Instrumentation, Technical Requirements: US

  • Michele Bertolotto
  • Carlo Martinoli
  • Lorenzo E. Derchi
Part of the Medical Radiology book series (MEDRAD)


Ultrasound is the first imaging modality in virtually all patients with scrotal disease, and has been widely used in this field by radiologists and urologists, since its introduction in the clinical practice. Image quality, however, improved substantially in last years due to the development of new broadband high frequency probes and digital equipment. Increased spatial resolution and doppler sensitivity allow excellent depiction of the scrotal content and full evaluation of the testicular and extratesticular vasculature. New imaging modalities are available, some of which have already established clinical role, with others requiring clinical validation. This chapter introduces technical features of modern ultrasound equipment and their application to scrotal ultrasound. Specific topics discussed are characteristics of newest broadband small-part transducers, extended field of view facilities, compounding techniques, 3D US, and adaptive filtering.


Speckle Pattern Piezoelectric Element Ultrasound Beam Tunica Albuginea Testicular Microlithiasis 


  1. Barr RG, Maldonado RL, Georgian-Smith D (2009) Comparison of conventional, compounding, computer enhancement, and compounding with computer enhancement in ultrasound imaging of the breast. Ultrasound Q 25:129–134PubMedCrossRefGoogle Scholar
  2. Brands PJ, Hoeks AP (1992) A comparison method for mean frequency estimators for doppler ultrasound. Ultrason Imaging 14:367–386PubMedCrossRefGoogle Scholar
  3. Caliano G, Carotenuto R, Cianci E et al (2005) Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 52:2259–2269PubMedCrossRefGoogle Scholar
  4. Cao J, Karadayi K, Managuli R et al (2010) Reconstruction error in 3D ultrasound imaging with mechanical probes. In: Jan D.h. Stephen A.M. (eds.) SPIE, 762903Google Scholar
  5. Caronti A, Caliano G, Carotenuto R et al (2006) Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectron J 37:770–777CrossRefGoogle Scholar
  6. Chiao RY, Hao X (2005) Coded excitation for diagnostic ultrasound: a system developer’s perspective. IEEE Trans Ultrason Ferroelectr Freq Control 52:160–170PubMedCrossRefGoogle Scholar
  7. Cho N, Moon WK, Kim HY et al (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7PubMedGoogle Scholar
  8. Choudhry S, Gorman B, Charboneau JW et al (2000) Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics 20:1127–1135PubMedGoogle Scholar
  9. Claudon M, Tranquart F, Evans DH et al (2002) Advances in ultrasound. Eur Radiol 12:7–18PubMedCrossRefGoogle Scholar
  10. Eames MD, Hossack JA (2008) Fabrication and evaluation of fully-sampled, two-dimensional transducer array for “sonic window” imaging system. Ultrasonics 48:376–383PubMedCrossRefGoogle Scholar
  11. Elliott ST (2008) Volume ultrasound: the next big thing? Br J Radiol 81:8–9PubMedCrossRefGoogle Scholar
  12. Elwagdy S, Razmy S, Ghoneim S et al (2007) Diagnostic performance of three-dimensional ultrasound extended imaging at scrotal mass lesions. Int J Urol 14:1025–1033PubMedCrossRefGoogle Scholar
  13. Entrekin RR, Porter BA, Sillesen HH et al (2001) Real-time spatial compound imaging: Application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR 22:50–64PubMedCrossRefGoogle Scholar
  14. Gat Y, Zukerman Z, Chakraborty J et al (2005) Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum Reprod 20:2614–2619PubMedCrossRefGoogle Scholar
  15. Hangiandreou NJ (2003) AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: Basic concepts and new technology. Radiographics 23:1019–1033PubMedCrossRefGoogle Scholar
  16. Herwig R, Tosun K, Schuster A et al (2007) Tissue perfusion-controlled guided biopsies are essential for the outcome of testicular sperm extraction. Fertil Steril 87:1071–1076PubMedCrossRefGoogle Scholar
  17. Huang SW, Li PC (2006) Arbitrary waveform coded excitation using bipolar square wave pulsers in medical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 53:106–116PubMedCrossRefGoogle Scholar
  18. Huang SW, Li PC (2007) Binary code design for high-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 54:947–956PubMedCrossRefGoogle Scholar
  19. Jedrzejewicz T (1999) System architecture for various image reconstruction and processing techniques. Eur Radiol 9 (Suppl 3):S334–337Google Scholar
  20. Kim HC, Yang DM, Jin W et al (2010) Relation between total renal volume and renal function: Usefulness of 3D sonographic measurements with a matrix array transducer. AJR Am J Roentgenol 194:W186–W192PubMedCrossRefGoogle Scholar
  21. Konofagou EE, Harrigan TP, Ophir J et al (2001) Poroelastography: Imaging the poroelastic properties of tissues. Ultrasound Med Biol 27:1387–1397PubMedCrossRefGoogle Scholar
  22. Kumm TR, Szabunio MM (2010) Elastography for the characterization of breast lesions: Initial clinical experience. Cancer Control 17:156–161PubMedGoogle Scholar
  23. Lewandowski M, Nowicki A (2008) High frequency coded imaging system with RF. IEEE Trans Ultrason Ferroelectr Freq Control 55:1878–1882PubMedCrossRefGoogle Scholar
  24. Meuwly JY, Thiran JP, Gudinchet F (2003) Application of adaptive image processing technique to real-time spatial compound ultrasound imaging improves image quality. Invest Radiol 38:257–262PubMedGoogle Scholar
  25. Noble JA (2010) Ultrasound image segmentation and tissue characterization. Proc Inst Mech Eng H 224:307–316PubMedCrossRefGoogle Scholar
  26. Novell A, Legros M, Felix N et al (2009) Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 56:2733–2743PubMedCrossRefGoogle Scholar
  27. Nowicki A, Secomski W, Trots I et al (2004) Extending penetration depth using coded ultrasonography. Bull Pol Ac Tech 52:215–220Google Scholar
  28. Oktar SO, Yucel C, Ozdemir H et al (2003) Comparison of conventional sonography, real-time compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of abdominal and pelvic lesions. AJR Am J Roentgenol 181:1341–1347PubMedGoogle Scholar
  29. Oralkan O, Cheng C-H, Johnson J et al (2003) Volumetric Ultrasound Imaging Using 2D CMUT Arrays. IEEE Trans Ultrason Ferroelect Freq Contr 50:1581–1594CrossRefGoogle Scholar
  30. Prager RW, Ijaz UZ, Gee AH et al (2010) Three-dimensional ultrasound imaging. Proc Inst Mech Eng H 224:193–223PubMedCrossRefGoogle Scholar
  31. Righetti R, Garra BS, Mobbs LM et al (2007) The feasibility of using poroelastographic techniques for distinguishing between normal and lymphedematous tissues in vivo. Phys Med Biol 52:6525–6541PubMedCrossRefGoogle Scholar
  32. Rizzatto G (1999) Evolution of ultrasound transducers: 1.5 and 2D arrays. Eur Radiol 9(Suppl 3):S304–306Google Scholar
  33. Sakamoto H, Ogawa Y, Yoshida H (2008) Relationship between testicular volume and varicocele in patients with infertility. Urology 71:104–109PubMedCrossRefGoogle Scholar
  34. Schurich M, Aigner F, Frauscher F, et al (2009) The role of ultrasound in assessment of male fertility. Eur J Obstet Gynecol Reprod Biol, 144(Suppl 1):S192–198Google Scholar
  35. Shah A, Lung PF, Clarke JL et al (2010) Re: new ultrasound techniques for imaging of the indeterminate testicular lesion may avoid surgery completely. Clin Radiol 65:496–497PubMedCrossRefGoogle Scholar
  36. Sodhi KS, Sidhu R, Gulati M et al (2005) Role of tissue harmonic imaging in focal hepatic lesions: Comparison with conventional sonography. J Gastroenterol Hepatol 20:1488–1493PubMedCrossRefGoogle Scholar
  37. Szabo TL, Lewin PA (2007) Piezoelectric materials for imaging. J Ultrasound Med 26:283–288PubMedGoogle Scholar
  38. Tarhan S, Gumus B, Gunduz I et al (2003) Effect of varicocele on testicular artery blood flow in men color doppler investigation. Scand J Urol Nephrol 37:38–42PubMedCrossRefGoogle Scholar
  39. Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions: Calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563PubMedCrossRefGoogle Scholar
  40. Unsal A, Turgut AT, Taskin F et al (2007) Resistance and pulsatility index increase in capsular branches of testicular artery: Indicator of impaired testicular microcirculation in varicocele? J Clin Ultrasound 35:191–195PubMedCrossRefGoogle Scholar
  41. Varghese T (2009) Quasi-static ultrasound elastography. 4:323–338Google Scholar
  42. Weng L, Tirumalai AP, Lowery CM et al (1997) US extended field of view imaging technology. Radiology 203:877–880PubMedGoogle Scholar
  43. Whittingham TA (1999a) An overview of digital technology in ultrasonic imaging. Eur Radiol 9(Suppl 3):S307–311Google Scholar
  44. Whittingham TA (1999b) Broadband transducers. Eur Radiol 9(Suppl 3):S298–303Google Scholar
  45. Wu J, Kamath MV, Noseworthy MD et al (2008) Segmentation of images of abdominal organs. Crit Rev Biomed Eng 36:305–334PubMedGoogle Scholar
  46. Wygant IO, Zhuang X, Yeh DT et al (2008) Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 55:327–342PubMedCrossRefGoogle Scholar
  47. Wygant IO, Jamal NS, Lee HJ et al (2009) An integrated circuit with transmit beamforming flip-chip bonded to a 2D CMUT array for 3D ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 56:2145–2156PubMedCrossRefGoogle Scholar
  48. Zhi H, Xiao XY, Yang HY et al (2010) Ultrasonic elastography in breast cancer diagnosis strain ratio vs 5-point scale. Acad Radiol 17(10):1227–33PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michele Bertolotto
    • 1
  • Carlo Martinoli
    • 2
  • Lorenzo E. Derchi
    • 2
  1. 1.Department of RadiologyUniversity of Trieste, Ospedale di CattinaraTriesteItaly
  2. 2.Dicmi-RadiologiaUniversity of GenovaGenoaItaly

Personalised recommendations