Advanced Musculoskeletal Magnetic Resonance Imaging at Ultra-high Field (7 T)

  • Siegfried Trattnig
  • Klaus Friedrich
  • Wolfgang Bogner
  • Klaus Scheffler
  • Oliver Bieri
  • Goetz H. Welsch
Part of the Medical Radiology book series (MEDRAD)


The major advantage of high-field and ultra-high field MR is the shift from morphological to biochemical and metabolic imaging techniques which normally suffer from low sensitivity at standard field strength (1.5 T). The high signal-to-noise ratio of the higher field systems provides biochemical and metabolic imaging in reasonable scan times, which promotes their widespread clinical application. This development enables the diagnosis of diseases such as osteoarthritis, degenerative disc disease, and muscle disease at their earliest stages, before morphological changes occur. Thus, the imaging pre-requisites are available for the evaluation and follow-up of new disease-modifying drugs and the trend toward more personalized medicine.


Articular Cartilage Specific Absorption Rate Turbo Spin Echo Sequence Fixed Charge Density Cartilage Repair Tissue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Magnetic resonance


Signal-to-noise ratio


Specific absorption rate


Turbo Spin Echo


Half-Fourier acquisition single-shot turbo spin echo


True Fast Imaging with Steady-state Free Precession




Magnetic resonance imaging


Microscopy magnetic resonance imaging




Ultrashort echo time


New York University Langone Medical Center


Triangular fibrocartilage complex






Fixed charge density


Triple-quantum filtered


Twisted projection imaging




Delayed gadolinium enhanced MRI of cartilage


Matrix-associated autologous transplantation


Three dimensional gradient echo


Inversion recovery


Intervertebral discs


Annulus fibrosus


Nucleus pulposus


Main magnetic field


Repetition time


Spin-echo T2 relaxation time constant


Phosporus MR spectroscopy


Hydrogen MR spectroscopy


Chemical shift anisotropy


Adenosine triphosphate






Chemical shift displacement error


Three dimensional Chemical Shift Imaging




Adenosine diphosphate






Inorganic phosphate






Fat saturation


Magnetization transfer contrast


Continuous wave


Steady-state free precession


Double-echo steady state


  1. Alhadlaq HA et al (2004) Detecting structural changes in early experimental osteoarthritis of tibial cartilage by microscopic magnetic resonance imaging and polarised light microscopy. Ann Rheum Dis 63(6):709–717PubMedCrossRefGoogle Scholar
  2. Anderson ML et al (2008) Diagnostic comparison of 1.5 Tesla and 3.0 Tesla preoperative MRI of the wrist in patients with ulnar-sided wrist pain. J Hand Surg Am 33(7):1153–1159PubMedCrossRefGoogle Scholar
  3. Argov Z, DeStefano N, Arnold DL (1996) ADP recovery after a brief ischemic exercise in normal and diseased human muscle - A P-31 MRS study. NMR Biomed 9(4):165–172PubMedCrossRefGoogle Scholar
  4. Banerjee S et al (2006) Autocalibrating parallel imaging of in vivo trabecular bone microarchitecture at 3 Tesla. Magn Reson Med 56(5):1075–1084PubMedCrossRefGoogle Scholar
  5. Banerjee S et al (2008) Rapid in vivo musculoskeletal MR with parallel imaging at 7T. Magn Reson Med 59(3):655–660PubMedCrossRefGoogle Scholar
  6. Behr B et al (2009) MR imaging of the human hand and wrist at 7 T. Skeletal Radiol 38(9):911–917PubMedCrossRefGoogle Scholar
  7. Bieri O, Scheffler K (2006) On the origin of apparent low tissue signals in balanced SSFD. Magn Reson Med 56(5):1067–1074PubMedCrossRefGoogle Scholar
  8. Bieri O et al (2008a) Optimized spectrally selective steady-state free precession sequences for cartilage imaging at ultra-high fields. Magn Reson Mater Phys Biol Med 21(1–2):87–94Google Scholar
  9. Bieri O et al (2008b) Steady state free precession magnetization transfer imaging. Magn Reson Med 60(5):1261–1266CrossRefGoogle Scholar
  10. Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25(2):321–338PubMedCrossRefGoogle Scholar
  11. Bogner W et al (2009) Assessment of P-31 relaxation times in the human calf muscle: a comparison between 3 T and 7 T in vivo. Magn Reson Med 62(3):574–582PubMedCrossRefGoogle Scholar
  12. Bogner W et al (2010) In vivo 31P-MRS at 7T by single voxel E-ISIS with GOIA selection pulses. In: ISMRM, StockholmGoogle Scholar
  13. Bolog N, Nanz D, Weishaupt D (2006) Muskuloskeletal MR imaging at 3.0 T: current status and future perspectives. Eur Radiol 16(6):1298–1307PubMedCrossRefGoogle Scholar
  14. Borah B et al (2002) Risedronate preserves trabecular architecture and increases bone strength in vertebra of ovariectomized minipigs as measured by three-dimensional microcomputed tomography. J Bone Miner Res 17(7):1139–1147PubMedCrossRefGoogle Scholar
  15. Borthakur A et al (1999) In vivo triple quantum filtered twisted projection sodium MRI of human articular cartilage. J Magn Reson 141(2):286–290PubMedCrossRefGoogle Scholar
  16. Borthakur A et al (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthritis and Cartilage 8(4):288–293PubMedCrossRefGoogle Scholar
  17. Borthakur A et al (2002) Quantifying sodium in the human wrist in vivo by using MR imaging. Radiology 224(2):598–602PubMedCrossRefGoogle Scholar
  18. Borthakur A et al (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19(7):781–821PubMedCrossRefGoogle Scholar
  19. Bottomley PA et al (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11(4):425–448PubMedCrossRefGoogle Scholar
  20. Boulocher C et al (2007) Non-invasive in vivo quantification of the medial tibial cartilage thickness progression in an osteoarthritis rabbit model with quantitative 3D high resolution micro-MRI. Osteoarthritis Cartilage 15(12):1378–1387PubMedCrossRefGoogle Scholar
  21. Buckwalter JA, Mankin HJ (1998) Articular cartilage: degeneration and osteoarthritis, repair, regeneration, and transplantation. Instr Course Lect 47:487–504PubMedGoogle Scholar
  22. Burstein D, Gray ML (2006) Is MRI fulfilling its promise for molecular imaging of cartilage in arthritis? Osteoarthritis and Cartilage 14(11):1087–1090PubMedCrossRefGoogle Scholar
  23. Burstein D et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation of articular cartilage. Magn Reson Med 45(1):36–41PubMedCrossRefGoogle Scholar
  24. Chang G, Regatte RR, Schweitzer ME (2009) Olympic fencers: adaptations in cortical and trabecular bone determined by quantitative computed tomography. Osteoporos Int 20(5):779–785PubMedCrossRefGoogle Scholar
  25. Chmelik M et al (2010) Faster T1 relaxation times allow additional SNR-per-unit-time optimization in 31P MRSI at 7T. In: ISMRM, StockholmGoogle Scholar
  26. Chen CN et al (1986) The field dependence of NMR imaging. I. Laboratory assessment of signal-to-noise ratio and power deposition. Magn Reson Med 3(5):722–729PubMedCrossRefGoogle Scholar
  27. Choy J, Ling W, Jerschow A (2006) Selective detection of ordered sodium signals via the central transition. J Magn Reson 180(1):105–109PubMedCrossRefGoogle Scholar
  28. Christoforidis GA et al (2002) Visualization of microvascularity in glioblastoma multiforme with 8-T high-spatial-resolution MR imaging. AJNR Am J Neuroradiol 23(9):1553–1556PubMedGoogle Scholar
  29. Cottin Y et al (2000) Muscle metabolism assessed by phosphorus-31 nuclear magnetic resonance spectroscopy after myocardial infarction in rehabilitated patients: a 1-year follow-up. Plos Medicine 20(1):44-49Google Scholar
  30. David-Vaudey E et al (2004) T2 relaxation time measurements in osteoarthritis. Magn Reson Imaging 22(5):673–682PubMedCrossRefGoogle Scholar
  31. de Certaines JD et al (1993) In vivo 31P MRS of experimental tumours. NMR Biomed 6(6):345–365PubMedCrossRefGoogle Scholar
  32. Devre RM, Maerschalk C, Delporte C (1990) Spin-lattice relaxation-times and nuclear Overhauser enhancement effect for P-31 metabolites in model solutions at 2 frequencies - implications for in vivo spectroscopy. Magn Reson Imaging 8:691–698CrossRefGoogle Scholar
  33. Ding M et al (2002) Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res 20(3):615–621PubMedCrossRefGoogle Scholar
  34. Dousset V et al (1992) Experimental allergic encephalomyelitis and multiple-sclerosis - lesion characterization with magnetization transfer imaging. Radiology. 182(2):483-491PubMedGoogle Scholar
  35. Du J, Takahashi AM, Chung CB (2009) Ultrashort TE spectroscopic imaging (UTESI): application to the imaging of short T2 relaxation tissues in the musculoskeletal system. J Magn Reson Imaging 29(2):412–421PubMedCrossRefGoogle Scholar
  36. Duboc D et al (1987) Phosphorus NMR-spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37(4):663–671PubMedGoogle Scholar
  37. Dunn TC et al (2004) T2 relaxation time of cartilage at MR imaging: comparison with severity of knee osteoarthritis. Radiology 232(2):592–598PubMedCrossRefGoogle Scholar
  38. Eckstein F et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the osteoarthritis initiative. Ann Rheumatic Dis 65(4):433–441PubMedCrossRefGoogle Scholar
  39. Evelhoch JL et al (1985) 31P spin-lattice relaxation times and resonance linewidths of rat tissue in vivo: dependence upon the static magnetic field strength. Magn Reson Med 2(4):410–417PubMedCrossRefGoogle Scholar
  40. Farooki S et al (2002) In vivo high-resolution MR imaging of the carpal tunnel at 8.0 tesla. Skeletal Radiol 31(8):445–450PubMedCrossRefGoogle Scholar
  41. Friedrich KM et al (2009) In vivo 7.0-tesla magnetic resonance imaging of the wrist and hand: technical aspects and applications. Semin Musculoskelet Radiol 13(1):74–84PubMedCrossRefGoogle Scholar
  42. Gloor M, Scheffler K, Bieri O (2008) Quantitative magnetization transfer imaging using balanced SSFP. Magn Reson Med 60(3):691–700PubMedCrossRefGoogle Scholar
  43. Gold GE et al (1998) MR imaging of articular cartilage of the knee: new methods using ultrashort TEs. AJR Am J Roentgenol 170(5):1223–1226PubMedGoogle Scholar
  44. Gold GE et al (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183(2):343–351PubMedGoogle Scholar
  45. Goldstein SA, Goulet R, McCubbrey D (1993) Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int 53 Suppl 1:S127–132; discussion S132–133PubMedCrossRefGoogle Scholar
  46. Goodwin DW, Wadghiri YZ, Dunn JF (1998) Micro-imaging of articular cartilage: T2, proton density, and the magic angle effect. Acad Radiol 5(11):790–798PubMedCrossRefGoogle Scholar
  47. Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174(2):405–409PubMedGoogle Scholar
  48. Gray ML et al (1995) Magnetization-transfer in cartilage and its constituent macromolecules. Magn Reson Med 34(3):319–325PubMedCrossRefGoogle Scholar
  49. Grushko G, Schneiderman R, Maroudas A (1989) Some biochemical and biophysical parameters for the study of the pathogenesis of osteoarthritis: a comparison between the processes of ageing and degeneration in human hip cartilage. Connect Tissue Res 19(2–4):149–176PubMedCrossRefGoogle Scholar
  50. Hardy PA et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. JMRI-J Magn Reson Imaging 6(2):329–335CrossRefGoogle Scholar
  51. Hardy PA, Recht MP, Piraino DW (1998) Fat suppressed MRI of articular cartilage with a spatial-spectral excitation pulse. J Magn Reson Imaging 8(6):1279–1287PubMedCrossRefGoogle Scholar
  52. Henkelman RM, Stanisz GJ, Graham SJ (2001) Magnetization transfer in MRI: a review. NMR Biomed 14(2):57–64PubMedCrossRefGoogle Scholar
  53. Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46(1):6–12PubMedCrossRefGoogle Scholar
  54. Hinton DP et al (2003) Comparison of cardiac MRI on 1.5 and 3.0 Tesla clinical whole body systems. Invest Radiol 38(7):436–442PubMedGoogle Scholar
  55. Hopkins JA, Wehrli FW (1997) Magnetic susceptibility measurement of insoluble solids by NMR: magnetic susceptibility of bone. Magn Reson Med 37(4):494–500PubMedCrossRefGoogle Scholar
  56. Hore PJ (1983) Solvent suppression in Fourier-transform nuclear magnetic-resonance. J Magn Reson 55(2):283–300Google Scholar
  57. Hoult DI, Chen CN, Sank VJ (1986) The field dependence of NMR imaging. II. Arguments concerning an optimal field strength. Magn Reson Med 3(5):730–746PubMedCrossRefGoogle Scholar
  58. Hughes T et al (2007) T2-Star relaxation as a means to diffrentiatie cartilage repair tissue after microfracturing therapy. Intern Soc Magn Reson Med 15:183Google Scholar
  59. Jaccard G, Wimperis S, Bodenhausen G (1986) Multiple-quantum NMR-spectroscopy of S = 3/2 spins in isotropic-phase - a new probe for multiexponential relaxation. J Chem Phys 85(11):6282–6293CrossRefGoogle Scholar
  60. Kemp-Harper R et al (1997) Na-23 NMR methods for selective observation of sodium ions in ordered environments vol. 30:157 Prog Nucl Magn Reson Spectrosc 31:287CrossRefGoogle Scholar
  61. Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by P-31 MRS: a quantitative review. NMR Biomed 20(6):555–565PubMedCrossRefGoogle Scholar
  62. Kim YJ et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg-Am Vol 85A(10):1987–1992Google Scholar
  63. Kleerekoper M et al (1985) The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 37(6):594–597PubMedCrossRefGoogle Scholar
  64. Ko SF et al (2008) 31P MR spectroscopic assessment of muscle in patients with myasthenia gravis before and after thymectomy: initial experience. Radiology 247(1):162–169PubMedCrossRefGoogle Scholar
  65. Kraff O et al (2007) MRI of the knee at 7.0 Tesla. Rofo 179(12):1231–1235PubMedGoogle Scholar
  66. Krssak M et al (2004) H-1 NMR relaxation times of skeletal muscle metabolites at 3 T. Magn Reson Mater Phys Biol Med 16(4):155–159Google Scholar
  67. Krug R et al (2007) In vivo bone and cartilage MRI using fully-balanced steady-state free-precession at 7 tesla. Magn Reson Med 58(6):1294–1298PubMedCrossRefGoogle Scholar
  68. Krug R et al (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7 T. J Magn Reson Imaging 27(4):854–859PubMedCrossRefGoogle Scholar
  69. Krug R et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44(9):613–618PubMedCrossRefGoogle Scholar
  70. Kuhl CK et al (1994) Mitochondrial encephalomyopathy - correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 192(1):223–230PubMedGoogle Scholar
  71. Lattanzio PJ et al (2000) Macromolecule and water magnetization exchange modeling in articular cartilage. Magn Reson Med 44(6):840–851PubMedCrossRefGoogle Scholar
  72. Lei H et al (2003) In vivo P-31 magnetic resonance spectroscopy of human brain at 7 T: an initial experience. Magn Reson Med 49(2):199–205PubMedCrossRefGoogle Scholar
  73. Lenk S et al (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176(5):664–667PubMedGoogle Scholar
  74. Lesperance LM, Gray ML, Burstein D (1992) Determination of fixed charge density in cartilage using nuclear magnetic resonance. J Orthop Res 10(1):1–13PubMedCrossRefGoogle Scholar
  75. Ling W, Jerschow A (2005) Selecting ordered environments in NMR of spin 3/2 nuclei via frequency-sweep pulses. J Magn Reson 176(2):234–238PubMedCrossRefGoogle Scholar
  76. Ling W, Jerschow A (2006) Frequency-selective quadrupolar MRI contrast. Solid State Nucl Magn Reson 29(1–3):227–231PubMedCrossRefGoogle Scholar
  77. Ling W et al (2006) Behavior of ordered sodium in enzymatically depleted cartilage tissue. Magn Reson Med (5):1151–1155PubMedCrossRefGoogle Scholar
  78. Lodi R et al (1999) Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proc Natl Acad Sci 96(20):11492–11495PubMedCrossRefGoogle Scholar
  79. Lodi R et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich’s ataxia. Ann Neurol 49(5):590–596PubMedCrossRefGoogle Scholar
  80. Lohmander LS (1994) Articular cartilage and osteoarthrosis. The role of molecular markers to monitor breakdown, repair and disease. J Anat 184 (Pt 3):477–492PubMedGoogle Scholar
  81. Mankin HJ (1971) Biochemical and metabolic aspects of osteoarthritis. Orthop Clin North Am 2(1):19–31PubMedGoogle Scholar
  82. Maroudas A, Muir H, Wingham J (1969) The correlation of fixed negative charge with glycosaminoglycan content of human articular cartilage. Biochim Biophys Acta 177(3):492–500PubMedGoogle Scholar
  83. Matthews PM et al (1991) In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology 41(1):114–120PubMedGoogle Scholar
  84. McKenzie CA et al (2006) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) at 1.5T and 3.0T. J Magn Reson Imaging 24(4):928–933PubMedCrossRefGoogle Scholar
  85. Meyerspeer M et al (2009) Dynamic 31P MRS of exercising human muscle in a 7T whole body system, with STEAM and semi-LASER localisation. In: ISMRM, HonoluluGoogle Scholar
  86. Messner K, Gao J (1998) The menisci of the knee joint. Anatomical and functional characteristics, and a rationale for clinical treatment. J Anat 193 (Pt 2):161–178PubMedCrossRefGoogle Scholar
  87. Meyer CH et al (1990) Simultaneous spatial and spectral selective excitation. Magn Reson Med 15(2):287–304PubMedCrossRefGoogle Scholar
  88. Meyerspeer M, Krssak M, Moser E (2003) Relaxation times of P-31-metabolites in human calf muscle at 3 T. Magn Reson Med 49(4):620–625PubMedCrossRefGoogle Scholar
  89. Michaeli S et al (2002) Proton T2 relaxation study of water, N-acetylaspartate, and creatine in human brain using Hahn and Carr-Purcell spin echoes at 4T and 7T. Magn Reson Med 47(4):629–633PubMedCrossRefGoogle Scholar
  90. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8(4):355–368PubMedCrossRefGoogle Scholar
  91. Mosher TJ et al (2004) Effect of gender on in vivo cartilage magnetic resonance imaging T2 mapping. J Magn Reson Imaging 19(3):323–328PubMedCrossRefGoogle Scholar
  92. Mosher TJ et al (2005) Change in knee cartilage T2 at MR imaging after running: a feasibility study. Radiology 234(1):245–249PubMedCrossRefGoogle Scholar
  93. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30(6):305–311PubMedCrossRefGoogle Scholar
  94. Navon G et al (2001) Multiquantum filters and order in tissues. NMR Biomed 14(2):112–132PubMedCrossRefGoogle Scholar
  95. Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5(5):303–324PubMedCrossRefGoogle Scholar
  96. Pakin SK et al (2006) Ultra-high-field MRI of knee joint at 7.0T: preliminary experience. Acad Radiol 13(9):1135–1142PubMedCrossRefGoogle Scholar
  97. Palmieri F et al (2006) Magnetization transfer analysis of cartilage repair tissue: a preliminary study. Skelet Radiol 35(12):903–908PubMedCrossRefGoogle Scholar
  98. Pedersen BL, Baekgaard N, Quistorff B (2009) Muscle mitochondrial function in patients with Type 2 diabetes mellitus and peripheral arterial disease: implications in vascular surgery. Eur J Vasc Endovasc Surg 38(3):356–364PubMedCrossRefGoogle Scholar
  99. Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiology & Behavior 94(2):252–258PubMedCrossRefGoogle Scholar
  100. Poole AR et al (2001) Composition and structure of articular cartilage: a template for tissue repair. Clin Orthop Relat Res (391 Suppl):S26-33Google Scholar
  101. Praet SFE et al (2006) P-31 MR spectroscopy and in vitro markers of oxidative capacity in type 2 diabetes patients. Magn Reson Mater Phys Biol Med 19(6):321–331Google Scholar
  102. Prompers JJ et al (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19(7):927–953PubMedCrossRefGoogle Scholar
  103. Rahmer J, Bornert P, Dries SP (2009) Assessment of anterior cruciate ligament reconstruction using 3D ultrashort echo-time MR imaging. J Magn Reson Imaging 29(2):443–448PubMedCrossRefGoogle Scholar
  104. Reddy R, Insko EK, Leigh JS (1997). Triple quantum sodium imaging of articular cartilage. Magn Reson Med 38(2):279–284PubMedCrossRefGoogle Scholar
  105. Reddy R et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39(5):697–701PubMedCrossRefGoogle Scholar
  106. Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging 25(2):262–269PubMedCrossRefGoogle Scholar
  107. Rinck PA et al (1988) Field-cycling relaxometry: medical applications. Radiology 168(3):843–849PubMedGoogle Scholar
  108. Robson MD et al (2003) Magnetic resonance: an introduction to ultrashort TE (UTE) imaging. J Comput Assist Tomogr 27(6):825–846PubMedCrossRefGoogle Scholar
  109. Rohrer M et al (2005) Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol 40(11):715–724PubMedCrossRefGoogle Scholar
  110. Rosen BR, Wedeen VJ, Brady TJ (1984) Selective Saturation NMR imaging. J Comput Assist Tomogr 8(5):813–818PubMedCrossRefGoogle Scholar
  111. Roughley PJ, Lee ER (1994) Cartilage proteoglycans: structure and potential functions. Microsc Res Tech 28(5):385–397PubMedCrossRefGoogle Scholar
  112. Schmitt M et al (2005) B1 homogenization in abdominal imaging at 3T. In: Proc Int Soc Magn Reson Med 331Google Scholar
  113. Shapiro EM et al (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142(1):24–31PubMedCrossRefGoogle Scholar
  114. Shapiro EM et al (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47(2):284–291PubMedCrossRefGoogle Scholar
  115. Shinar H, Navon G (2006) Multinuclear NMR and microscopic MRI studies of the articular cartilage nanostructure. NMR Biomed 19(7):877–893PubMedCrossRefGoogle Scholar
  116. Shinar H, Eliav U, Navon G (1992) Single and multiple quantum NMR relaxation-times of sodium and potassium in red-blood-cells. Israel J Chem 32(2–3):299–304Google Scholar
  117. Sled JG, Pike GB (2001) Quantitative imaging of magnetization transfer exchange and relaxation properties in vivo using MRI. Magn Reson Med 46(5):923–931PubMedCrossRefGoogle Scholar
  118. Smith HE et al (2001) Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 14(1):50–55PubMedCrossRefGoogle Scholar
  119. Stahl R et al (2009) Assessment of cartilage-dedicated sequences at ultra-high-field MRI: comparison of imaging performance and diagnostic confidence between 3.0 and 7.0 T with respect to osteoarthritis-induced changes at the knee joint. Skeletal Radiol 38(8):771–783PubMedCrossRefGoogle Scholar
  120. Stanisz GJ et al (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54(3):507–512PubMedCrossRefGoogle Scholar
  121. Szendroedi J et al (2007) Muscle mitochondrial ATP synthesis and glucose transport/phosphorylation in type 2 diabetes. Plos Medicine 4(5):858–867CrossRefGoogle Scholar
  122. Szendroedi J et al (2009) Impaired mitochondrial function and insulin resistance of skeletal muscle in mitochondrial diabetes. Diabetes Care 32(4):677–679PubMedCrossRefGoogle Scholar
  123. Taivassalo T et al (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47(2):529–534PubMedGoogle Scholar
  124. Taylor DJ (2000) Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol 4(4):481–502PubMedCrossRefGoogle Scholar
  125. Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal-muscle in mitochondrial myopathy. J Neurol Sci 127(2):198–206PubMedCrossRefGoogle Scholar
  126. Thomasson D, Purdy D, Finn JP (1996) Phase-modulated binomial RF pulses for fast spectrally-selective musculoskeletal imaging. Magn Reson Med 35(4):563–568PubMedCrossRefGoogle Scholar
  127. Tiderius CJ et al (2003) Delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) in early knee osteoarthritis. Magn Reson Med 49(3):488–492PubMedCrossRefGoogle Scholar
  128. Trattnig S et al (2007a) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0T: preliminary results. J Magn Reson 26(4):974–982CrossRefGoogle Scholar
  129. Trattnig S et al (2007b) Quantitative T2 mapping of matrix-associated autologous chondrocyte transplantation at 3 Tesla - an in vivo cross-sectional study. Investig Radiol 42:442–448CrossRefGoogle Scholar
  130. Ugurbil K et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21(10):1263–1281PubMedCrossRefGoogle Scholar
  131. Vaughan JT et al (2002) Detunable transverse electromagnetic (TEM) volume coil for high-field NMR. Magn Reson Med 47(5):990–1000PubMedCrossRefGoogle Scholar
  132. Wachsmuth L, Juretschke HP, Raiss RX (1997) Can magnetization transfer magnetic resonance imaging follow proteoglycan depletion in articular cartilage? Magn Reson Mater Phys Biol Med 5(1):71–78Google Scholar
  133. Wald LL et al (1995) Phased array detectors and an automated intensity-correction algorithm for high-resolution MR imaging of the human brain. Magn Reson Med 34(3):433–439PubMedCrossRefGoogle Scholar
  134. Watanabe A et al (2006) Delayed gadolinium-enhanced MR to determine glycosaminoglycan concentration in reparative cartilage after autologous chondrocyte implantation: Preliminary results. Radiology 239(1):201–208PubMedCrossRefGoogle Scholar
  135. Watrin-Pinzano A et al (2004) Evaluation of cartilage repair tissue after biomaterial implantation in rat patella by using T2 mapping. Magn Reson Mater Phy 17(3–6):219–228CrossRefGoogle Scholar
  136. Welsch GH et al (2008a) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19(5):1253–1262CrossRefGoogle Scholar
  137. Welsch GH et al (2008b) In vivo biochemical 7.0 Tesla magnetic resonance: preliminary results of dGEMRIC, zonal T2, and T2* mapping of articular cartilage. Invest Radiol 43(9):619–626CrossRefGoogle Scholar
  138. Welsch GH et al (2008c) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures–initial experience. Radiology 247(1):154–161CrossRefGoogle Scholar
  139. Welsch GH et al (2008d) Magnetization transfer contrast and T2 mapping in the evaluation of cartilage repair tissue with 3T MRI. J Magn Reson Imaging 28(4):979–986CrossRefGoogle Scholar
  140. Welsch GH et al (2009a) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): Full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963CrossRefGoogle Scholar
  141. Welsch GH et al (2009b) Biochemical (T2, T2* and magnetization transfer contrast) MRI of knee cartilage - feasibility at ultra-high-field (7.0T) and comparison to high-field (3.0T). Magma 22(Suppl. 1) p.124Google Scholar
  142. Wheaton AJ et al (2004a) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology 231(3):900–905CrossRefGoogle Scholar
  143. Wheaton AJ et al (2004b) Sodium magnetic resonance imaging of proteoglycan depletion in an in vivo model of osteoarthritis. Acad Radiol 11(1):21–28CrossRefGoogle Scholar
  144. White LM et al (2006) Cartilage T2 assessment: differentiation of normal hyaline cartilage and reparative tissue after arthroscopic cartilage repair in equine subjects. Radiology 241(2):407–414PubMedCrossRefGoogle Scholar
  145. Wietek B et al (2007) T2 and T2* mapping of the human femoral-tibial cartilage at 1.5 and 3 Tesla. Intern Soc Magn Reson Med 15:516Google Scholar
  146. Williams A et al (2007) Suitability of T(1Gd) as the dGEMRIC index at 1.5T and 3.0T. Magn Reson Med 58(4): 830–834PubMedCrossRefGoogle Scholar
  147. Wolff SD, Balaban RS (1989) Magnetization transfer contrast (Mtc) and tissue water proton relaxation invivo. Magn Reson Med 10(1):135–144PubMedCrossRefGoogle Scholar
  148. Wolff SD, Balaban RS (1994) Magnetization-transfer imaging—practical aspects and clinical-applications. Radiology 192(3):593–599PubMedGoogle Scholar
  149. Wolff SD et al (1991) Magnetization transfer contrast—Mr-imaging of the Knee. Radiology 179(3):623–628PubMedGoogle Scholar
  150. Wood ML, Hardy PA (1993) Proton relaxation enhancement. J Magn Reson Imaging 3(1):149–156PubMedCrossRefGoogle Scholar
  151. Zur Y (2000) Design of improved spectral-spatial pulses for routine clinical use. Magn Reson Med 43(3):410–420PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Siegfried Trattnig
    • 1
  • Klaus Friedrich
    • 1
  • Wolfgang Bogner
    • 1
  • Klaus Scheffler
    • 2
  • Oliver Bieri
    • 2
  • Goetz H. Welsch
    • 1
    • 3
  1. 1.Department of Radiology, High-Field MR Imaging CentreMedical University of ViennaViennaAustria
  2. 2.Division of Radiological Physics, Department of Medical RadiologyUniversity of Basel HospitalBaselSwitzerland
  3. 3.Department of Trauma SurgeryUniversity Hospital of ErlangenErlangenGermany

Personalised recommendations