Advertisement

Immunological Aspects of Systemic Vasculitis

  • Melika Ben Ahmed
  • Hechmi Louzir
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Primary vasculitis are commonly multifactorial disorders involving environmental, genetic and immunological factors. Several immune-based effector mechanisms are implicated in the vascular wall damage. These effector mechanisms commonly imply auto-antibodies or immune complexes - mediated cytotoxicity but the contribution of a T-cell mediated immune response has also been described, particularly in large vascular vasculitis. Despite advances in understanding the pathophysiological mechanisms of vasculitis, the triggering events initiating the disease remain largely undefined in most cases. This review highlights the recent advances in the etiopathogenesis of primary vasculitis. A better understanding of the immunological aspects of these disorders may provide insight into the development of novel therapeutical strategies.

Keywords

Kawasaki Disease Giant Cell Arteritis Takayasu Arteritis Kawasaki Disease Patient Leukocytoclastic Vasculitis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aasarod K, Bostad L et al (2001) Wegener’s granulomatosis: inflammatory cells and markers of repair and fibrosis in renal biopsies—a clinicopathological study. Scand J Urol Nephrol 35:401–410PubMedGoogle Scholar
  2. Abdulahad WH, Stegeman CA et al (2007) Functional defect of circulating regulatory CD4+ T cells in patients with Wegener’s granulomatosis in remission. Arthritis Rheum 56:2080–2091PubMedGoogle Scholar
  3. Abdulahad WH, Stegeman CA et al (2009) Review article: the role of CD4(+) T cells in ANCA-associated systemic vasculitis. Nephrology (Carlton) 14:26–32Google Scholar
  4. Agnello V, Abel G (1997) Localization of hepatitis C virus in cutaneous vasculitic lesions in patients with type II cryoglobulinemia. Arthritis Rheum 40:2007–2015PubMedGoogle Scholar
  5. al-Sheyyab M, el-Shanti H et al (1996) Henoch-Schonlein purpura: clinical experience and contemplations on a streptococcal association. J Trop Pediatr 42:200–203PubMedGoogle Scholar
  6. Belizna C, Duijvestijn A et al (2006) Antiendothelial cell antibodies in vasculitis and connective tissue disease. Ann Rheum Dis 65:1545–1550PubMedGoogle Scholar
  7. Ben-Smith A, Dove SK et al (2001) Antineutrophil cytoplasm autoantibodies from patients with systemic vasculitis activate neutrophils through distinct signaling cascades: comparison with conventional Fcgamma receptor ligation. Blood 98:1448–1455PubMedGoogle Scholar
  8. Berden AE, Kallenberg CG et al (2009) Cellular immunity in Wegener’s granulomatosis: characterizing T lymphocytes. Arthritis Rheum 60:1578–1587PubMedGoogle Scholar
  9. Bergs L (2005) Goodpasture syndrome. Crit Care Nurse 25: 50–54, 56, 57–58Google Scholar
  10. Brack A, Geisler A et al (1997) Giant cell vasculitis is a T cell-dependent disease. Mol Med 3:530–543PubMedGoogle Scholar
  11. Brons RH, Bakker HI et al (2000) Staphylococcal acid phosphatase binds to endothelial cells via charge interaction; a pathogenic role in Wegener’s granulomatosis? Clin Exp Immunol 119:566–573PubMedGoogle Scholar
  12. Brooks CJ, King WJ et al (1996) IL-1 beta production by human polymorphonuclear leucocytes stimulated by anti-neutrophil cytoplasmic autoantibodies: relevance to systemic vasculitis. Clin Exp Immunol 106:273–279PubMedGoogle Scholar
  13. Burgner D, Davila S et al (2009) A genome-wide association study identifies novel and functionally related susceptibility loci for Kawasaki disease. PLoS Genet 5:e1000319PubMedGoogle Scholar
  14. Burns JC, Glode MP (2004) Kawasaki syndrome. Lancet 364:533–544PubMedGoogle Scholar
  15. Burns JC, Shimizu C et al (2005) Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 192:344–349PubMedGoogle Scholar
  16. Cacoub P, Costedoat-Chalumeau N et al (2002) Cryoglobulinemia vasculitis. Curr Opin Rheumatol 14:29–35PubMedGoogle Scholar
  17. Casanueva B, Rodriguez-Valverde V et al (1988) Circulating IgA producing cells in the differential diagnosis of Henoch-Schonlein purpura. J Rheumatol 15:1229–1233PubMedGoogle Scholar
  18. Castillo I, Pardo M et al (2004) Occult hepatitis C virus infection in patients in whom the etiology of persistently abnormal results of liver-function tests is unknown. J Infect Dis 189:7–14PubMedGoogle Scholar
  19. Chan TM, Frampton G et al (1993) Clinical significance of anti-endothelial cell antibodies in systemic vasculitis: a longitudinal study comparing anti-endothelial cell antibodies and anti-neutrophil cytoplasm antibodies. Am J Kidney Dis 22:387–392PubMedGoogle Scholar
  20. Charles LA, Caldas ML et al (1991) Antibodies against granule proteins activate neutrophils in vitro. J Leukoc Biol 50:539–546PubMedGoogle Scholar
  21. Charoenwongse P, Kangwanshiratada O et al (1998) The association between the HLA antigens and Takayasu’s arteritis in Thai patients. Int J Cardiol 66(Suppl 1):S117–S120PubMedGoogle Scholar
  22. Chauhan SK, Tripathy NK et al (2006) Antigenic targets and pathogenicity of anti-aortic endothelial cell antibodies in Takayasu arteritis. Arthritis Rheum 54:2326–2333PubMedGoogle Scholar
  23. Claudy A (1998) Pathogenesis of leukocytoclastic vasculitis. Eur J Dermatol 8:75–79PubMedGoogle Scholar
  24. Csernok E, Ernst M et al (1994) Activated neutrophils express proteinase 3 on their plasma membrane in vitro and in vivo. Clin Exp Immunol 95:244–250PubMedGoogle Scholar
  25. Csernok E, Trabandt A et al (1999) Cytokine profiles in Wegener’s granulomatosis: predominance of type 1 (Th1) in the granulomatous inflammation. Arthritis Rheum 42:742–750PubMedGoogle Scholar
  26. Cunningham MA, Huang XR et al (1999) Prominence of cell-mediated immunity effectors in “pauci-immune” glomerulonephritis. J Am Soc Nephrol 10:499–506PubMedGoogle Scholar
  27. Dal Canto AJ, Swanson PE et al (2001) IFN-gamma action in the media of the great elastic arteries, a novel immunoprivileged site. J Clin Invest 107:R15–R22PubMedGoogle Scholar
  28. Davis MD, Brewer JD (2004) Urticarial vasculitis and hypocomplementemic urticarial vasculitis syndrome. Immunol Allergy Clin North Am 24:83–213Google Scholar
  29. De Re V, Caggiari L et al (2007) Genetic insights into the disease mechanisms of type II mixed cryoglobulinemia induced by hepatitis C virus. Dig Liver Dis 39(Suppl 1):S65–S71PubMedGoogle Scholar
  30. Del Papa N, Guidali L et al (1996) Anti-endothelial cell IgG antibodies from patients with Wegener’s granulomatosis bind to human endothelial cells in vitro and induce adhesion molecule expression and cytokine secretion. Arthritis Rheum 39:758–766PubMedGoogle Scholar
  31. Della Rossa A, Tavoni A et al (2005) Two Takayasu arteritis patients successfully treated with infliximab: a potential disease-modifying agent? Rheumatology (Oxford) 44:1074–1075Google Scholar
  32. Deng J, Ma-Krupa W et al (2009) Toll-like receptors 4 and 5 induce distinct types of vasculitis. Circ Res 104:488–495PubMedGoogle Scholar
  33. Dong RP, Kimura A et al (1992) HLA-DP antigen and Takayasu arteritis. Tissue Antigens 39:106–110PubMedGoogle Scholar
  34. Eleftheriou D, Dillon MJ et al (2009) Advances in childhood vasculitis. Curr Opin Rheumatol 21:411–418PubMedGoogle Scholar
  35. Ewert BH, Jennette JC et al (1992) Anti-myeloperoxidase antibodies stimulate neutrophils to damage human endothelial cells. Kidney Int 41:375–383PubMedGoogle Scholar
  36. Ewert BH, Becker ME et al (1995) Antimyeloperoxidase antibodies induce neutrophil adherence to cultured human endothelial cells. Ren Fail 17:125–133PubMedGoogle Scholar
  37. Falk RJ, Terrell RS et al (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci U S A 87:4115–4119PubMedGoogle Scholar
  38. Ferri C, Mascia MT (2006) Cryoglobulinemic vasculitis. Curr Opin Rheumatol 18:54–63PubMedGoogle Scholar
  39. Ferri C, Sebastiani M et al (2004) Mixed cryoglobulinemia: demographic, clinical, and serologic features and survival in 231 patients. Semin Arthritis Rheum 33:355–374PubMedGoogle Scholar
  40. Franssen CF, Stegeman CA et al (2000) Antiproteinase 3- and antimyeloperoxidase-associated vasculitis. Kidney Int 57:2195–2206PubMedGoogle Scholar
  41. Fujieda M, Oishi N et al (1997) Antibodies to endothelial cells in Kawasaki disease lyse endothelial cells without cytokine pretreatment. Clin Exp Immunol 107:120–126PubMedGoogle Scholar
  42. Furuno K, Yuge T et al (2004) CD25+ CD4+ regulatory T cells in patients with Kawasaki disease. J Pediatr 145:385–390PubMedGoogle Scholar
  43. Gabriel SE, Espy M et al (1999) The role of parvovirus B19 in the pathogenesis of giant cell arteritis: a preliminary evaluation. Arthritis Rheum 42:1255–1258PubMedGoogle Scholar
  44. Gencik M, Meller S et al (2000) Proteinase 3 gene polymorphisms and Wegener’s granulomatosis. Kidney Int 58:2473–2477PubMedGoogle Scholar
  45. Gonzalez-Gay MA, Oliver J et al (2005) Association of a functional inducible nitric oxide synthase promoter variant with susceptibility to biopsy-proven giant cell arteritis. J Rheumatol 32:2178–2182PubMedGoogle Scholar
  46. Gonzalez-Gay MA, Rueda B et al (2007) Contribution of MHC class I region to genetic susceptibility for giant cell arteritis. Rheumatology 46:431–434PubMedGoogle Scholar
  47. Grunwald MH, Avinoach I et al (1997) Leukocytoclastic vasculitis-correlation between different histologic stages and direct immunofluorescence results. Int J Dermatol 36:349–352PubMedGoogle Scholar
  48. Guillevin L, Mahr A et al (2005) Hepatitis B virus-associated polyarteritis nodosa: clinical characteristics, outcome, and impact of treatment in 115 patients. Medicine (Baltimore) 84:313–322Google Scholar
  49. Guilpain P, Mouthon L (2008) Antiendothelial cells autoantibodies in vasculitis-associated systemic diseases. Clin Rev Allergy Immunol 35:59–65PubMedGoogle Scholar
  50. Haugeberg G, Bie R et al (2001) Temporal arteritis associated with Chlamydia pneumoniae DNA detected in an artery specimen. J Rheumatol 28:1738–1739PubMedGoogle Scholar
  51. Hellmich B, Csernok E et al (2000) Granulocyte-macrophage colony-stimulating factor (GM-CSF) but not granulocyte colony-stimulating factor (G-CSF) induces plasma membrane expression of proteinase 3 (PR3) on neutrophils in vitro. Clin Exp Immunol 120:392–398PubMedGoogle Scholar
  52. Helweg-Larsen J, Tarp B et al (2002) No evidence of parvovirus B19, Chlamydia pneumoniae or human herpes virus infection in temporal artery biopsies in patients with giant cell arteritis. Rheumatology (Oxford) 41:445–449Google Scholar
  53. Hess C, Sadallah S et al (2000) Induction of neutrophil responsiveness to myeloperoxidase antibodies by their exposure to supernatant of degranulated autologous neutrophils. Blood 96:2822–2827PubMedGoogle Scholar
  54. Holdsworth SR, Kitching AR et al (1999) Th1 and Th2 T helper cell subsets affect patterns of injury and outcomes in glomerulonephritis. Kidney Int 55:1198–1216PubMedGoogle Scholar
  55. Johnson PA, Alexander HD et al (1997a) Up-regulation of the endothelial cell adhesion molecule intercellular adhesion molecule-1 (ICAM-1) by autoantibodies in autoimmune vasculitis. Clin Exp Immunol 108:234–242PubMedGoogle Scholar
  56. Johnson PA, Alexander HD et al (1997b) Up-regulation of the granulocyte adhesion molecule Mac-1 by autoantibodies in autoimmune vasculitis. Clin Exp Immunol 107:513–519PubMedGoogle Scholar
  57. Kaiser M, Weyand CM et al (1998) Platelet-derived growth factor, intimal hyperplasia, and ischemic complications in giant cell arteritis. Arthritis Rheum 41:623–633PubMedGoogle Scholar
  58. Kaiser M, Younge B et al (1999) Formation of new vasa vasorum in vasculitis. Production of angiogenic cytokines by multinucleated giant cells. Am J Pathol 155:765–774PubMedGoogle Scholar
  59. Kallenberg CG (2005) Churg-Strauss syndrome: just one disease entity? Arthritis Rheum 52:2589–2593PubMedGoogle Scholar
  60. Kallenberg CG (2008) Anti-C1q autoantibodies. Autoimmun Rev 7:612–615PubMedGoogle Scholar
  61. Kallenberg CG, Rarok A et al (2002) New insights into the pathogenesis of antineutrophil cytoplasmic autoantibody-associated vasculitis. Autoimmun Rev 1:61–66PubMedGoogle Scholar
  62. Kalluri R (1999) Goodpasture syndrome. Kidney Int 55:1120–1122PubMedGoogle Scholar
  63. Kalluri R, Danoff TM et al (1997) Susceptibility to anti-glomerular basement membrane disease and Goodpasture syndrome is linked to MHC class II genes and the emergence of T cell-mediated immunity in mice. J Clin Invest 100:2263–2275PubMedGoogle Scholar
  64. Kawana S (1996) The membrane attack complex of complement alters the membrane integrity of cultured endothelial cells: a possible pathophysiology for immune complex vasculitis. Acta Derm Venereol 76:13–16PubMedGoogle Scholar
  65. Keogh KA, Wylam ME et al (2005) Induction of remission by B lymphocyte depletion in eleven patients with refractory antineutrophil cytoplasmic antibody-associated vasculitis. Arthritis Rheum 52:262–268PubMedGoogle Scholar
  66. Keogh KA, Ytterberg SR et al (2006) Rituximab for refractory Wegener’s granulomatosis: report of a prospective, open-label pilot trial. Am J Respir Crit Care Med 173:180–187PubMedGoogle Scholar
  67. Khasnis A, Langford CA (2009) Update on vasculitis. J Allergy Clin Immunol 123:1226–1236PubMedGoogle Scholar
  68. Kitamura H, Kobayashi Y et al (1998) Association of clinical manifestations with HLA-B alleles in Takayasu arteritis. Int J Cardiol 66(Suppl 1):S121–S126PubMedGoogle Scholar
  69. Krupa WM, Dewan M et al (2002) Trapping of misdirected dendritic cells in the granulomatous lesions of giant cell arteritis. Am J Pathol 161:1815–1823PubMedGoogle Scholar
  70. Lamprecht P, Gause A et al (1999) Cryoglobulinemic vasculitis. Arthritis Rheum 42:2507–2516PubMedGoogle Scholar
  71. Lau KK, Wyatt RJ et al (2007) Serum levels of galactose-deficient IgA in children with IgA nephropathy and Henoch-Schonlein purpura. Pediatr Nephrol 22:2067–2072PubMedGoogle Scholar
  72. Lee SW, Kwon OJ et al (2007) HLA alleles in Korean patients with Takayasu arteritis. Clin Exp Rheumatol 25(1 Suppl 44):S18–S22PubMedGoogle Scholar
  73. Lockwood CM, Thiru S et al (1996) Treatment of refractory Wegener’s granulomatosis with humanized monoclonal antibodies. QJM 89:903–912PubMedGoogle Scholar
  74. Lotti T, Ghersetich I et al (1998) Cutaneous small-vessel vasculitis. J Am Acad Dermatol 39(5 Pt 1):667–687 quiz 688–690PubMedGoogle Scholar
  75. Maksimowicz-McKinnon K, Clark TM et al (2009) Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore) 88:221–226Google Scholar
  76. Martinez-Taboada V, Hunder NN et al (1996) Recognition of tissue residing antigen by T cells in vasculitic lesions of giant cell arteritis. J Mol Med 74:695–703PubMedGoogle Scholar
  77. Masuda M, Nakanishi K et al (2003) Group A streptococcal antigen in the glomeruli of children with Henoch-Schonlein nephritis. Am J Kidney Dis 41:366–370PubMedGoogle Scholar
  78. Matsubara K, Fukaya T (2007) The role of superantigens of group A Streptococcus and Staphylococcus aureus in Kawasaki disease. Curr Opin Infect Dis 20:298–303PubMedGoogle Scholar
  79. Maya R, Gershwin ME et al (2008) Hepatitis B virus (HBV) and autoimmune disease. Clin Rev Allergy Immunol 34:85–102PubMedGoogle Scholar
  80. Mehra NK, Jaini R (2000) Immunogenetics of peripheral arteriopathies. Clin Hemorheol Microcirc 23:225–232PubMedGoogle Scholar
  81. Moser R, Etter H et al (1995) Neutrophil activation in response to immune complex-bearing endothelial cells depends on the functional cooperation of Fc gamma RII (CD32) and Fc gamma RIII (CD16). J Lab Clin Med 126:588–596PubMedGoogle Scholar
  82. Muller Kobold AC, van Wijk RT et al (1999) In vitro up-regulation of E-selectin and induction of interleukin-6 in endothelial cells by autoantibodies in Wegener’s granulomatosis and microscopic polyangiitis. Clin Exp Rheumatol 17:433–440PubMedGoogle Scholar
  83. Nityanand S, Mishra K et al (1997) Autoantibodies against cardiolipin and endothelial cells in Takayasu’s arteritis: prevalence and isotype distribution. Br J Rheumatol 36:923–924PubMedGoogle Scholar
  84. Onouchi Y, Gunji T et al (2008) ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 40:35–42PubMedGoogle Scholar
  85. Ooi JD, Holdsworth SR et al (2008) Advances in the pathogenesis of Goodpasture’s disease: from epitopes to autoantibodies to effector T cells. J Autoimmun 31:295–300PubMedGoogle Scholar
  86. Ozaltin F, Bakkaloglu A et al (2004) The significance of IgA class of antineutrophil cytoplasmic antibodies (ANCA) in childhood Henoch-Schonlein purpura. Clin Rheumatol 23:426–429PubMedGoogle Scholar
  87. Ozen S, Ruperto N et al (2006) EULAR/PReS endorsed consensus criteria for the classification of childhood vasculitides. Ann Rheum Dis 65:936–941PubMedGoogle Scholar
  88. Pagnoux C, Guillevin L (2008) Systemic and autoimmune manifestations of hepatitis B virus infection. Handb Syst Autoimmun Dis 8:191–208Google Scholar
  89. Pagnoux C, Guilpain P et al (2007) Churg-Strauss syndrome. Curr Opin Rheumatol 19:25–32PubMedGoogle Scholar
  90. Pernice W, Sodomann CP et al (1979) Antigen-specific detection of HBsAG-containing immune complexes in the course of hepatitis B virus infection. Clin Exp Immunol 37:376–380PubMedGoogle Scholar
  91. Pfister H, Ollert M et al (2004) Antineutrophil cytoplasmic autoantibodies against the murine homolog of proteinase 3 (Wegener autoantigen) are pathogenic in vivo. Blood 104:1411–1418PubMedGoogle Scholar
  92. Phelps RG, Rees AJ (1999) The HLA complex in Goodpasture’s disease: a model for analyzing susceptibility to autoimmunity. Kidney Int 56:1638–1653PubMedGoogle Scholar
  93. Pileri P, Uematsu Y et al (1998) Binding of hepatitis C virus to CD81. Science 282:938–941PubMedGoogle Scholar
  94. Pinna GS, Kafetzis DA et al (2008) Kawasaki disease: an overview. Curr Opin Infect Dis 21:263–270PubMedGoogle Scholar
  95. Popa ER, Stegeman CA et al (2002) Staphylococcus aureus and Wegener’s granulomatosis. Arthritis Res 4:77–79PubMedGoogle Scholar
  96. Popa ER, Stegeman CA et al (2003) Staphylococcal superantigens and T cell expansions in Wegener’s granulomatosis. Clin Exp Immunol 132:496–504PubMedGoogle Scholar
  97. Preston GA, Pendergraft WF et al (2005) New insights that link microbes with the generation of antineutrophil cytoplasmic autoantibodies: the theory of autoantigen complementarity. Curr Opin Nephrol Hypertens 14:217–222PubMedGoogle Scholar
  98. Pryshchep O, Ma-Krupa W et al (2008) Vessel-specific toll-like receptor profiles in human medium and large arteries. Circulation 118:1276–1284PubMedGoogle Scholar
  99. Regan MJ, Wood BJ et al (2002) Temporal arteritis and Chlamydia pneumoniae: failure to detect the organism by polymerase chain reaction in ninety cases and ninety controls. Arthritis Rheum 46:1056–1060PubMedGoogle Scholar
  100. Reumaux D, Vossebeld PJ et al (1995) Effect of tumor necrosis factor-induced integrin activation on Fc gamma receptor II-mediated signal transduction: relevance for activation of neutrophils by anti-proteinase 3 or anti-myeloperoxidase antibodies. Blood 86:3189–3195PubMedGoogle Scholar
  101. Rowley AH, Shulman ST et al (2001) Oligoclonal IgA response in the vascular wall in acute Kawasaki disease. J Immunol 166:1334–1343PubMedGoogle Scholar
  102. Ruth AJ, Kitching AR et al (2006) Anti-neutrophil cytoplasmic antibodies and effector CD4+ cells play nonredundant roles in anti-myeloperoxidase crescentic glomerulonephritis. J Am Soc Nephrol 17:1940–1949PubMedGoogle Scholar
  103. Salazar M, Varela A et al (2000) Association of HLA-DRB1*1602 and DRB1*1001 with Takayasu arteritis in Colombian mestizos as markers of Amerindian ancestry. Int J Cardiol 75(Suppl 1):S113–S116PubMedGoogle Scholar
  104. Salvarani C, Cantini F et al (2008) Polymyalgia rheumatica and giant-cell arteritis. Lancet 372:234–245PubMedGoogle Scholar
  105. Sansonno D, Dammacco F (2005) Hepatitis C virus, cryoglobulinaemia, and vasculitis: immune complex relations. Lancet Infect Dis 5:227–236PubMedGoogle Scholar
  106. Saulsbury FT (1992) Heavy and light chain composition of serum IgA and IgA rheumatoid factor in Henoch-Schonlein purpura. Arthritis Rheum 35:1377–1380PubMedGoogle Scholar
  107. Saulsbury FT (2001) Henoch-Schonlein purpura. Curr Opin Rheumatol 13:35–40PubMedGoogle Scholar
  108. Saus J, Wieslander J et al (1988) Identification of the Goodpasture antigen as the alpha 3(IV) chain of collagen IV. J Biol Chem 263:13374–13380PubMedGoogle Scholar
  109. Savage CO, Pottinger BE et al (1991) Vascular damage in Wegener’s granulomatosis and microscopic polyarteritis: presence of anti-endothelial cell antibodies and their relation to anti-neutrophil cytoplasm antibodies. Clin Exp Immunol 85:14–19PubMedGoogle Scholar
  110. Savage CO, Pottinger BE et al (1992) Autoantibodies developing to myeloperoxidase and proteinase 3 in systemic vasculitis stimulate neutrophil cytotoxicity toward cultured endothelial cells. Am J Pathol 141:335–342PubMedGoogle Scholar
  111. Savage CO, Harper L et al (2002) New findings in pathogenesis of antineutrophil cytoplasm antibody-associated vasculitis. Curr Opin Rheumatol 14:15–22PubMedGoogle Scholar
  112. Schlieben DJ, Korbet SM et al (2005) Pulmonary-renal syndrome in a newborn with placental transmission of ANCAs. Am J Kidney Dis 45:758–761PubMedGoogle Scholar
  113. Schmitt WH, Hagen EC et al (2004) Treatment of refractory Wegener’s granulomatosis with antithymocyte globulin (ATG): an open study in 15 patients. Kidney Int 65:1440–1448PubMedGoogle Scholar
  114. Seko Y, Minota S et al (1994) Perforin-secreting killer cell infiltration and expression of a 65-kD heat-shock protein in aortic tissue of patients with Takayasu’s arteritis. J Clin Invest 93:750–758PubMedGoogle Scholar
  115. Seko Y, Sato O et al (1996) Restricted usage of T-cell receptor Valpha-Vbeta genes in infiltrating cells in aortic tissue of patients with Takayasu’s arteritis. Circulation 93:1788–1790PubMedGoogle Scholar
  116. Seko Y, Takahashi N et al (2000) Restricted usage of T-cell receptor Vgamma-Vdelta genes and expression of costimulatory molecules in Takayasu’s arteritis. Int J Cardiol 75(Suppl 1):S77–S83 discussion S85–S87PubMedGoogle Scholar
  117. Seko Y, Sugishita K et al (2004) Expression of costimulatory molecules (4-1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s arteritis. J Vasc Res 41:84–90PubMedGoogle Scholar
  118. Seo P, Stone JH (2004) The antineutrophil cytoplasmic antibody-associated vasculitides. Am J Med 117:39–50PubMedGoogle Scholar
  119. Shibata H, Yasunami M et al (2006) Direct determination of single nucleotide polymorphism haplotype of NFKBIL1 promoter polymorphism by DNA conformation analysis and its application to association study of chronic inflammatory diseases. Hum Immunol 67:363–373PubMedGoogle Scholar
  120. Shin JI, Lee JS (2008) Familial clusturing of Henoch-Schonlein purpura or IgA nephropathy: genetic background or environmental triggers? Pediatr Dermatol 25:651PubMedGoogle Scholar
  121. Shin JI, Kim JH et al (2008) The diagnostic value of IgA deposition in Henoch-Schonlein purpura. Pediatr Dermatol 25:140–141PubMedGoogle Scholar
  122. Soto ME, Vargas-Alarcon G et al (2007) Comparison distribution of HLA-B alleles in Mexican patients with Takayasu arteritis and tuberculosis. Hum Immunol 68:449–453PubMedGoogle Scholar
  123. Stegeman CA, Tervaert JW et al (1996) Trimethoprim-sulfamethoxazole (co-trimoxazole) for the prevention of relapses of Wegener’s granulomatosis. Dutch Co-Trimoxazole Wegener Study Group. N Engl J Med 335:16–20PubMedGoogle Scholar
  124. Tanaka F, Kawakami A et al (2006) Infliximab is effective for Takayasu arteritis refractory to glucocorticoid and methotrexate. Intern Med 45:313–316PubMedGoogle Scholar
  125. Tervaert JW, Heeringa P (2003) Pathophysiology of ANCA-associated vasculitides: are ANCA really pathogenic? Neth J Med 61:404–407PubMedGoogle Scholar
  126. Tomer Y, Gilburd B et al (1995) Characterization of biologically active antineutrophil cytoplasmic antibodies induced in mice. Pathogenetic role in experimental vasculitis. Arthritis Rheum 38:1375–1381PubMedGoogle Scholar
  127. Trejo O, Ramos-Casals M et al (2001) Cryoglobulinemia: study of etiologic factors and clinical and immunologic features in 443 patients from a single center. Medicine (Baltimore) 80:252–262Google Scholar
  128. Trepo C, Guillevin L (2001) Polyarteritis nodosa and extrahepatic manifestations of HBV infection: the case against autoimmune intervention in pathogenesis. J Autoimmun 16:269–274PubMedGoogle Scholar
  129. Trepo CG, Zucherman AJ et al (1974) The role of circulating hepatitis B antigen/antibody immune complexes in the pathogenesis of vascular and hepatic manifestations in polyarteritis nodosa. J Clin Pathol 27:863–868PubMedGoogle Scholar
  130. Tripathy NK, Upadhyaya S et al (2001) Complement and cell mediated cytotoxicity by antiendothelial cell antibodies in Takayasu’s arteritis. J Rheumatol 28:805–808PubMedGoogle Scholar
  131. Uthman I, Kanj N et al (2006) Infliximab as monotherapy in giant cell arteritis. Clin Rheumatol 25:109–110PubMedGoogle Scholar
  132. van der Geld YM, Hellmark T et al (2007) Rats and mice immunised with chimeric human/mouse proteinase 3 produce autoantibodies to mouse Pr3 and rat granulocytes. Ann Rheum Dis 66:1679–1682PubMedGoogle Scholar
  133. Voswinkel J, Müller A et al (2005) Is PR3-ANCA formation initiated in Wegener’s granulomatosis lesions? Granulomas as potential lymphoid tissue maintaining autoantibody production. Ann N Y Acad Sci 1051:12–19PubMedGoogle Scholar
  134. Wagner AD, Goronzy JJ et al (1994) Functional profile of tissue-infiltrating and circulating CD68+ cells in giant cell arteritis. Evidence for two components of the disease. J Clin Invest 94:1134–1140PubMedGoogle Scholar
  135. Wagner AD, Bjornsson J et al (1996) Interferon-gamma-producing T cells in giant cell vasculitis represent a minority of tissue-infiltrating cells and are located distant from the site of pathology. Am J Pathol 148:1925–1933PubMedGoogle Scholar
  136. Wagner AD, Gerard HC et al (2000) Detection of Chlamydia pneumoniae in giant cell vasculitis and correlation with the topographic arrangement of tissue-infiltrating dendritic cells. Arthritis Rheum 43:1543–1551PubMedGoogle Scholar
  137. Weidner S, Carl M et al (2004) Histologic analysis of renal leukocyte infiltration in antineutrophil cytoplasmic antibody-associated vasculitis: importance of monocyte and neutrophil infiltration in tissue damage. Arthritis Rheum 50:3651–3657PubMedGoogle Scholar
  138. Weyand CM, Goronzy JJ (2003) Medium- and large-vessel vasculitis. N Engl J Med 349:160–169PubMedGoogle Scholar
  139. Weyand CM, Schonberger J et al (1994a) Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes. J Exp Med 179:951–960PubMedGoogle Scholar
  140. Weyand CM, Hunder NN et al (1994b) HLA-DRB1 alleles in polymyalgia rheumatica, giant cell arteritis, and rheumatoid arthritis. Arthritis Rheum 37:514–520PubMedGoogle Scholar
  141. Weyand CM, Wagner AD et al (1996) Correlation of the topographical arrangement and the functional pattern of tissue-infiltrating macrophages in giant cell arteritis. J Clin Invest 98:1642–1649PubMedGoogle Scholar
  142. Weyand CM, Fulbright JW et al (2000) Treatment of giant cell arteritis: interleukin-6 as a biologic marker of disease activity. Arthritis Rheum 43:1041–1048PubMedGoogle Scholar
  143. Weyand CM, Ma-Krupa W et al (2005) Vascular dendritic cells in giant cell arteritis. Ann N Y Acad Sci 1062:195–208PubMedGoogle Scholar
  144. Wieslander J, Langeveld J et al (1985) Physical and immunochemical studies of the globular domain of type IV collagen. Cryptic properties of the Goodpasture antigen. J Biol Chem 260:8564–8570PubMedGoogle Scholar
  145. Wisnieski JJ (2000) Urticarial vasculitis. Curr Opin Rheumatol 12:24–31PubMedGoogle Scholar
  146. Xiao H, Heeringa P et al (2002) Antineutrophil cytoplasmic autoantibodies specific for myeloperoxidase cause glomerulonephritis and vasculitis in mice. J Clin Invest 110:955–963PubMedGoogle Scholar
  147. Xiao H, Heeringa P et al (2005) The role of neutrophils in the induction of glomerulonephritis by anti-myeloperoxidase antibodies. Am J Pathol 167:39–45PubMedGoogle Scholar
  148. Yang YH, Huang MT et al (2000) Increased transforming growth factor-beta (TGF-beta)-secreting T cells and IgA anti-cardiolipin antibody levels during acute stage of childhood Henoch-Schonlein purpura. Clin Exp Immunol 122:285–290PubMedGoogle Scholar
  149. Yang YH, Wang SJ et al (2002) The level of IgA antibodies to human umbilical vein endothelial cells can be enhanced by TNF-alpha treatment in children with Henoch-Schonlein purpura. Clin Exp Immunol 130:352–357PubMedGoogle Scholar
  150. Yang YH, Lai HJ et al (2004) The association between transforming growth factor-beta gene promoter C-509T polymorphism and Chinese children with Henoch-Schonlein purpura. Pediatr Nephrol 19:972–975PubMedGoogle Scholar
  151. Yang YH, Huang YH et al (2006) Circulating IgA from acute stage of childhood Henoch-Schonlein purpura can enhance endothelial interleukin (IL)-8 production through MEK/ERK signalling pathway. Clin Exp Immunol 144:247–253PubMedGoogle Scholar
  152. Yang YH, Chuang YH et al (2008) The immunobiology of Henoch-Schonlein purpura. Autoimmun Rev 7:179–184PubMedGoogle Scholar
  153. Yoshida M, Kimura A et al (1993) DNA typing of HLA-B gene in Takayasu’s arteritis. Tissue antigens 42:87–90PubMedGoogle Scholar
  154. Zhang Y, Gu W et al (2008) Sibling cases of Henoch-Schonlein purpura in two families and review of literature. Pediatr Dermatol 25:393–395PubMedGoogle Scholar
  155. Zuckerman AJ (1976) Proceedings: Hepatitis B, immune complexes, and the pathogenesis of polyarteritis nodosa. J Clin Pathol 29:84–85PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Immunology, Medical School of TunisInstitut PasteurTunisTunisia

Personalised recommendations