Fetal MRI pp 33-47 | Cite as

Fetal MRI at Higher Field Strength

Part of the Medical Radiology book series (MEDRAD)


While fetal MRI has become a routine method at field strengths up to 1.5 T, the use of higher field strength is at an early stage. A higher signal-to-noise ratio is accompanied by a higher energy deposition. In addition, parameters of sequences have to be adjusted to achieve useful contrasts. Susceptibility effects and certain artifacts that increase with higher field strength have to be considered. The same is true for certain artifacts that maybe negligible at lower field strength. Special measures have to be taken to grant maternal and fetal safety. Due to the high resolution, MR imaging at 3 T is currently the method of choice in postmortem fetal imaging.


Magnetic Field Strength High Field Strength Fetal Magnetic Resonance Imaging Main Magnetic Field Receiver Bandwidth 


  1. Amartur S, Haacke EM (1991) Modified iterative model based on data extrapolation method to reduce Gibbs ringing. J Magn Reson Imaging 1:307–317PubMedCrossRefGoogle Scholar
  2. Barfuss H, Fischer H, Hentschel D, Ladebeck R, Oppelt A, Wittig R, Duerr W, Oppelt R (1990) In vivo magnetic resonance imaging and spectroscopy of humans with a 4 T whole-body magnet. NMR Biomed 3:31–45PubMedCrossRefGoogle Scholar
  3. Bernstein MA, Huston J III, Ward HA (2006) Imaging artifacts at 3.0T. J Magn Reson Imaging 24:735–746PubMedCrossRefGoogle Scholar
  4. Bohlscheid A, Nuss D, Lieser S, Busch HP (2008) Tumor search with diffusion-weighted imaging–first experience. Rofo 180:302–309PubMedCrossRefGoogle Scholar
  5. Bottomley PA, Foster TH, Argersinger RE, Pfeifer LM (1984) A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys 11:425–448PubMedCrossRefGoogle Scholar
  6. Butts K, Pauly JM, Gold GE (2005) Reduction of blurring in view angle tilting MRI. Magn Reson Med 53:418–424PubMedCrossRefGoogle Scholar
  7. Cho ZH, Kim DJ, Kim YK (1988) Total inhomogeneity correction including chemical shifts and susceptibility by view angle tilting. Med Phys 15:7–11PubMedCrossRefGoogle Scholar
  8. Collins CM, Liu W, Schreiber W, Yang QX, Smith MB (2005) Central brightening due to constructive interference with, without, and despite dielectric resonance. J Magn Reson Imaging 21:192–196PubMedCrossRefGoogle Scholar
  9. Cruz LC Jr, Sorensen AG (2006) Diffusion tensor magnetic resonance imaging of brain tumors. Magn Reson Imaging Clin N Am 14:183–202PubMedCrossRefGoogle Scholar
  10. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC (2004) MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology 230:652–659PubMedCrossRefGoogle Scholar
  11. Dietrich O, Reiser MF, Schoenberg SO (2008) Artifacts in 3-T MRI: physical background and reduction strategies. Eur J Radiol 65:29–35PubMedCrossRefGoogle Scholar
  12. Duewell S, Wolff SD, Wen H, Balaban RS, Jezzard P (1996) MR imaging contrast in human brain tissue: assessment and optimization at 4 T. Radiology 199:780–786PubMedGoogle Scholar
  13. Edelstein WA, Glover GH, Hardy CJ, Redington RW (1986) The intrinsic signal-to-noise ratio in NMR imaging. Magn Reson Med 3:604–618PubMedCrossRefGoogle Scholar
  14. Foster JR, Hall DA, Summerfield AQ, Palmer AR, Bowtell RW (2000) Sound-level measurements and calculations of safe noise dosage during EPI at 3 T. J Magn Reson Imaging 12:157–163PubMedCrossRefGoogle Scholar
  15. Franklin KM, Dale BM, Merkle EM (2008) Improvement in B1-inhomogeneity artifacts in the abdomen at 3T MR imaging using a radiofrequency cushion. J Magn Reson Imaging 27:1443–1447PubMedCrossRefGoogle Scholar
  16. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ (2003) Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol 38:385–402PubMedGoogle Scholar
  17. Fujii Y, Nakayama N, Nakada T (1998) High-resolution T2-reversed magnetic resonance imaging on a high magnetic field system. Technical note. J Neurosurg 89:492–495PubMedCrossRefGoogle Scholar
  18. Gabriel C, Gabriel S, Corthout E (1996a) The dielectric properties of biological tissues: I. Literature survey. Phys Med Biol 41:2231–2249PubMedCrossRefGoogle Scholar
  19. Gabriel S, Lau RW, Gabriel C (1996b) The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293PubMedCrossRefGoogle Scholar
  20. Gabriel S, Lau RW, Gabriel C (1996c) The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 41:2251–2269PubMedCrossRefGoogle Scholar
  21. Gold GE, Han E, Stainsby J, Wright G, Brittain J, Beaulieu C (2004) Musculoskeletal MRI at 3.0 T: relaxation times and image contrast. AJR Am J Roentgenol 183:343–351PubMedCrossRefGoogle Scholar
  22. Gomori JM, Grossman RI, Yu-Ip C, Asakura T (1987) NMR relaxation times of blood: dependence on field strength, oxidation state, and cell integrity. J Comput Assist Tomogr 11:684–690PubMedCrossRefGoogle Scholar
  23. Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210PubMedCrossRefGoogle Scholar
  24. Haacke EM, Tkach JA, Parrish TB (1989) Reduction of T2* dephasing in gradient field-echo imaging. Radiology 170:457–462PubMedGoogle Scholar
  25. Haacke EM, Brown RW, Thompson MR, Venkatesan R (1999) Magnetic resonance imaging - physical principles and sequence design, 1st edn. Wiley, New YorkGoogle Scholar
  26. Hand JW, Li Y, Thomas EL, Rutherford MA, Hajnal JV (2006) Prediction of specific absorption rate in mother and fetus associated with MRI examinations during pregnancy. Magn Reson Med 55:883–893PubMedCrossRefGoogle Scholar
  27. Hennig J, Scheffler K (2001) Hyperechoes. Magn Reson Med 46:6–12PubMedCrossRefGoogle Scholar
  28. Hennig J, Weigel M, Scheffler K (2003) Multiecho sequences with variable refocusing flip angles: optimization of signal behavior using smooth transitions between pseudo steady states (TRAPS). Magn Reson Med 49:527–535PubMedCrossRefGoogle Scholar
  29. Hetherington H, Kuzniecky R, Pan J, Mason G, Morawetz R, Harris C, Faught E, Vaughan T, Pohost G (1995) Proton nuclear magnetic resonance spectroscopic imaging of human temporal lobe epilepsy at 4.1 T. Ann Neurol 38:396–404PubMedCrossRefGoogle Scholar
  30. Hoogenraad FG, Reichenbach JR, Haacke EM, Lai S, Kuppusamy K, Sprenger M (1998) In vivo measurement of changes in venous blood-oxygenation with high resolution functional MRI at 0.95 tesla by measuring changes in susceptibility and velocity. Magn Reson Med 39:97–107PubMedCrossRefGoogle Scholar
  31. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67PubMedCrossRefGoogle Scholar
  32. Huang H, Zhang J, Wakana S, Zhang W, Ren T, Richards LJ, Yarowsky P, Donohue P, Graham E, van Zijl PC, Mori S (2006) White and gray matter development in human fetal, newborn and pediatric brains. Neuroimage 33:27–38PubMedCrossRefGoogle Scholar
  33. Hussain SM, Wielopolski PA, Martin DR (2005) Abdominal magnetic resonance imaging at 3.0 T: problem or a promise for the future? Top Magn Reson Imaging 16:325–335PubMedCrossRefGoogle Scholar
  34. Jesmanowicz A, Bandettini PA, Hyde JS (1998) Single-shot half k-space high-resolution gradient-recalled EPI for fMRI at 3 Tesla. Magn Reson Med 40:754–762PubMedCrossRefGoogle Scholar
  35. Katscher U, Bornert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49:144–150PubMedCrossRefGoogle Scholar
  36. Komori T, Narabayashi I, Matsumura K, Matsuki M, Akagi H, Ogura Y, Aga F, Adachi I (2007) 2-[Fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography versus whole-body diffusion-weighted MRI for detection of malignant lesions: initial experience. Ann Nucl Med 21:209–215PubMedCrossRefGoogle Scholar
  37. Kruger G, Kastrup A, Glover GH (2001) Neuroimaging at 1.5 T and 3.0 T: comparison of oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 45:595–604PubMedCrossRefGoogle Scholar
  38. Kuhl CK, Traber F, Schild HH (2008) Whole-body high-field-strength (3.0-T) MR imaging in clinical practice. Part I. Technical considerations and clinical applications. Radiology 246:675–696PubMedCrossRefGoogle Scholar
  39. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, Chabriat H (2001) Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging 13:534–546PubMedCrossRefGoogle Scholar
  40. Le Bihan D, Poupon C, Amadon A, Lethimonnier F (2006) Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging 24:478–488PubMedCrossRefGoogle Scholar
  41. Li D, Waight DJ, Wang Y (1998) In vivo correlation between blood T2* and oxygen saturation. J Magn Reson Imaging 8:1236–1239PubMedCrossRefGoogle Scholar
  42. Menon RS, Ogawa S, Hu X, Strupp JP, Anderson P, Ugurbil K (1995) BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn Reson Med 33:453–459PubMedCrossRefGoogle Scholar
  43. Merboldt KD, Finsterbusch J, Frahm J (2000) Reducing inhomogeneity artifacts in functional MRI of human brain activation-thin sections vs gradient compensation. J Magn Reson 145:184–191PubMedCrossRefGoogle Scholar
  44. Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. AJR Am J Roentgenol 186:1524–1532PubMedCrossRefGoogle Scholar
  45. Merkle EM, Dale BM, Paulson EK (2006) Abdominal MR imaging at 3T. Magn Reson Imaging Clin N Am 14:17–26PubMedCrossRefGoogle Scholar
  46. Morakkabati-Spitz N, Schild HH, Kuhl CK, Lutterbey G, von Falkenhausen M, Traber F, Gieseke J (2006) Female pelvis: MR imaging at 3.0 T with sensitivity encoding and flip-angle sweep technique. Radiology 241:538–545PubMedCrossRefGoogle Scholar
  47. Murtz P, Krautmacher C, Traber F, Gieseke J, Schild HH, Willinek WA (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 17:3031–3037PubMedCrossRefGoogle Scholar
  48. Narayana PA, Brey WW, Kulkarni MV, Sievenpiper CL (1988) Compensation for surface coil sensitivity variation in magnetic resonance imaging. Magn Reson Imaging 6:271–274PubMedCrossRefGoogle Scholar
  49. Ogawa S, Lee TM (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18PubMedCrossRefGoogle Scholar
  50. Ojemann JG, Akbudak E, Snyder AZ, McKinstry RC, Raichle ME, Conturo TE (1997) Anatomic localization and quantitative analysis of gradient refocused echo-planar fMRI susceptibility artifacts. Neuroimage 6:156–167PubMedCrossRefGoogle Scholar
  51. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962PubMedCrossRefGoogle Scholar
  52. Reichenbach JR, Venkatesan R, Schillinger DJ, Kido DK, Haacke EM (1997) Small vessels in the human brain: MR venography with deoxyhemoglobin as an intrinsic contrast agent. Radiology 204:272–277PubMedGoogle Scholar
  53. Reichenbach JR, Essig M, Haacke EM, Lee BC, Przetak C, Kaiser WA, Schad LR (1998) High-resolution venography of the brain using magnetic resonance imaging. MAGMA 6:62–69PubMedGoogle Scholar
  54. Ren T, Anderson A, Shen WB, Huang H, Plachez C, Zhang J, Mori S, Kinsman SL, Richards LJ (2006) Imaging, anatomical, and molecular analysis of callosal formation in the developing human fetal brain. Anat Rec A Discov Mol Cell Evol Biol 288:191–204PubMedGoogle Scholar
  55. Sbarbati A, Pizzini F, Fabene PF, Nicolato E, Marzola P, Calderan L, Simonati A, Longo L, Osculati A, Beltramello A (2004) Cerebral cortex three-dimensional profiling in human fetuses by magnetic resonance imaging. J Anat 204:465–474PubMedCrossRefGoogle Scholar
  56. Soher BJ, Dale BM, Merkle EM (2007) A review of MR physics: 3T versus 1.5T. Magn Reson Imaging Clin N Am 15:277–290, vPubMedCrossRefGoogle Scholar
  57. Stadlbauer A, Bernt R, Gruber S, Bogner W, Pinker K, van der Riet W, Haller J, Salomonowitz E (2009) Diffusion-weighted MR imaging with background body signal suppression (DWIBS) for the diagnosis of malignant and benign breast lesions. Eur Radiol 19:2349–2356PubMedCrossRefGoogle Scholar
  58. Stanisz GJ, Odrobina EE, Pun J, Escaravage M, Graham SJ, Bronskill MJ, Henkelman RM (2005) T1, T2 relaxation and magnetization transfer in tissue at 3T. Magn Reson Med 54:507–512PubMedCrossRefGoogle Scholar
  59. Takahara T, Imai Y, Yamashita T, Yasuda S, Nasu S, Van Cauteren M (2004) Diffusion weighted whole body imaging with background body signal suppression (DWIBS): technical improvement using free breathing, STIR and high resolution 3D display. Radiat Med 22:275–282PubMedGoogle Scholar
  60. Takahara T, Hendrikse J, Yamashita T, Mali WP, Kwee TC, Imai Y, Luijten PR (2008) Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 249:653–660PubMedCrossRefGoogle Scholar
  61. Tanenbaum LN (2006) Clinical 3T MR imaging: mastering the challenges. Magn Reson Imaging Clin N Am 14:1–15PubMedCrossRefGoogle Scholar
  62. Thulborn KR (1999) Clinical rationale for very-high-field (3.0 Tesla) functional magnetic resonance imaging. Top Magn Reson Imaging 10:37–50PubMedCrossRefGoogle Scholar
  63. Thulborn KR, Waterton JC, Matthews PM, Radda GK (1982) Oxygenation dependence of the transverse relaxation time of water protons in whole blood at high field. Biochim Biophys Acta 714:265–270PubMedCrossRefGoogle Scholar
  64. Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29:277–279PubMedCrossRefGoogle Scholar
  65. Ugurbil K, Garwood M, Ellermann J, Hendrich K, Hinke R, Hu X, Kim SG, Menon R, Merkle H, Ogawa S et al (1993) Imaging at high magnetic fields: initial experiences at 4 T. Magn Reson Q 9:259–277PubMedGoogle Scholar
  66. Ullmann P, Junge S, Wick M, Seifert F, Ruhm W, Hennig J (2005) Experimental analysis of parallel excitation using dedicated coil setups and simultaneous RF transmission on multiple channels. Magn Reson Med 54:994–1001PubMedCrossRefGoogle Scholar
  67. Vernickel P, Roschmann P, Findeklee C, Ludeke KM, Leussler C, Overweg J, Katscher U, Grasslin I, Schunemann K (2007) Eight-channel transmit/receive body MRI coil at 3T. Magn Reson Med 58:381–389PubMedCrossRefGoogle Scholar
  68. Vinitski S, Griffey RH (1991) MR image contrast at high field strength. J Magn Reson Imaging 1:451–456PubMedCrossRefGoogle Scholar
  69. Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55:826–835PubMedCrossRefGoogle Scholar
  70. Wen H, Denison TJ, Singerman RW, Balaban RS (1997) The intrinsic signal-to-noise ratio in human cardiac imaging at 1.5, 3, and 4 T. J Magn Reson 125:65–71PubMedCrossRefGoogle Scholar
  71. Wieben O, Francois C, Reeder SB (2008) Cardiac MRI of ischemic heart disease at 3 T: potential and challenges. Eur J Radiol 65:15–28PubMedCrossRefGoogle Scholar
  72. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32:749–763PubMedCrossRefGoogle Scholar
  73. Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51:775–784PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of RadiologyMR Physics GroupSt. PoeltenAustria
  2. 2.Department of NeurosurgeryUniversity of Erlangen-NürnbergErlangenGermany
  3. 3.Department of RadiologyMedical University of ViennaViennaAustria

Personalised recommendations