Target Volume Definition in Non-Small Cell Lung Cancer

  • Lucyna Kepka
  • Milena Kolodziejczyk
Part of the Medical Radiology book series (MEDRAD)


Proper target volume delineation is a crucial stage of treatment planning, so any error introduced in this process is a systematic error and cannot be quantified and/or detected by modern treatment technologies, unlike other sources of geometrical uncertainties. All steps of target definition should be standardized. In non-small cell lung cancer radiotherapy, there are specific problems related to the definition of all three consecutive target volumes recommended by ICRU: gross tumor volume (GTV), clinical target volume (CTV), and planning target volume (PTV). In GTV delineation, the proper imaging, e.g., standardized way of the use of CT and PET-CT, and continuous radiological training of radiation oncologists are emphasized. For CTV, we still lack robust data on the margin which is necessary to expand around GTV of the tumor and pathologic lymph nodes to adequately account for microscopic spread. Additionally, elective nodal irradiation is still a source of controversies. For PTV definition, major increase in technologies is involved. It leads in some cases to improvement of the tumor coverage and sparing of organs at risk, but as this process is expensive and time consuming, it might not be always beneficial.


Lymph Node Station Planning Target Volume Clinical Target Volume Gross Tumor Volume Internal Target Volume 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Belderbos J, Uitterhoeve L, van Zandwijk N et al (2007) Randomised trial of sequential versus concurrent chemo-radiotherapy in patients with inoperable non-small cell lung cancer (EORTC 08972–22973). Eur J Cancer 43:114–121PubMedCrossRefGoogle Scholar
  2. Belderbos JSA, Kepka L, Kong F-M, Martel MK, Videtic GMM, Jeremic B (2008) Report from the international atomic energy agency (IAEA) consultants’ meeting on elective nodal irradiation in lung cancer: non-small cell lung cancer (NSCLC). Int J Radiat Oncol Biol Phys 72:335–342PubMedCrossRefGoogle Scholar
  3. Black QC, Grills IS, Kestin LL (2004) Defining a radiotherapy target with positron emission tomography. Int J Radiat Oncol Biol Phys 60:1272–1282PubMedCrossRefGoogle Scholar
  4. Boellard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version1.0. Eur J Nucl Med Mol Imaging 37:181–200CrossRefGoogle Scholar
  5. Borst GR, Sonke JJ, Betgen A et al (2007) Kilo-voltage cone-beam computed tomography set-up measurements for lung cancer patients; first clinical results and comparison with electronic portal imaging device. Int J Radiat Oncol Biol Phys 68:555–561PubMedCrossRefGoogle Scholar
  6. Bowden P, Fisher R, MacManus M et al (2002) Measurement of lung tumor volumes using three-dimensional computer planning software. Int J Radiat Oncol Biol Phys 53:566–573PubMedCrossRefGoogle Scholar
  7. Bradley J, Bae K, Choi N et al (2010) A phase II comparative study of gross tumor volume definition with or without PET/CT fusion in dosimetric planning for non-small cell lung cancer (NSCLC): primary analysis of radiation therapy oncology group (RTOG) 0515. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  8. Chapet O, Kong F-M, Quint LE et al (2005) CT-based definition of thoracic lymph node stations: an Atlas from the University of Michigan. Int J Radiat Oncol Biol Phys 63:170–178PubMedCrossRefGoogle Scholar
  9. Curran WJ, Scott CB, Langer CJ et al (2003) Long-term benefit is observed in a phase III comparison of sequential vs concurrent chemoradiation for patients with unresected stage III NSCLC: RTOG 9410. Proc Am Soc Clin Oncol 22:621 (abstr 2499)Google Scholar
  10. de Langen AJ, Raijmakers P, Riphagen I, Paul MA, Hoekstra OS (2006) The size of mediastinal lymph nodes and its relation with metastatic involvement: a meta-analysis. Eur J Cardiothorac Surg 29:26–29PubMedCrossRefGoogle Scholar
  11. de Ruysscher D, Wanders R, van Haren E et al (2008) HI-CHART: a phase I/II study on the feasibility of high dose continuous hyperfractionated accelerated radiotherapy in patients with inoperable non-small cell lung cancer. Int J Radiat Oncol Biol Phys 71:132–138PubMedCrossRefGoogle Scholar
  12. de Ruysscher D, Faivre-Finn C, Nestle U et al (2010) European organization for research and treatment of cancer recommendations for planning and delivery of high dose, high-precision of radiotherapy for lung cancer. J Clin Oncol 28(36):5301–5310PubMedCrossRefGoogle Scholar
  13. Devic S, Tomic N, Faria S et al (2010) Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: still a Pandora’s box? Int J Radiat Oncol Biol Phys 78:1555–1562PubMedCrossRefGoogle Scholar
  14. Dillman RO, Herndon J, Seagren SL, Eaton WL Jr, Green MR (1996) Improved survival in stage III non–small-cell lung cancer: seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial. J Natl Cancer Inst 88:1210–1215PubMedCrossRefGoogle Scholar
  15. Fernandes AT, Shen J, Finlay J et al (2010) Elective nodal irradiation (ENI) vs. involved field radiotherapy (IFRT) for locally advanced non-small cell lung cancer (NSCLC): a comparative analysis of toxicities and clinical outcomes. Radiother Oncol 95:178–184PubMedCrossRefGoogle Scholar
  16. Fournel P, Robinet G, Thomas P, Groupe Lyon-Saint-Etienne d’Oncologie Thoracique-Groupe Français de Pneumo-Cancérologie (2005) Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small-cell lung cancer: Groupe Lyon-Saint-Etienne d’Oncologie Thoracique-Groupe Français de Pneumo-Cancérologie NPC 95-01 Study. J Clin Oncol 23:5910–5917PubMedCrossRefGoogle Scholar
  17. Furuse K, Fukuoka M, Kawahara M et al (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non–small-cell lung cancer. J Clin Oncol 17:2692–2699PubMedGoogle Scholar
  18. Giraud P, Antoine M, Larrouy A et al (2000) Evaluation of microscopic tumor extension in non-small cell lung cancer for three-dimensional conformal radiotherapy treatment planning. Int J Radiat Oncol Biol Phys 48:1015–1024PubMedCrossRefGoogle Scholar
  19. Giraud P, Elles S, Helfre S et al (2002) Conformal radiotherapy for lung cancer: different delineation of the gross tumor volume (GTV) by radiologists and radiation oncologists. Radiother Oncol 62:27–36PubMedCrossRefGoogle Scholar
  20. Giraud P, De Rycke Y, Lavole A et al (2006) Probability of mediastinal involvement in non-small-cell lung cancer: a statistical definition of the clinical target volume for 3-dimensional conformal radiotherapy? Int J Radiat Oncol Biol Phys 64:127–135PubMedCrossRefGoogle Scholar
  21. Greco C, Rosenzweig K, Cascini GL, Tamburini O (2007) Current status of PET/CT for tumour volume definition in radiotherapy treatment planning for non-small cell lung cancer (NSCLC). Lung Cancer 57:125–134PubMedCrossRefGoogle Scholar
  22. Grills IS, Yan D, Martinez AA et al (2003) Potential for reduced toxicity and dose escalation in the treatment of inoperable non-small-cell lung cancer: a comparison of intensity-modulated radiation therapy (IMRT), 3D conformal radiation, and elective nodal irradiation. Int J Radiat Oncol Biol Phys 57:875–890PubMedCrossRefGoogle Scholar
  23. Grills IS, Fitch DL, Goldstein NS et al (2007) Clinicopathologic analysis of microscopic extension in lung adenocarcinoma: defining clinical target volume for radiotherapy. Int J Radiat Oncol Biol Phys 69:334–341PubMedCrossRefGoogle Scholar
  24. Huber RM, Flentje M, Schmidt M, Bronchial Carcinoma Therapy Group et al (2006) Simultaneous chemoradiotherapy compared with radiotherapy alone after induction chemotherapy in inoperable stage IIIA or IIIB non-small-cell lung cancer: study CTRT99/97 by the bronchial carcinoma therapy group. J Clin Oncol 24(27):4397–4404PubMedCrossRefGoogle Scholar
  25. Hurkmans CW, Remeijer P, Lebesque JV, Mijnher BJ (2001) Set-up verification using portal imaging; review of current clinical practice. Radiother Oncol 58:105–120PubMedCrossRefGoogle Scholar
  26. International Commission on Radiation Units and Measurements (1993) ICRU Report 50. Prescribing, recording and reporting photon beam therapy. ICRU Bethesda, MD, USAGoogle Scholar
  27. International Commission on Radiation Units and Measurements (1999) ICRU Report 62. Prescribing, recording and reporting photon beam therapy. ICRU Bethesda, MD, USAGoogle Scholar
  28. Kara M, Dizbay Sak S, Orhan D, Yavuzer S (2000) Changing patterns of lung cancer;(3/4 in.) 1.9 cm; still a safe length for bronchial resection margin? Lung Cancer 30:161–168PubMedCrossRefGoogle Scholar
  29. Kara M, Dizbay Sak S, Orhan D, Kavukcu S (2001) Proximal bronchial extension with special reference to tumor localization in non-small cell lung cancer. Eur J Cardiothorac Surg 20:350–355PubMedCrossRefGoogle Scholar
  30. Kara M, Dikmen E, Kilic D et al (2002) Prognostic implication of microscopic proximal bronchial extension in non-small cell lung cancer. Ann Thorac Surg 74:348–354PubMedCrossRefGoogle Scholar
  31. Kelsey CR, Marks LB, Glatstein E (2009) Elective nodal irradiation for locally advanced non-small-cell lung cancer: it’s called cancer for a reason. Int J Radiat Oncol Biol Phys 73:1291–1292PubMedCrossRefGoogle Scholar
  32. Kepka L, Bujko K, Garmol D et al (2007) Delineation variation of lymph node stations for treatment planning in lung cancer radiotherapy. Radiother Oncol 85:450–455PubMedCrossRefGoogle Scholar
  33. Kepka L, Bujko K, Zolciak-Siwinska A (2008) Risk of isolated nodal failure for non-small cell lung cancer (NSCLC) treated with the elective nodal irradiation (ENI) using 3D-conformal radiotherapy (3D-CRT) techniques. Acta Oncol 47:95–103PubMedCrossRefGoogle Scholar
  34. Kepka L, Tatro D, Moran JM et al (2009a) Designing targets for elective nodal irradiation in lung cancer radiotherapy: a planning study. Int J Radiat Oncol Biol Phys 73:1397–1403PubMedCrossRefGoogle Scholar
  35. Kepka L, Tyc-Szczepaniak D, Bujko K (2009b) Dose per fraction escalation of accelerated hypofractionated three-dimensional conformal radiotherapy in locally advanced non-small cell lung cancer. J Thorac Oncol 4:853–861PubMedCrossRefGoogle Scholar
  36. Kepka L, Bujko K, Orlowski T et al (2011) Cardiopulmonary morbidity and quality of life in non-small cell lung cancer patients treated with or without postoperative radiotherapy. Radiother Oncol 98:238–243PubMedCrossRefGoogle Scholar
  37. Kołodziejczyk M, Kepka L, Dziuk M et al (2010) Impact of [18F]fluorodeoxyglucose PET-CT staging on treatment planning in radiotherapy incorporating elective nodal irradiation for non-small cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  38. Lagerwaard FJ, van de Vaart PJ, Voet PW et al (2002) Can errors in reconstructing pre-chemotherapy target volumes contribute to the inferiority of sequential chemoradiation in stage III non-small cell lung cancer (NSCLC)? Lung Cancer 38:297–301PubMedCrossRefGoogle Scholar
  39. Le Chevalier T, Arriagada R, Quoix E et al (1991) Radiotherapy alone versus combined chemotherapy and radiotherapy in nonresectable non–small-cell lung cancer: first analysis of a randomized trial in 353 patients. J Natl Cancer Inst 83:417–423PubMedCrossRefGoogle Scholar
  40. Macmanus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET-CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94PubMedCrossRefGoogle Scholar
  41. Mountain CF, Dresler CM (1997) Regional lymph node classification for lung cancer staging. Chest 111:1718–1723PubMedCrossRefGoogle Scholar
  42. Naruke T, Suemasu K, Ishikawa S (1978) Lymph node mapping and curability at various levels of metastasis in resected lung cancer. J Thorac Cardiovasc Surg 76:833–839Google Scholar
  43. Nestle U, Kremp S, Grosu A (2006) Practical integration of [18F]-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): the technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 81:209–225PubMedCrossRefGoogle Scholar
  44. Pasic A, Brokx HA, Comans EF (2005) Detection and staging of preinvasive lesions and occult lung cancer in the central airways with 18F-fluorodeoxyglucose positron emission tomography: a pilot study. Clin Cancer Res 11:6186–6189PubMedCrossRefGoogle Scholar
  45. Persson GF, Nygaard DE, Brink C et al (2010) Deviations in delineated GTV caused by artefacts in 4DCT. Radiother Oncol 96:61–66PubMedCrossRefGoogle Scholar
  46. PORT Meta-analysis Trialists Group (1998) Postoperative radiotherapy in non-small-cell lung cancer: systematic review and meta-analysis of individual patient data from nine randomized controlled trials. Lancet 352:257–263CrossRefGoogle Scholar
  47. Rami-Porta R, Wittekind C, Goldstraw P, International Association for the Study of Lung Cancer (IASLC) Staging Committee (2005) Complete resection in lung cancer surgery: proposed definition. Lung Cancer 49:25–33PubMedCrossRefGoogle Scholar
  48. Rietzel E, Liu AK, Doppke KP et al (2006) Design of 4D treatment planning target volumes. Int J Radiat Oncol Biol Phys 66:287–295PubMedCrossRefGoogle Scholar
  49. Rietzel E, Liu AK, Chen GTY, Choi N (2008) Maximum intensity volumes for fast contouring of lung tumors including respiratory motion in 4DCT planning. Int J Radiat Oncol Biol Phys 71:1245–1252PubMedCrossRefGoogle Scholar
  50. Rocmans P, Emami B, Cox JD et al (1991) Quality control in NSCLC treatment: a consensus report. Lung Cancer 7:S19–S20CrossRefGoogle Scholar
  51. Rowell NP, Williams CJ et al (2001) Radical radiotherapy for stage I/II non-small cell lung cancer in patients not sufficiently fit or declining surgery (medically inoperable). Cochrane Database Syst Rev 2:CD002935PubMedGoogle Scholar
  52. Rusch VW, Asamura H, Watanabe H et al Members of IASLC Staging Committee (2009) . The IASLC lung cancer staging project: a proposal for a new international lymph node map in the forthcoming seventh edition of the TNM classification for lung cancer. J Thorac Oncol 4:568–577PubMedCrossRefGoogle Scholar
  53. Saito M, Yokoyama A, Kurita Y et al (2000) Treatment of roentgenographically occult endobronchial carcinoma with external beam radiotherapy and intraluminal low-dose rate brachytherapy: a second report. Int J Radiat Oncol Biol Phys 47:673–680PubMedCrossRefGoogle Scholar
  54. Sause W, Kolesar P, Taylor SI et al (2000) Final results of phase III trial in regionally advanced unresectable non–small-cell lung cancer: radiation therapy oncology group, eastern cooperative oncology group, and southwest oncology group. Chest 117:358–364PubMedCrossRefGoogle Scholar
  55. Silvestri GA, Gould MK, Margolis ML et al (2007) Noninvasive staging of non-small cell lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 132:178–201CrossRefGoogle Scholar
  56. Slotman BJ, Lagerwaard FJ, Senan S (2006) 4D imaging for target definition in stereotactic radiotherapy for lung cancer. Acta Oncol 45:966–972PubMedCrossRefGoogle Scholar
  57. Sonke JJ, Beldernos J (2010) Adaptive radiotherapy for lung cancer. Sem Radiat Oncol 20:94–106CrossRefGoogle Scholar
  58. Sornsen van, de Koste JR, Lagerwaard FJ, Nijssen-Visser MRJ et al (2002) What margins are necessary for incorporating mediastinal nodal mobility into involved-field radiotherapy for lung cancer? Int J Radiat Oncol Biol Phys 53:1211–1215CrossRefGoogle Scholar
  59. Sornsen van, de Koste JR, Lagerwaard FJ, Nijssen-Visser MRJ et al (2003) Tumor location cannot predict the mobility of lung tumors: a 3D analysis of data generated from multiple CT scans. Int J Radiat Oncol Biol Phys 56:348–354CrossRefGoogle Scholar
  60. Spoelstra FOB, Senan S, Le Pechoux C et al (2010) Variations in target volume definition for postoperative radiotherapy in stage III non-small cell lung cancer: analysis of an international contouring study. Int J Radiat Oncol Biol Phys 76:1106–1113PubMedCrossRefGoogle Scholar
  61. Steenbakkers RJ, Duppen JC, Fitton I et al (2005) Observer variation in target volume delineation of lung cancer related to radiation oncologist–computer interaction: a “Big Brother” evaluation. Radiother Oncol 77:182–190PubMedCrossRefGoogle Scholar
  62. Steenbakkers RJ, Duppen JC, Fitton I et al (2006) Reduction of observer variation using matched CT-PET for lung cancer delineation: a three-dimensional analysis. Int J Radiat Oncol Biol Phys 64:435–438PubMedCrossRefGoogle Scholar
  63. Stroom J, Blaauwqeers H, van Baardwijk A et al (2007) Feasibility of pathology-correlated lung imaging for accurate target definition of lung tumors. Int J Radiat Oncol Biol Phys 69:267–275PubMedCrossRefGoogle Scholar
  64. Tai P, Yu E, Battista J, van Dyk J (2004) Radiation treatment of lung cancer–patterns of practice in Canada. Radiother Oncol 71:167–174PubMedCrossRefGoogle Scholar
  65. Thomas M, Rübe C, Hoffknecht P, German Lung Cancer Cooperative Group et al (2008) Effect of preoperative chemoradiation in addition to preoperative chemotherapy: a randomised trial in stage III non-small-cell lung cancer. Lancet Oncol 9:636–648PubMedCrossRefGoogle Scholar
  66. Trodella L, Granone P, Valente S et al (2002) Adjuvant radiotherapy in non-small cell lung cancer with pathological stage I: definitive results of a phase III randomized trial. Radiother Oncol 62:11–19PubMedCrossRefGoogle Scholar
  67. van de Steene J, Linthout N, De Mey J et al (2002) Definition of gross tumor in lung cancer: inter-observer variability. Radiother Oncol 62:37–49PubMedCrossRefGoogle Scholar
  68. van Herk M, Remeijer P, Rasch C, Lebesque JV (2000) The probability of correct target dosage: dose population histograms for deriving treatment margins in radiotherapy. Int J Radiat Oncol Biol Phys 47:1121–1135PubMedCrossRefGoogle Scholar
  69. van Loon J, Siedschlag C, Stroom J et al (2010) Microscopic disease extension in three dimensions for non-small cell lung cancer: development of a prediction model using pathology validated positron emission tomography and computed tomography features. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  70. van Meerbeeck JP, Kramer GW, van Shil PE, European Organisation for Research, Treatment of Cancer-Lung Cancer Group et al (2007) Randomized controlled trial of resection versus radiotherapy after induction chemotherapy in stage IIIA-N2 non-small-cell lung cancer. J Natl Cancer Inst 99:442–450PubMedCrossRefGoogle Scholar
  71. Videtic GM, Rice TW, Murthy S et al (2008) Utility of positron emission tomography compared with mediastinoscopy for delineating involved lymph nodes in stage III lung cancer: insights for radiotherapy planning from a surgical cohort. Int J Radiat Oncol Biol Phys 72:702–706PubMedCrossRefGoogle Scholar
  72. Vokes EE, Herndon JE 2nd, Kelley MJ, Cancer, Leukemia Group B et al (2007) Induction chemotherapy followed by chemoradiotherapy compared with chemoradiotherapy alone for regionally advanced unresectable stage III Non-small-cell lung cancer: cancer and leukemia group B. J Clin Oncol 25:1698–1704PubMedCrossRefGoogle Scholar
  73. Wolthaus JWH, Schneider C, Sonke JJ et al (2006) Mid-ventilation CT scan construction from four dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. Int J Radiat Oncol Biol Phys 65:1560–1571PubMedCrossRefGoogle Scholar
  74. Wu K, Ung YC, Hornby J et al (2010) PET CT thresholds for radiotherapy target definition in non-small cell lung cancer: how close are we to the pathologic findings? Int J Radiat Oncol Biol Phys 77:699–706PubMedCrossRefGoogle Scholar
  75. Yuan S, Meng X, Yu J et al (2007a) Determining optimal clinical target volume margins on the basis of microscopic extracapsular extension of metastatic nodes in patients with non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 67:727–734PubMedCrossRefGoogle Scholar
  76. Yuan S, Sun X, Li M et al (2007b) A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III non-small cell lung cancer. Am J Clin Oncol 30:239–244PubMedCrossRefGoogle Scholar
  77. Zatloukal P, Petruzelka L, Zemanova M et al (2004) Concurrent versus sequential chemoradiotherapy with cisplatin and vinorelbine in locally advanced non-small-cell lung cancer: A randomized study. Lung Cancer 46:87–98PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.M. Sklodowska-Curie Memorial Cancer and Institute of OncologyWarsawPoland

Personalised recommendations