Advertisement

Neurological Applications

  • Otto Rapalino
  • Shervin Kamalian
  • Rajiv Gupta
  • Catherine Phan
  • Stuart Pomerantz
  • Javier Romero
  • Mukta C. Joshi
  • Michael Lev
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

Dual energy computed tomography (CT) methods are revolutionizing neurological imaging by refining material characterization using CT, improving the detection of contrast enhancement, and reducing scatter-related artifacts. These techniques improve our accuracy for differentiation of hemorrhage from calcification and contrast staining. They also allow the selection of lower energy X-ray beams that increase the conspicuity of intravascular enhancement, potentially useful in CT angiograms using low contrast doses. A new type of dual-energy CT technology called Gemstone Spectral Imaging (GE healthcare) also allows the selection of X-ray beams at specific energy levels to optimize parenchymal visualization. These applications offer a glimpse of the significant potential of dual-energy technology to expand the role of computed tomography in neuroimaging and cerebrovascular imaging.

Keywords

Compute Tomography Angiography Pulmonary Compute Tomography Angiography Compute Tomography Angiogram Dual Energy Compute Tomography Pulmonary Compute Tomography Angiogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Abbreviations

CDTIvol

Volume CT dose index

CIN

Contrast-induced nephropathy

CNR

Contrast-to-noise ratio

CT

Computed tomography

CTA

Computed tomography angiography

DE

Dual energy

DFOV

Display field of view

FOV

Field of view

GRE

Gradient-recalled echo

GSI

Gemstone spectral imaging

HU

Hounsfield units

keV

Kiloelectron volt

kVp

Peak kilovoltage

ROI

Region of interest

SFOV

Scan field of view

SWI

Susceptibility-weighted imaging

VNC

Virtual noncontrast

References

  1. Abujudeh HH et al (2009) Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: case series of 36 patients. Radiology 253(1):81–89PubMedCrossRefGoogle Scholar
  2. Bahner ML et al (2005) Improved vascular opacification in cerebral computed tomography angiography with 80 kVp. Invest Radiol 40(4):229–234PubMedCrossRefGoogle Scholar
  3. Balvay D et al (2009) Mapping the zonal organization of tumor perfusion and permeability in a rat glioma model by using dynamic contrast-enhanced synchrotron radiation CT. Radiology 250(3):692–702PubMedCrossRefGoogle Scholar
  4. Barnea G, Dick CE (1986) Monte Carlo studies of X-ray scattering in transmission diagnostic radiology. Med Phys 13(4):490–495PubMedCrossRefGoogle Scholar
  5. Barreto M et al (2008) Potential of dual-energy computed tomography to characterize atherosclerotic plaque: ex vivo assessment of human coronary arteries in comparison to histology. J Cardiovasc Comput Tomogr 2(4):234–242PubMedCrossRefGoogle Scholar
  6. Barrett BJ et al (2006) Contrast-induced nephropathy in patients with chronic kidney disease undergoing computed tomography: a double-blind comparison of iodixanol and iopamidol. Invest Radiol 41(11):815–821PubMedCrossRefGoogle Scholar
  7. Buerke B et al (2009) Dual-energy CTA with bone removal for transcranial arteries: intraindividual comparison with standard CTA without bone removal and TOF-MRA. Acad Radiol 16(11):1348–1355PubMedCrossRefGoogle Scholar
  8. Cai QY et al (2007) Colloidal gold nanoparticles as a blood-pool contrast agent for X-ray computed tomography in mice. Invest Radiol 42(12):797–806PubMedCrossRefGoogle Scholar
  9. Chen Y et al (2009) Dual-energy CT angiography for evaluation of internal carotid artery stenosis and occlusion. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 31(2):215–220PubMedGoogle Scholar
  10. Dalstra M, Cattaneo PM, Beckmann F (2006) Synchrotron radiation-based microtomography of alveolar support tissues. Orthod Craniofac Res 9(4):199–205PubMedCrossRefGoogle Scholar
  11. Das M et al (2009) Carotid plaque analysis: comparison of dual-source computed tomography (CT) findings and histopathological correlation. Eur J Vasc Endovasc Surg 38(1):14–19PubMedCrossRefGoogle Scholar
  12. Deng K et al (2009) Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography. Clin Radiol 64(5):534–541PubMedCrossRefGoogle Scholar
  13. Dick CE, Soares CG, Motz JW (1978) X-ray scatter data for diagnostic radiology. Phys Med Biol 23(6):1076–1085PubMedCrossRefGoogle Scholar
  14. Dittrich R et al (2007) Low rate of contrast-induced nephropathy after CT perfusion and CT angiography in acute stroke patients. J Neurol 254(11):1491–1497PubMedCrossRefGoogle Scholar
  15. Duerinckx AJ, Macovski A (1978) Polychromatic streak artifacts in computed tomography images. J Comput Assist Tomogr 2(4):481–487PubMedCrossRefGoogle Scholar
  16. Duerinckx AJ, Macovski A (1979) Nonlinear polychromatic and noise artifacts in X-ray computed tomography images. J Comput Assist Tomogr 3(4):519–526PubMedCrossRefGoogle Scholar
  17. Feldkamp T et al (2006) Nephrotoxicity of iso-osmolar versus low-osmolar contrast media is equal in low risk patients. Clin Nephrol 66(5):322–330PubMedGoogle Scholar
  18. Ferda J et al (2009) The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur Radiol 19(10):2518–2522PubMedCrossRefGoogle Scholar
  19. Granada JF, Feinstein SB (2008) Imaging of the vasa vasorum. Nat Clin Pract Cardiovasc Med 5(suppl 2):S18–S25PubMedCrossRefGoogle Scholar
  20. Graser A et al (2009) Dual-energy CT in patients suspected of having renal masses: can virtual nonenhanced images replace true nonenhanced images? Radiology 252(2):433–440PubMedCrossRefGoogle Scholar
  21. Hainfeld JF et al (2006) Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 79(939):248–253PubMedCrossRefGoogle Scholar
  22. Hasebroock KM, Serkova NJ (2009) Toxicity of MRI and CT contrast agents. Expert Opin Drug Metab Toxicol 5(4):403–416PubMedCrossRefGoogle Scholar
  23. Hawkes DJ, Jackson DF, Parker RP (1986) Tissue analysis by dual-energy computed tomography. Br J Radiol 59(702):537–542PubMedCrossRefGoogle Scholar
  24. Hemmingsson A, Jung B, Ytterbergh C (1986) Dual energy computed tomography: simulated monoenergetic and material-selective imaging. J Comput Assist Tomogr 10(3):490–499PubMedGoogle Scholar
  25. Holmquist F, Nyman U (2006) Eighty-peak kilovoltage 16-channel multidetector computed tomography and reduced contrast-medium doses tailored to body weight to diagnose pulmonary embolism in azotaemic patients. Eur Radiol 16(5):1165–1176PubMedCrossRefGoogle Scholar
  26. Holmquist F et al (2009) Minimizing contrast medium doses to diagnose pulmonary embolism with 80-kVp multidetector computed tomography in azotemic patients. Acta Radiol 50(2):181–193PubMedCrossRefGoogle Scholar
  27. Jackson PA et al (2009) Potential dependent superiority of gold nanoparticles in comparison to iodinated contrast agents. Eur J Radiol 2009 Apr 28. [Epub ahead of print]Google Scholar
  28. Jin H et al (2002) High resolution three-dimensional visualization and characterization of coronary atherosclerosis in vitro by synchrotron radiation X-ray microtomography and highly localized X-ray diffraction. Phys Med Biol 47(24):4345–4356PubMedCrossRefGoogle Scholar
  29. Jones TR et al (2001) Single- versus multi-detector row CT of the brain: quality assessment. Radiology 219(3):750–755PubMedGoogle Scholar
  30. Kalva SP et al (2006) Using the K-edge to improve contrast conspicuity and to lower radiation dose with a 16-MDCT: a phantom and human study. J Comput Assist Tomogr 30(3):391–397PubMedCrossRefGoogle Scholar
  31. Kane GC et al (2008) Ultra-low contrast volumes reduce rates of contrast-induced nephropathy in patients with chronic kidney disease undergoing coronary angiography. J Am Coll Cardiol 51(1):89–90PubMedCrossRefGoogle Scholar
  32. Kerwin WS et al (2008) MR imaging of adventitial vasa vasorum in carotid atherosclerosis. Magn Reson Med 59(3):507–514PubMedCrossRefGoogle Scholar
  33. Kim D et al (2007) Antibiofouling polymer-coated gold nanoparticles as a contrast agent for in vivo X-ray computed tomography imaging. J Am Chem Soc 129(24):7661–7665PubMedCrossRefGoogle Scholar
  34. Kim JH et al (2009) Intravenously administered gold nanoparticles pass through the blood-retinal barrier depending on the particle size, and induce no retinal toxicity. Nanotechnology 20(50):505101PubMedCrossRefGoogle Scholar
  35. Kinnunen J et al (1990) Improved visualization of posterior fossa with clivoaxial CT scanning plane. Rontgenblatter 43(12):539–542PubMedGoogle Scholar
  36. Kuhn MJ et al (2008) The PREDICT study: a randomized double-blind comparison of contrast-induced nephropathy after low- or isoosmolar contrast agent exposure. AJR Am J Roentgenol 191(1):151–157PubMedCrossRefGoogle Scholar
  37. Kwak HS et al (2005) Comparison of renal damage by iodinated contrast or gadolinium in an acute renal failure rat model based on serum creatinine levels and apoptosis degree. J Korean Med Sci 20(5):841–847PubMedCrossRefGoogle Scholar
  38. Lang EK et al (1981) The incidence of contrast medium induced acute tubular necrosis following arteriography. Radiology 138(1):203–206PubMedGoogle Scholar
  39. Langheinrich AC et al (2007) Vasa vasorum and atherosclerosis – Quid novi? Thromb Haemost 97(6):873–879PubMedGoogle Scholar
  40. Lell MM et al (2009) Dual energy CTA of the supraaortic arteries: technical improvements with a novel dual source CT system. Eur J Radiol. 2009 Oct 8. [Epub ahead of print]Google Scholar
  41. Lell MM et al (2009b) Carotid computed tomography angiography with automated bone suppression: a comparative study between dual energy and bone subtraction techniques. Invest Radiol 44(6):322–328PubMedCrossRefGoogle Scholar
  42. Liss P et al (2009) Iodinated contrast media decrease renomedullary blood flow. A possible cause of contrast media-induced nephropathy. Adv Exp Med Biol 645:213–218PubMedCrossRefGoogle Scholar
  43. Marenzi G et al (2009) Contrast volume during primary percutaneous coronary intervention and subsequent contrast-induced nephropathy and mortality. Ann Intern Med 150(3):170–177PubMedGoogle Scholar
  44. Massicotte A (2008) Contrast medium-induced nephropathy: strategies for prevention. Pharmacotherapy 28(9):1140–1150PubMedCrossRefGoogle Scholar
  45. Mekan SF et al (2004) Radiocontrast nephropathy: is it dose related or not? J Pak Med Assoc 54(7):372–374PubMedGoogle Scholar
  46. Morcos SK (2009) Contrast-induced nephropathy: are there differences between low osmolar and iso-osmolar iodinated contrast media? Clin Radiol 64(5):468–472PubMedCrossRefGoogle Scholar
  47. Mostrom U, Ytterbergh C (1986) Artifacts in computed tomography of the posterior fossa: a comparative phantom study. J Comput Assist Tomogr 10(4):560–566PubMedCrossRefGoogle Scholar
  48. Nakayama Y et al (2006) Lower tube voltage reduces contrast material and radiation doses on 16-MDCT aortography. AJR Am J Roentgenol 187(5):W490–W497PubMedCrossRefGoogle Scholar
  49. Nyman U et al (2005) Contrast-medium-Induced nephropathy correlated to the ratio between dose in gram iodine and estimated GFR in ml/min. Acta Radiol 46(8):830–842PubMedCrossRefGoogle Scholar
  50. Nyman U et al (2008) Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol 49(6):658–667PubMedCrossRefGoogle Scholar
  51. Papin PJ, Rielly PS (1988) Monte Carlo simulation of diagnostic X-ray scatter. Med Phys 15(6):909–914PubMedCrossRefGoogle Scholar
  52. Perazella MA (2009) Current status of gadolinium toxicity in patients with kidney disease. Clin J Am Soc Nephrol 4(2):461–469PubMedCrossRefGoogle Scholar
  53. Pomerantz SR et al (2006) Computed tomography angiography and computed tomography perfusion in ischemic stroke: a step-by-step approach to image acquisition and three-dimensional postprocessing. Semin Ultrasound CT MR 27(3):243–270PubMedCrossRefGoogle Scholar
  54. Popovtzer R et al (2008) Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 8(12):4593–4596PubMedCrossRefGoogle Scholar
  55. Primak AN et al (2009) Improved dual-energy material discrimination for dual-source CT by means of additional spectral filtration. Med Phys 36(4):1359–1369PubMedCrossRefGoogle Scholar
  56. Rabin O et al (2006) An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater 5(2):118–122PubMedCrossRefGoogle Scholar
  57. Romano G et al (2008) Contrast agents and renal cell apoptosis. Eur Heart J 29(20):2569–2576PubMedCrossRefGoogle Scholar
  58. Romero JM et al (2009) Arterial wall enhancement overlying carotid plaque on CT angiography correlates with symptoms in patients with high grade stenosis. Stroke 40(5):1894–1896PubMedCrossRefGoogle Scholar
  59. Rosovsky MA et al (1996) High-dose administration of nonionic contrast media: a retrospective review. Radiology 200(1):119–122PubMedGoogle Scholar
  60. Rozeik C et al (1991) Cranial CT artifacts and gantry angulation. J Comput Assist Tomogr 15(3):381–386PubMedCrossRefGoogle Scholar
  61. Rudnick MR et al (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol cooperative study. Kidney Int 47(1):254–261PubMedCrossRefGoogle Scholar
  62. Sasaki T et al (2007) Improvement in image quality of noncontrast head images in multidetector-row CT by volume helical scanning with a three-dimensional denoising filter. Radiat Med 25(7):368–372PubMedCrossRefGoogle Scholar
  63. Schmidt TG (2009) Optimal “image-based” weighting for energy-resolved CT. Med Phys 36(7):3018–3027PubMedCrossRefGoogle Scholar
  64. Schuknecht B (2004) Latest techniques in head and neck CT angiography. Neuroradiology 46(suppl 2):s208–s213PubMedCrossRefGoogle Scholar
  65. Solomon R (2005) The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int 68(5):2256–2263PubMedCrossRefGoogle Scholar
  66. Szucs-Farkas Z et al (2008a) Patient exposure and image quality of low-dose pulmonary computed tomography angiography: comparison of 100- and 80-kVp protocols. Invest Radiol 43(12):871–876PubMedCrossRefGoogle Scholar
  67. Szucs-Farkas Z et al (2008b) Effect of X-ray tube parameters, iodine concentration, and patient size on image quality in pulmonary computed tomography angiography: a chest-phantom-study. Invest Radiol 43(6):374–381PubMedCrossRefGoogle Scholar
  68. Szucs-Farkas Z et al (2009) Detection of pulmonary emboli with CT angiography at reduced radiation exposure and contrast material volume: comparison of 80 and 120 kVp protocols in a matched cohort. Invest Radiol 44(12):793–799PubMedCrossRefGoogle Scholar
  69. Thomas C et al (2009) Automatic bone and plaque removal using dual energy CT for head and neck angiography: feasibility and initial performance evaluation. Eur J Radiol 2009 Jun 9 [Epub ahead of print]Google Scholar
  70. Thomsen HS, Morcos SK (2009) Risk of contrast-medium-induced nephropathy in high-risk patients undergoing MDCT – a pooled analysis of two randomized trials. Eur Radiol 19(4):891–897PubMedCrossRefGoogle Scholar
  71. Thomsen HS, Morcos SK, Barrett BJ (2008a) Contrast-induced nephropathy: the wheel has turned 360 degrees. Acta Radiol 49(6):646–657PubMedCrossRefGoogle Scholar
  72. Thomsen HS et al (2008b) The ACTIVE trial: comparison of the effects on renal function of iomeprol-400 and iodixanol-320 in patients with chronic kidney disease undergoing abdominal computed tomography. Invest Radiol 43(3):170–178PubMedCrossRefGoogle Scholar
  73. Tran DN et al (2009) Dual-energy CT discrimination of iodine and calcium: experimental results and implications for lower extremity CT angiography. Acad Radiol 16(2):160–171PubMedCrossRefGoogle Scholar
  74. Tsunoo T et al (2008) Measurement of electron density in dual-energy X-ray CT with monochromatic x rays and evaluation of its accuracy. Med Phys 35(11):4924–4932PubMedCrossRefGoogle Scholar
  75. Uotani K et al (2009) Dual-energy CT head bone and hard plaque removal for quantification of calcified carotid stenosis: utility and comparison with digital subtraction angiography. Eur Radiol 19(8):2060–2065PubMedCrossRefGoogle Scholar
  76. Wintersperger B et al (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15(2):334–341PubMedCrossRefGoogle Scholar
  77. Yanaga Y et al (2009) Low-dose MDCT urography: feasibility study of low-tube-voltage technique and adaptive noise reduction filter. AJR Am J Roentgenol 193(3):W220–W229PubMedCrossRefGoogle Scholar
  78. Yeoman LJ et al (1992) Gantry angulation in brain CT: dosage implications, effect on posterior fossa artifacts, and current international practice. Radiology 184(1):113–116PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Otto Rapalino
    • 1
  • Shervin Kamalian
    • 1
  • Rajiv Gupta
    • 1
  • Catherine Phan
    • 1
  • Stuart Pomerantz
    • 1
  • Javier Romero
    • 1
  • Mukta C. Joshi
    • 2
  • Michael Lev
    • 1
  1. 1.Neuroradiology Division, Department of RadiologyMassachusetts General HospitalBostonUSA
  2. 2.CT EngineeringGE HealthcareArlingtonUSA

Personalised recommendations