Plaque Differentiation

  • Hatem Alkadhi
  • Paul Stolzmann
  • Sebastian Leschka
  • Philippe Cattin
  • Gabor Székely
  • Stefan Saur
Part of the Medical Radiology book series (MEDRAD)


The development of atherosclerotic plaques occurs slowly over decades. This provides an opportunity for diagnostic imaging to identify patients before clinical events occur. Computed tomography (CT) is an important imaging technique that is rountinely used for the noninvasive imaging of the arteries throughout the body. One of the most recent innovations in CT is the use of two tubes with different energy, which is called dual-energy CT. This technique has the potential to improve the abilities to differentiate various body tissues with CT, and to increase the inherently low contrast of single-energy CT. This chapter reviews the current status and potential future role of dual-energy CT to detect, characterize and differentiate atherosclerotic plaques.


Coronary Atherosclerotic Plaque Noncalcified Plaque Modify Sigmoid Function High Energy Image Cancellation Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alkadhi H, Scheffel H, Desbiolles L et al (2008) Dual-source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776PubMedCrossRefGoogle Scholar
  2. Barreto M, Schoenhagen P, Nair A et al (2008) Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2:234–242PubMedCrossRefGoogle Scholar
  3. Behrendt FF, Schmidt B, Plumhans C et al (2009) Image fusion in dual energy computed tomography: effect on contrast enhancement, signal-to-noise ratio and image quality in computed tomography angiography. Invest Radiol 44:1–6PubMedCrossRefGoogle Scholar
  4. Boll DT, Hoffmann MH, Huber N, Bossert AS, Aschoff AJ, Fleiter TR (2006) Spectral coronary multidetector computed tomography angiography: dual benefit by facilitating plaque characterization and enhancing lumen depiction. J Comput Assist Tomogr 30:804–811PubMedCrossRefGoogle Scholar
  5. Boll DT, Merkle EM, Paulson EK, Mirza RA, Fleiter TR (2008) Calcified vascular plaque specimens: assessment with cardiac dual-energy multidetector CT in anthropomorphically moving heart phantom. Radiology 249:119–126PubMedCrossRefGoogle Scholar
  6. Chae EJ, Seo JB, Goo HW et al (2008) Xenon ventilation CT with a dual-energy technique of dual-source CT: initial experience. Radiology 248:615–624PubMedCrossRefGoogle Scholar
  7. Chiro GD, Brooks RA, Kessler RM et al (1979) Tissue signatures with dual-energy computed tomography. Radiology 131:521–523PubMedGoogle Scholar
  8. Das M, Braunschweig T, Muhlenbruch G et al (2009) Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38:14–19PubMedCrossRefGoogle Scholar
  9. Flohr TG, McCollough CH, Bruder H et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16:256–268PubMedCrossRefGoogle Scholar
  10. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545–551PubMedCrossRefGoogle Scholar
  11. Graser A, Johnson TR, Hecht EM et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252:433–440PubMedCrossRefGoogle Scholar
  12. Holmes DR III, Fletcher JG, Apel A et al (2008) Evaluation of non-linear blending in dual-energy computed tomography. Eur J Radiol 68:409–413PubMedCrossRefGoogle Scholar
  13. Johnson TR, Krauss B, Sedlmair M et al (2007) Material differentiation by dual energy CT: initial experience. Eur Radiol 17:1510–1517PubMedCrossRefGoogle Scholar
  14. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334–339PubMedCrossRefGoogle Scholar
  15. Kelcz F, Joseph PM, Hilal SK (1979) Noise considerations in dual energy CT scanning. Med Phys 6:418–425PubMedCrossRefGoogle Scholar
  16. Lehmann LA, Alvarez RE, Macovski A et al (1981) Generalized image combinations in dual KVP digital radiography. Med Phys 8:659–667PubMedCrossRefGoogle Scholar
  17. Leschka S, Stolzmann P, Desbiolles L et al (2009) Diagnostic accuracy of high-pitch dual-source CT for the assessment of coronary stenoses: first experience. Eur Radiol 19:2896–2903PubMedCrossRefGoogle Scholar
  18. Mahnken AH, Stanzel S, Heismann B (2009) Spectral rhoZ-projection method for characterization of body fluids in computed tomography: ex vivo experiments. Acad Radiol 16:763–769PubMedCrossRefGoogle Scholar
  19. Millner MR, McDavid WD, Waggener RG, Dennis MJ, Payne WH, Sank VJ (1979) Extraction of information from CT scans at different energies. Med Phys 6:70–71PubMedCrossRefGoogle Scholar
  20. Pansini V, Remy-Jardin M, Faivre JB et al (2009) Assessment of lobar perfusion in smokers according to the presence and severity of emphysema: preliminary experience with dual-energy CT angiography. Eur Radiol 19: 2834–2843Google Scholar
  21. Petersilka M, Bruder H, Krauss B, Stierstorfer K, Flohr TG (2008) Technical principles of dual source CT. Eur J Radiol 68:362–368PubMedCrossRefGoogle Scholar
  22. Pontana F, Faivre JB, Remy-Jardin M et al (2008) Lung perfusion with dual-energy multidetector-row CT (MDCT): feasibility for the evaluation of acute pulmonary embolism in 117 consecutive patients. Acad Radiol 15:1494–1504PubMedCrossRefGoogle Scholar
  23. Primak AN, Fletcher JG, Vrtiska TJ et al (2007) Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT. Acad Radiol 14:1441–1447PubMedCrossRefGoogle Scholar
  24. Ruzsics B, Schwarz F, Schoepf UJ et al (2009) Comparison of dual-energy computed tomography of the heart with single photon emission computed tomography for assessment of coronary artery stenosis and of the myocardial blood supply. Am J Cardiol 104:318–326PubMedCrossRefGoogle Scholar
  25. Saur SC (2009) Quantitative assessment of atherosclerosis in coronary arteries. In: Van Gool L, Székely G, Gross M, Schiele B (ed) Selected readings in vision and graphics, pp 1–150, Hartung-GorreGoogle Scholar
  26. Saur SC, Alkadhi H, Regazzoni L, Eugster S, Székely G, Cattin PC (2009) Contrast enhancement with dual energy CT for the assessment of atherosclerosis. Bildverarbeitung in der Medizin 13:1–5Google Scholar
  27. Saur SC, Alkadhi H, Desbiolles L, Szekely G, Cattin PC (2008) Automatic detection of calcified coronary plaques in computed tomography data sets. Med Image Comput Comput Assist Interv 11:170–177PubMedGoogle Scholar
  28. Saur SC, Cattin PC, Desbiolles L, Fuchs TJ, Szekely G, Alkadhi H (2009b) Prediction rules for the detection of coronary artery plaques: evidence from cardiac CT. Invest Radiol 44:483–490PubMedCrossRefGoogle Scholar
  29. Scheffel H, Alkadhi H, Plass A et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16:2739–2747PubMedCrossRefGoogle Scholar
  30. Scheffel H, Stolzmann P, Frauenfelder T et al (2007) Dual-energy contrast-enhanced computed tomography for the detection of urinary stone disease. Invest Radiol 42:823–829PubMedCrossRefGoogle Scholar
  31. Sommer WH, Johnson TR, Becker CR et al (2009) The value of dual-energy bone removal in maximum intensity projections of lower extremity computed tomography angiography. Invest Radiol 44:285–292PubMedCrossRefGoogle Scholar
  32. Stolzmann P, Scheffel H, Rentsch K et al (2008a) Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation. Urol Res 36:133–138PubMedCrossRefGoogle Scholar
  33. Stolzmann P, Frauenfelder T, Pfammatter T et al (2008b) Endoleaks after endovascular abdominal aortic aneurysm repair: detection with dual-energy dual-source CT. Radiology 249:682–691PubMedCrossRefGoogle Scholar
  34. Stolzmann P, Kozomara M, Chuck N et al (2009) In vivo identification of uric acid stones with dual-energy CT: diagnostic performance evaluation in patients. Abdom ImagingGoogle Scholar
  35. Thieme SF, Becker CR, Hacker M, Nikolaou K, Reiser MF, Johnson TR (2008) Dual energy CT for the assessment of lung perfusion–correlation to scintigraphy. Eur J Radiol 68:369–374PubMedCrossRefGoogle Scholar
  36. Tran DN, Straka M, Roos JE, Napel S, Fleischmann D (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16:160–171PubMedCrossRefGoogle Scholar
  37. Uotani K, Watanabe Y, Higashi M et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19:2060–2065PubMedCrossRefGoogle Scholar
  38. van Werkhoven JM, Schuijf JD, Gaemperli O et al (2009) Prognostic value of multislice computed tomography and gated single-photon emission computed tomography in patients with suspected coronary artery disease. J Am Coll Cardiol 53:623–632PubMedCrossRefGoogle Scholar
  39. Vetter JR, Perman WH, Kalender WA, Mazess RB, Holden JE (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. II. Determination of vertebral bone mineral content. Med Phys 13:340–343PubMedCrossRefGoogle Scholar
  40. Yamamoto S, McWilliams J, Arellano C et al (2009) Dual-energy CT angiography of pelvic and lower extremity arteries: dual-energy bone subtraction versus manual bone subtraction. Clin Radiol 64:1088–1096PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hatem Alkadhi
    • 1
    • 2
  • Paul Stolzmann
    • 1
  • Sebastian Leschka
    • 1
  • Philippe Cattin
    • 3
    • 4
  • Gabor Székely
    • 3
  • Stefan Saur
    • 3
  1. 1.Institute of Diagnostic RadiologyUniversity Hospital ZurichZurichSwitzerland
  2. 2.Cardiac MR PET CT programMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Computer Vision LaboratoryETH ZurichZurichSwitzerland
  4. 4.Medical Image Analysis CenterUniversity of BaselBaselSwitzerland

Personalised recommendations