Skip to main content

Instrumentation, Technical Requirements: US

  • Chapter
  • 2365 Accesses

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Abstract

Ultrasound is the first imaging modality in virtually all patients with scrotal disease, and has been widely used in this field by radiologists and urologists, since its introduction in the clinical practice. Image quality, however, improved substantially in last years due to the development of new broadband high frequency probes and digital equipment. Increased spatial resolution and doppler sensitivity allow excellent depiction of the scrotal content and full evaluation of the testicular and extratesticular vasculature. New imaging modalities are available, some of which have already established clinical role, with others requiring clinical validation. This chapter introduces technical features of modern ultrasound equipment and their application to scrotal ultrasound. Specific topics discussed are characteristics of newest broadband small-part transducers, extended field of view facilities, compounding techniques, 3D US, and adaptive filtering.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Barr RG, Maldonado RL, Georgian-Smith D (2009) Comparison of conventional, compounding, computer enhancement, and compounding with computer enhancement in ultrasound imaging of the breast. Ultrasound Q 25:129–134

    Article  PubMed  Google Scholar 

  • Brands PJ, Hoeks AP (1992) A comparison method for mean frequency estimators for doppler ultrasound. Ultrason Imaging 14:367–386

    Article  PubMed  CAS  Google Scholar 

  • Caliano G, Carotenuto R, Cianci E et al (2005) Design, fabrication and characterization of a capacitive micromachined ultrasonic probe for medical imaging. IEEE Trans Ultrason Ferroelectr Freq Control 52:2259–2269

    Article  PubMed  Google Scholar 

  • Cao J, Karadayi K, Managuli R et al (2010) Reconstruction error in 3D ultrasound imaging with mechanical probes. In: Jan D.h. Stephen A.M. (eds.) SPIE, 762903

    Google Scholar 

  • Caronti A, Caliano G, Carotenuto R et al (2006) Capacitive micromachined ultrasonic transducer (CMUT) arrays for medical imaging. Microelectron J 37:770–777

    Article  Google Scholar 

  • Chiao RY, Hao X (2005) Coded excitation for diagnostic ultrasound: a system developer’s perspective. IEEE Trans Ultrason Ferroelectr Freq Control 52:160–170

    Article  PubMed  Google Scholar 

  • Cho N, Moon WK, Kim HY et al (2010) Sonoelastographic strain index for differentiation of benign and malignant nonpalpable breast masses. J Ultrasound Med 29:1–7

    PubMed  Google Scholar 

  • Choudhry S, Gorman B, Charboneau JW et al (2000) Comparison of tissue harmonic imaging with conventional US in abdominal disease. Radiographics 20:1127–1135

    PubMed  CAS  Google Scholar 

  • Claudon M, Tranquart F, Evans DH et al (2002) Advances in ultrasound. Eur Radiol 12:7–18

    Article  PubMed  Google Scholar 

  • Eames MD, Hossack JA (2008) Fabrication and evaluation of fully-sampled, two-dimensional transducer array for “sonic window” imaging system. Ultrasonics 48:376–383

    Article  PubMed  Google Scholar 

  • Elliott ST (2008) Volume ultrasound: the next big thing? Br J Radiol 81:8–9

    Article  PubMed  CAS  Google Scholar 

  • Elwagdy S, Razmy S, Ghoneim S et al (2007) Diagnostic performance of three-dimensional ultrasound extended imaging at scrotal mass lesions. Int J Urol 14:1025–1033

    Article  PubMed  Google Scholar 

  • Entrekin RR, Porter BA, Sillesen HH et al (2001) Real-time spatial compound imaging: Application to breast, vascular, and musculoskeletal ultrasound. Semin Ultrasound CT MR 22:50–64

    Article  PubMed  CAS  Google Scholar 

  • Gat Y, Zukerman Z, Chakraborty J et al (2005) Varicocele, hypoxia and male infertility. Fluid mechanics analysis of the impaired testicular venous drainage system. Hum Reprod 20:2614–2619

    Article  PubMed  Google Scholar 

  • Hangiandreou NJ (2003) AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: Basic concepts and new technology. Radiographics 23:1019–1033

    Article  PubMed  Google Scholar 

  • Herwig R, Tosun K, Schuster A et al (2007) Tissue perfusion-controlled guided biopsies are essential for the outcome of testicular sperm extraction. Fertil Steril 87:1071–1076

    Article  PubMed  Google Scholar 

  • Huang SW, Li PC (2006) Arbitrary waveform coded excitation using bipolar square wave pulsers in medical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 53:106–116

    Article  PubMed  Google Scholar 

  • Huang SW, Li PC (2007) Binary code design for high-frequency ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control 54:947–956

    Article  PubMed  Google Scholar 

  • Jedrzejewicz T (1999) System architecture for various image reconstruction and processing techniques. Eur Radiol 9 (Suppl 3):S334–337

    Google Scholar 

  • Kim HC, Yang DM, Jin W et al (2010) Relation between total renal volume and renal function: Usefulness of 3D sonographic measurements with a matrix array transducer. AJR Am J Roentgenol 194:W186–W192

    Article  PubMed  Google Scholar 

  • Konofagou EE, Harrigan TP, Ophir J et al (2001) Poroelastography: Imaging the poroelastic properties of tissues. Ultrasound Med Biol 27:1387–1397

    Article  PubMed  CAS  Google Scholar 

  • Kumm TR, Szabunio MM (2010) Elastography for the characterization of breast lesions: Initial clinical experience. Cancer Control 17:156–161

    PubMed  Google Scholar 

  • Lewandowski M, Nowicki A (2008) High frequency coded imaging system with RF. IEEE Trans Ultrason Ferroelectr Freq Control 55:1878–1882

    Article  PubMed  Google Scholar 

  • Meuwly JY, Thiran JP, Gudinchet F (2003) Application of adaptive image processing technique to real-time spatial compound ultrasound imaging improves image quality. Invest Radiol 38:257–262

    PubMed  Google Scholar 

  • Noble JA (2010) Ultrasound image segmentation and tissue characterization. Proc Inst Mech Eng H 224:307–316

    Article  PubMed  CAS  Google Scholar 

  • Novell A, Legros M, Felix N et al (2009) Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 56:2733–2743

    Article  PubMed  Google Scholar 

  • Nowicki A, Secomski W, Trots I et al (2004) Extending penetration depth using coded ultrasonography. Bull Pol Ac Tech 52:215–220

    Google Scholar 

  • Oktar SO, Yucel C, Ozdemir H et al (2003) Comparison of conventional sonography, real-time compound sonography, tissue harmonic sonography, and tissue harmonic compound sonography of abdominal and pelvic lesions. AJR Am J Roentgenol 181:1341–1347

    PubMed  Google Scholar 

  • Oralkan O, Cheng C-H, Johnson J et al (2003) Volumetric Ultrasound Imaging Using 2D CMUT Arrays. IEEE Trans Ultrason Ferroelect Freq Contr 50:1581–1594

    Article  Google Scholar 

  • Prager RW, Ijaz UZ, Gee AH et al (2010) Three-dimensional ultrasound imaging. Proc Inst Mech Eng H 224:193–223

    Article  PubMed  CAS  Google Scholar 

  • Righetti R, Garra BS, Mobbs LM et al (2007) The feasibility of using poroelastographic techniques for distinguishing between normal and lymphedematous tissues in vivo. Phys Med Biol 52:6525–6541

    Article  PubMed  Google Scholar 

  • Rizzatto G (1999) Evolution of ultrasound transducers: 1.5 and 2D arrays. Eur Radiol 9(Suppl 3):S304–306

    Google Scholar 

  • Sakamoto H, Ogawa Y, Yoshida H (2008) Relationship between testicular volume and varicocele in patients with infertility. Urology 71:104–109

    Article  PubMed  Google Scholar 

  • Schurich M, Aigner F, Frauscher F, et al (2009) The role of ultrasound in assessment of male fertility. Eur J Obstet Gynecol Reprod Biol, 144(Suppl 1):S192–198

    Google Scholar 

  • Shah A, Lung PF, Clarke JL et al (2010) Re: new ultrasound techniques for imaging of the indeterminate testicular lesion may avoid surgery completely. Clin Radiol 65:496–497

    Article  PubMed  CAS  Google Scholar 

  • Sodhi KS, Sidhu R, Gulati M et al (2005) Role of tissue harmonic imaging in focal hepatic lesions: Comparison with conventional sonography. J Gastroenterol Hepatol 20:1488–1493

    Article  PubMed  Google Scholar 

  • Szabo TL, Lewin PA (2007) Piezoelectric materials for imaging. J Ultrasound Med 26:283–288

    PubMed  Google Scholar 

  • Tarhan S, Gumus B, Gunduz I et al (2003) Effect of varicocele on testicular artery blood flow in men color doppler investigation. Scand J Urol Nephrol 37:38–42

    Article  PubMed  Google Scholar 

  • Thomas A, Degenhardt F, Farrokh A et al (2010) Significant differentiation of focal breast lesions: Calculation of strain ratio in breast sonoelastography. Acad Radiol 17:558–563

    Article  PubMed  Google Scholar 

  • Unsal A, Turgut AT, Taskin F et al (2007) Resistance and pulsatility index increase in capsular branches of testicular artery: Indicator of impaired testicular microcirculation in varicocele? J Clin Ultrasound 35:191–195

    Article  PubMed  Google Scholar 

  • Varghese T (2009) Quasi-static ultrasound elastography. 4:323–338

    Google Scholar 

  • Weng L, Tirumalai AP, Lowery CM et al (1997) US extended field of view imaging technology. Radiology 203:877–880

    PubMed  CAS  Google Scholar 

  • Whittingham TA (1999a) An overview of digital technology in ultrasonic imaging. Eur Radiol 9(Suppl 3):S307–311

    Google Scholar 

  • Whittingham TA (1999b) Broadband transducers. Eur Radiol 9(Suppl 3):S298–303

    Google Scholar 

  • Wu J, Kamath MV, Noseworthy MD et al (2008) Segmentation of images of abdominal organs. Crit Rev Biomed Eng 36:305–334

    PubMed  Google Scholar 

  • Wygant IO, Zhuang X, Yeh DT et al (2008) Integration of 2D CMUT arrays with front-end electronics for volumetric ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 55:327–342

    Article  PubMed  Google Scholar 

  • Wygant IO, Jamal NS, Lee HJ et al (2009) An integrated circuit with transmit beamforming flip-chip bonded to a 2D CMUT array for 3D ultrasound imaging. IEEE Trans Ultrason Ferroelectr Freq Control 56:2145–2156

    Article  PubMed  Google Scholar 

  • Zhi H, Xiao XY, Yang HY et al (2010) Ultrasonic elastography in breast cancer diagnosis strain ratio vs 5-point scale. Acad Radiol 17(10):1227–33

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Bertolotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bertolotto, M., Martinoli, C., Derchi, L.E. (2011). Instrumentation, Technical Requirements: US. In: Bertolotto, M., Trombetta, C. (eds) Scrotal Pathology. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2011_168

Download citation

  • DOI: https://doi.org/10.1007/174_2011_168

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12455-6

  • Online ISBN: 978-3-642-12456-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics