Advertisement

High Field MR Spectroscopy: Investigating Human Metabolite Levels at High Spectral and Spatial Resolution

  • Duan Xu
  • Daniel B. Vigneron
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Magnetic Resonance Spectroscopy (MRS) offers a unique window to cellular metabolism through its ability to detect the concentrations of small mobile biological compounds non-invasively. Nevertheless, MRS has failed to broadly enter the clinical routine despite its success in scientific studies. Limitations in sensitivity, spatial resolution, and spectral identification, which can be severe at lower fields, are reduced for ultra-high field MRS allowing unprecedented in vivo studies of cellular metabolite levels at 7 T. In this chapter, the challenges, methods, capabilities, and applications of ultra-high field magnetic resonance spectroscopy are presented. Also included are examples of the unique metabolic information obtained using 7 T MR systems for the study of human cellular metabolite levels in both normal volunteers and patients. High resolution MR spectroscopic imaging has provided improved detection of small brain lesions and enhanced assessment of brain tumor presence and extent. While the majority of MRS research has focused on neurological applications, the increased sensitivity and spectral resolution can improve the metabolic characterization of pathologies in other organs as well.

Keywords

Magnetic Resonance Spectroscopy Magnetic Resonance Spectroscopy Study Outer Volume Suppression Order Shim Breast Magnetic Resonance Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Ackerman JJ et al (1980) Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 283(5743):167–170PubMedCrossRefGoogle Scholar
  2. Avdievich NI et al (2009) Short echo spectroscopic imaging of the human brain at 7 T using transceiver arrays. Magn Reson Med 62(1):17–25PubMedCrossRefGoogle Scholar
  3. Balchandani P, Pauly J, Spielman D (2008) Interleaved narrow-band PRESS sequence with adiabatic spatial-spectral refocusing pulses for 1H MRSI at 7 T. Magn Reson Med 59(5):973–979PubMedCrossRefGoogle Scholar
  4. Chan AA et al (2004) Proton magnetic resonance spectroscopy imaging in the evaluation of patients undergoing gamma knife surgery for Grade IV glioma. J Neurosurg 101(3):467–475PubMedCrossRefGoogle Scholar
  5. Choi C et al (2009) In vivo detection of serine in the human brain by proton magnetic resonance spectroscopy (1H-MRS) at 7 Tesla. Magn Reson Med 62(4):1042–1046PubMedCrossRefGoogle Scholar
  6. Demaerel P et al (1991) Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15(1):67–76PubMedCrossRefGoogle Scholar
  7. Du F et al (2007) Efficient in vivo 31P magnetization transfer approach for noninvasively determining multiple kinetic parameters and metabolic fluxes of ATP metabolism in the human brain. Magn Reson Med 57(1):103–114PubMedCrossRefGoogle Scholar
  8. Fulham MJ et al (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185(3):675–686PubMedGoogle Scholar
  9. Garwood M, DelaBarre L (2001) The return of the frequency sweep: designing adiabatic pulses for contemporary NMR. J Magn Reson 153(2):155–177PubMedCrossRefGoogle Scholar
  10. Goelman G et al (2007) Chemical-shift artifact reduction in Hadamard-encoded MR spectroscopic imaging at high (3 T and 7 T) magnetic fields. Magn Reson Med 58(1):167–173PubMedCrossRefGoogle Scholar
  11. Haddadin IS et al (2009) Metabolite quantification and high-field MRS in breast cancer. NMR Biomed 22(1):65–76PubMedCrossRefGoogle Scholar
  12. Hetherington HP et al (2010) RF shimming for spectroscopic localization in the human brain at 7 T. Magn Reson Med 63(1):9–19PubMedGoogle Scholar
  13. Hurd R et al (2004) Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 51(3):435–440PubMedCrossRefGoogle Scholar
  14. Klomp DW et al (2009) Proton spectroscopic imaging of the human prostate at 7 T. NMR Biomed 22(5):495–501PubMedCrossRefGoogle Scholar
  15. Le Roux P et al (1998) Optimized outer volume suppression for single-shot fast spin-echo cardiac imaging. J Magn Reson Imaging 8(5):1022–1032PubMedCrossRefGoogle Scholar
  16. Lei H et al (2003) In vivo 31P magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49(2):199–205PubMedCrossRefGoogle Scholar
  17. Luyten PR et al (1990) Metabolic imaging of patients with intracranial tumors: H-1 MR spectroscopic imaging and PET. Radiology 176(3):791–799PubMedGoogle Scholar
  18. Mangia S et al (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063PubMedGoogle Scholar
  19. Mekle R et al (2009) MR spectroscopy of the human brain with enhanced signal intensity at ultrashort echo times on a clinical platform at 3 T and 7 T. Magn Reson Med 61(6):1279–1285PubMedCrossRefGoogle Scholar
  20. Metzger GJ et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7 T based on subject-dependent transmit phase measurements. Magn Reson Med 59(2):396–409PubMedCrossRefGoogle Scholar
  21. Negendank WG et al (1996) Proton magnetic resonance spectroscopy in patients with glial tumors: a multicenter study. J Neurosurg 84(3):449–458PubMedCrossRefGoogle Scholar
  22. Nelson SJ (2001) Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumors. Magn Reson Med 46(2):228–239PubMedCrossRefGoogle Scholar
  23. Nelson SJ, Vigneron DB, Dillon WP (1999) Serial evaluation of patients with brain tumors using volume MRI and 3D 1H MRSI. NMR Biomed 12(3):123–138PubMedCrossRefGoogle Scholar
  24. Nelson SJ et al (2002) In vivo molecular imaging for planning radiation therapy of gliomas: an application of 1H MRSI. J Magn Reson Imaging 16(4):464–476PubMedCrossRefGoogle Scholar
  25. Park I et al (2007) Patterns of recurrence analysis in newly diagnosed glioblastoma multiforme after three-dimensional conformal radiation therapy with respect to pre-radiation therapy magnetic resonance spectroscopic findings. Int J Radiat Oncol Biol Phys 69(2):381–389PubMedCrossRefGoogle Scholar
  26. Pauly J et al (1991) Parameter relations for the Shinnar-Leroux selective excitation pulse design algorithm. IEEE Trans Med Imaging 10(1):53–65PubMedCrossRefGoogle Scholar
  27. Preul MC et al (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2(3):323–325PubMedCrossRefGoogle Scholar
  28. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679PubMedCrossRefGoogle Scholar
  29. Qiao H et al (2006) In vivo 31P MRS of human brain at high/ultrahigh fields: a quantitative comparison of NMR detection sensitivity and spectral resolution between 4 T and 7 T. Magn Reson Imaging 24(10):1281–1286PubMedCrossRefGoogle Scholar
  30. Ramadan S et al (2010) In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7 T. J Magn Reson 204(1):91–98PubMedCrossRefGoogle Scholar
  31. Ren J et al (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7 Tesla. J Lipid Res 49(9):2055–2062PubMedCrossRefGoogle Scholar
  32. Rock JP et al (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51(4):912–919 discussion 919–20PubMedGoogle Scholar
  33. Ross BD et al (1992) Spatially localized in vivo 1H magnetic resonance spectroscopy of an intracerebral rat glioma. Magn Reson Med 23(1):96–108PubMedCrossRefGoogle Scholar
  34. Scheenen TW, Heerschap A, Klomp DW (2008) Towards 1H-MRSI of the human brain at 7 T with slice-selective adiabatic refocusing pulses. MAGMA 21(1–2):95–101PubMedCrossRefGoogle Scholar
  35. Schricker AA et al (2001) Dualband spectral-spatial RF pulses for prostate MR spectroscopic imaging. Magn Reson Med 46(6):1079–1087PubMedCrossRefGoogle Scholar
  36. Schulte RF et al (2004) Equi-ripple design of quadratic-phase RF pulses. J Magn Reson 166(1):111–122PubMedCrossRefGoogle Scholar
  37. Setsompop K et al (2008) Slice-selective RF pulses for in vivo B1+ inhomogeneity mitigation at 7 Tesla using parallel RF excitation with a 16-element coil. Magn Reson Med 60(6):1422–1432PubMedCrossRefGoogle Scholar
  38. Shinnar M (1994) Reduced power selective excitation radio frequency pulses. Magn Reson Med 32(5):658–660PubMedCrossRefGoogle Scholar
  39. Shulman RG et al (1979) Cellular applications of 31P and 13C nuclear magnetic resonance. Science 205(4402):160–166PubMedCrossRefGoogle Scholar
  40. Snyder J, Wilman A (2010) Field strength dependence of PRESS timings for simultaneous detection of glutamate and glutamine from 1.5 to 7 T. J Magn Reson 203(1):66–72PubMedCrossRefGoogle Scholar
  41. Spielman DM, Adalsteinsson E, Lim KO (1998) Quantitative assessment of improved homogeneity using higher-order shims for spectroscopic imaging of the brain. Magn Reson Med 40(3):376–382PubMedCrossRefGoogle Scholar
  42. Srinivasan R et al (2010) MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging 28(2):163–170PubMedCrossRefGoogle Scholar
  43. Stanwell P et al (2005) Specificity of choline metabolites for in vivo diagnosis of breast cancer using 1H MRS at 1.5 T. Eur Radiol 15(5):1037–1043PubMedCrossRefGoogle Scholar
  44. Star-Lack J et al (1997) Improved water and lipid suppression for 3D PRESS CSI using RF band selective inversion with gradient dephasing (BASING). Magn Reson Med 38(2):311–321PubMedCrossRefGoogle Scholar
  45. Tkac I et al (2001) In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 46(3):451–456PubMedCrossRefGoogle Scholar
  46. Tran TK et al (2000) Very selective suppression pulses for clinical MRSI studies of brain and prostate cancer. Magn Reson Med 43(1):23–33PubMedCrossRefGoogle Scholar
  47. Ugurbil K et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21(10):1263–1281PubMedCrossRefGoogle Scholar
  48. Wang L et al (2009) Relaxation times of skeletal muscle metabolites at 7 T. J Magn Reson Imaging 29(6):1457–1464PubMedCrossRefGoogle Scholar
  49. Xu D et al (2006) Time efficient flip angle measurement at 7 T. In: 14th Annual Scientific Meeting of International Society of Magnetic Resonance in Medicine. Seattle, Washington, USAGoogle Scholar
  50. Xu D et al (2007) 2D J-Resolved Spectroscopy at 7 T. In: Annual Meeting of Society of Magnetic Resonance in Medicine. Berlin, GermanyGoogle Scholar
  51. Xu D et al (2008) Phased array 3D MR spectroscopic imaging of the brain at 7 T. Magn Reson Imaging 26(9):1201–1206PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Imaging, MC 2512University of CaliforniaSan FranciscoUSA

Personalised recommendations