Skip to main content

Plaque Differentiation

  • Chapter
  • First Online:
Dual Energy CT in Clinical Practice

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

  • 2217 Accesses

Abstract

The development of atherosclerotic plaques occurs slowly over decades. This provides an opportunity for diagnostic imaging to identify patients before clinical events occur. Computed tomography (CT) is an important imaging technique that is rountinely used for the noninvasive imaging of the arteries throughout the body. One of the most recent innovations in CT is the use of two tubes with different energy, which is called dual-energy CT. This technique has the potential to improve the abilities to differentiate various body tissues with CT, and to increase the inherently low contrast of single-energy CT. This chapter reviews the current status and potential future role of dual-energy CT to detect, characterize and differentiate atherosclerotic plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776

    Article  PubMed  Google Scholar 

  • Barreto M, Schoenhagen P, Nair A et al (2008) Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2:234–242

    Article  PubMed  Google Scholar 

  • Behrendt FF, Schmidt B, Plumhans C et al (2009) Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol 44:1–6

    Article  PubMed  Google Scholar 

  • Boll DT, Hoffmann MH, Huber N, Bossert AS, Aschoff AJ, Fleiter TR (2006) Spectral coronary multidetector computed tomography angiography: dual benefit by facilitating plaque characterization and enhancing lumen depiction. J Comput Assist Tomogr 30:804–811

    Article  PubMed  Google Scholar 

  • Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249:119–126

    Article  PubMed  Google Scholar 

  • Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624

    Article  PubMed  Google Scholar 

  • Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523

    PubMed  CAS  Google Scholar 

  • Das M, Braunschweig T, Muhlenbruch G et al (2009) Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38:14–19

    Article  PubMed  CAS  Google Scholar 

  • Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268

    Article  PubMed  Google Scholar 

  • Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551

    Article  PubMed  CAS  Google Scholar 

  • Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440

    Article  PubMed  Google Scholar 

  • Holmes DR III, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413

    Article  PubMed  Google Scholar 

  • Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517

    Article  PubMed  Google Scholar 

  • Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334–339

    Article  PubMed  CAS  Google Scholar 

  • Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425

    Article  PubMed  CAS  Google Scholar 

  • Lehmann LA, Alvarez RE, Macovski A et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667

    Article  PubMed  CAS  Google Scholar 

  • Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903

    Article  PubMed  Google Scholar 

  • Mahnken AH, Stanzel S, Heismann B (2009) Spectral rhoZ-projection method for characterization of body fluids in computed tomography: ex vivo experiments. Acad Radiol 16:763–769

    Article  PubMed  Google Scholar 

  • Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71

    Article  PubMed  CAS  Google Scholar 

  • Pansini V, Remy-Jardin M, Faivre JB et al (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19: 2834–2843

    Google Scholar 

  • Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368

    Article  PubMed  Google Scholar 

  • Pontana F, Faivre JB, Remy-Jardin M et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504

    Article  PubMed  Google Scholar 

  • Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14:1441–1447

    Article  PubMed  Google Scholar 

  • Ruzsics B, Schwarz F, Schoepf UJ et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104:318–326

    Article  PubMed  Google Scholar 

  • Saur SC (2009) Quantitative assessment of atherosclerosis in coronary arteries. In: Van Gool L, SzĂ©kely G, Gross M, Schiele B (ed) Selected readings in vision and graphics, pp 1–150, Hartung-Gorre

    Google Scholar 

  • Saur SC, Alkadhi H, Regazzoni L, Eugster S, SzĂ©kely G, Cattin PC (2009) Contrast enhancement with dual energy CT for the assessment of atherosclerosis. Bildverarbeitung in der Medizin 13:1–5

    Google Scholar 

  • Saur SC, Alkadhi H, Desbiolles L, Szekely G, Cattin PC (2008) Automatic detection of calcified coronary plaques in computed tomography data sets. Med Image Comput Comput Assist Interv 11:170–177

    PubMed  Google Scholar 

  • Saur SC, Cattin PC, Desbiolles L, Fuchs TJ, Szekely G, Alkadhi H (2009b) Prediction rules for the detection of coronary artery plaques: evidence from cardiac CT. Invest Radiol 44:483–490

    Article  PubMed  Google Scholar 

  • Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747

    Article  PubMed  Google Scholar 

  • Scheffel H, Stolzmann P, Frauenfelder T et al (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:823–829

    Article  PubMed  Google Scholar 

  • Sommer WH, Johnson TR, Becker CR et al (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44:285–292

    Article  PubMed  Google Scholar 

  • Stolzmann P, Scheffel H, Rentsch K et al (2008a) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36:133–138

    Article  PubMed  Google Scholar 

  • Stolzmann P, Frauenfelder T, Pfammatter T et al (2008b) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691

    Article  PubMed  Google Scholar 

  • Stolzmann P, Kozomara M, Chuck N et al (2009) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom Imaging

    Google Scholar 

  • Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR (2008) Dual energy CT for the assessment of lung perfusion–correlation to scintigraphy. Eur J Radiol 68:369–374

    Article  PubMed  Google Scholar 

  • Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171

    Article  PubMed  Google Scholar 

  • Uotani K, Watanabe Y, Higashi M et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19:2060–2065

    Article  PubMed  Google Scholar 

  • van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632

    Article  PubMed  Google Scholar 

  • Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13:340–343

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto S, McWilliams J, Arellano C et al (2009) Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol 64:1088–1096

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hatem Alkadhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alkadhi, H., Stolzmann, P., Leschka, S., Cattin, P., Székely, G., Saur, S. (2011). Plaque Differentiation. In: Johnson, T., Fink, C., Schönberg, S., Reiser, M. (eds) Dual Energy CT in Clinical Practice. Medical Radiology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/174_2010_38

Download citation

  • DOI: https://doi.org/10.1007/174_2010_38

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01739-1

  • Online ISBN: 978-3-642-01740-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics