol Phys 69:1618–1624CrossRefGoogle Scholar
  92. Wisnivesky JP, Bonomi M, Henschke C, Iannuzzi M, McGinn T (2005) Radiation therapy for the treatment of unresected stage I-II non-small cell lung cancer. Chest 128:1461–1467PubMedCrossRefGoogle Scholar
  93. Wulf J, Hadinger U, Oppitz U, Olshausen B, Flentje M (2000) Stereotactic radiotherapy of extracranial targets: CT-simulation and accuracy of treatment in the stereotactic body frame. Radiothermy Oncol 57:225–236CrossRefGoogle Scholar
  94. Xia T, Li H, Sun Q et al (2006) Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiate Oncol Biol Phys 66:117–125CrossRefGoogle Scholar
  95. Yenice KM, Lovelock DM, Hunt MA et al (2003) CT image-guided intensity-modulated therapy for paraspinal tumors using stereotactic immobilization. Int J Radiate Oncol Biol Phys 55:583–593CrossRefGoogle Scholar
  96. Yin F, Kim JG, Haughton C et al (2001) Extracranial radiosurgery: immobilizing liver motion in dogs using high-frequency jet ventilation and total intravenous anesthesia. Int J Radiate Oncol Biol Phys 49:211–216CrossRefGoogle Scholar
  97. Zimmermann FB, Geinitz H, Schill S et al (2005) Stereotactic hypofractionated radiation therapy for stage I non-small cell lung cancer. Lung Cancer 48:107–114PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Effie Marie Cain Distinguished Chair in Cancer Therapy Research, Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasUSA
  2. 2.Department of Radiation OncologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations