Fetal MRI pp 177-189 | Cite as

Fetal Movements. Though They May Be Spontaneous, Yet There is Method in Them

  • Christa Einspieler
  • Heinz F. R. Prechtl
Part of the Medical Radiology book series (MEDRAD)


The spontaneous movements of the newborn infant have a long prenatal history: from 7 weeks and 2 days onward, the human embryo moves. Already 2–3 weeks later, the spontaneously generated motility shows a rich repertoire of coordinated and identifiable patterns. Once a movement pattern is stabilized, it remains present for at least until term, but usually for longer, sometimes even for life. Embryonic and fetal movements are necessary for the proper development of the skeletal, muscular, and neural systems, or vice versa; normal fetal development requires adequate fetal activity. Hence, function is an integral part of normal development, and the prenatal use of an (albeit immature) structure is necessary for the continuing and normal development of the very structure.


Amniotic Fluid Fetal Heart Rate General Movement Fetal Movement Breathing Movement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahlfeld F (1888) Über bisher noch nicht beschriebene ­intrauterine Bewegungen des Kindes. Verhandl Dt Gesell Gynäkol 2:203–210Google Scholar
  2. Bacchi Modena A, Fieni S (2004) Amniotic fluid dynamics. Acta Bio Med Ateneo Parmense 75(suppl):11–13Google Scholar
  3. Ball RH, Parer JT (1992) The physiological mechanisms of variable decelerations. Am J Obstet Gynecol 166:1683–1689PubMedGoogle Scholar
  4. Barcroft J, Barron DH (1939) Movement in the mammalian fetus. In: Asher L, Spiro K (eds) Ergebnisse der Physiologie. München, Bergmann VerlagGoogle Scholar
  5. Bekedam DJ, Visser GHA, de Vries JIP, Prechtl HFR (1985) Motor behavior of the growth retarded fetus. Early Hum Dev 12:155–165PubMedCrossRefGoogle Scholar
  6. Benoit P, Changeux JP (1975) Consequences of tenotomy on the evolution of multi-innervation in developing rat soleus muscle. Brain Res 99:354–358PubMedCrossRefGoogle Scholar
  7. Bosma JF (1986) Development of feeding. Clin Nutr 5:210–218Google Scholar
  8. Bots RSGM, Broeders GHB, Farman DJ, Haverkorn MJ, Stolte LAM (1978) Fetal breathing movements in the growth-retarded human fetus: a multiscan M-mode echofetographic study. Eur J Obstet Gynecol Reprod Biol 8:21–29PubMedCrossRefGoogle Scholar
  9. Bots RSGM, Nijhuis JG, Martin CB, Prechtl HFR (1981) Human fetal eye movements: detection in utero by means of ultrasonography. Early Hum Dev 5:87–94PubMedCrossRefGoogle Scholar
  10. Campbell S (2002) 4D, or not 4D: that is the question. Ultrasound Obstet Gynecol 19:1–4PubMedCrossRefGoogle Scholar
  11. Coghill GE (1929) Anatomy and the problem of behavior. Cambridge University Press, CambridgeGoogle Scholar
  12. Cosmi EV, Cosmi E, La Torre R (2001) The effects of fetal breathing movements on the utero-fetal-placental circulation. Early Pregn 5:51–52Google Scholar
  13. da Costa SP, van den Engel-Hoek L, Bos AF (2008) Sucking and swallowing in infants and diagnostic tools. J Perinatol 28:247–257PubMedCrossRefGoogle Scholar
  14. Darwin C (1872/1920) The expressions of the emotions in man and animals. Appleton, NewYorkGoogle Scholar
  15. de Elejalde MM, Elejalde BR (1985) Ultrasonographic visualization of the fetal eye. J Craniofac Genet Dev Biol 5:319–326PubMedGoogle Scholar
  16. D’Elia A, Pighetti M, Moccia G, Santangelo N (2001) Spontaneous motor activity in normal fetuses. Early Hum Dev 65:139–147PubMedCrossRefGoogle Scholar
  17. de Vries JIP, Fong BF (2006) Normal fetal motility: an overview. Ultrasound Obstet Gynecol 27:701–711PubMedCrossRefGoogle Scholar
  18. de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behavior. I. Qualitative aspects. Early Hum Dev 7:301–322PubMedCrossRefGoogle Scholar
  19. de Vries JIP, Visser GHA, Mulder EJH, Prechtl HFR (1987) Diurnal and other variations in fetal movements and other heart rate patterns. Early Hum Dev 15:99–114Google Scholar
  20. Divon MY, Zimmer EZ, Yeh SY, Vilenski A, Sarna Z, Paldi E, Platt LD (1985) Effect of maternal intravenous glucose administration on fetal heart rate patterns and fetal breathing. Am J Perinatol 2:292–294PubMedCrossRefGoogle Scholar
  21. Dornan JC, Ritchie JWK, Meban C (1984) Fetal breathing movements and lung maturation in the congenitally abnormal human fetus. J Dev Physiol 6:367–374PubMedGoogle Scholar
  22. Einspieler C, Prechtl HFR (2005) Prechtl’s assessment of general movements: a diagnostic tool for the functional assessment of the young nervous system. Ment Retard Dev Disabil Res Rev 11:61–67PubMedCrossRefGoogle Scholar
  23. Einspieler C, Prechtl HFR, Bos AF, Ferrari F, Cioni G (2004) Prechtl’s method on the qualitative assessment of general movements in preterm, term, and young infants. Clin Dev Med 167. Cambridge University Press, CambridgeGoogle Scholar
  24. Einspieler C, Prayer D, Prechtl HFR (2010) The behavioral repertoire of the human fetus. An approach in the context of developmental neurology. Clin Dev Med. Mac Keith Press, London; distributed by Wiley-BlackwellGoogle Scholar
  25. Ezure H (1996) Development of the motor endplates in the masseter muscle in the human fetus. Ann Anat 178:15–23PubMedCrossRefGoogle Scholar
  26. Fidziańska A, Goebel HH (1991) Human ontogenesis. 3. Cell death in fetal muscle. Acta Neuropathol 81:572–577PubMedCrossRefGoogle Scholar
  27. Gallup AC, Gallup GG Jr (2008) Yawning and thermoregulation. Physiol Behav 95:10–16PubMedCrossRefGoogle Scholar
  28. Giganti F, Hayes MJ, Akilesh MR, Salzarulo P (2002) Yawning and behavioral states in premature infants. Dev Psychobiol 41:289–293PubMedCrossRefGoogle Scholar
  29. Grassi R, Farina R, Floriani I, Amodio F, Romano S (2005) Assessment of fetal swallowing with gray-scale and color Doppler sonography. Am J Radiol 185:1322–1327Google Scholar
  30. Habek D, Kulaš SR, Rosso M, Popović PD, Ugljarević M (2006) 3D-Ultrasound detection of fetal grasping of the umbilical cord and fetal outcome. Fetal Diagn Ther 21:332–333PubMedCrossRefGoogle Scholar
  31. Hamburger V, Wenger E, Oppenheim R (1966) Motility in the absence of sensory input. J Exp Zool 162:133–160CrossRefGoogle Scholar
  32. Harper MA, Meis PJ, Rose JC, Swain M, Burns J, Kardon B (1987) Human fetal breathing response to intravenous glucose is directly related to gestational age. Am J Obstet Gynceol 157:1403–1405Google Scholar
  33. Heyl W, Rath W (1996) Intrapartum therapy-resistant fetal bradycardia-color Doppler sonographic diagnosis of umbilical cord compression due to fetal grasping. Z Geburtshilfe Neonatol 200:30–32PubMedGoogle Scholar
  34. Hooker D (1952) The prenatal origin of behavior. University of Kansa Press, LawrenceGoogle Scholar
  35. Hopkins B, Prechtl HFR (1984) A qualitative approach to the development of movements during early infancy. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Clin Dev Med 94. Blackwell, Lippincott, Oxford, PhiladelphiaGoogle Scholar
  36. Ianniruberto A, Tajani E (1981) Ultrasonographic study of fetal movements. Sem Perinatol 5:175–181Google Scholar
  37. Inanlou MR, Baguma-Nibasheka M, Kablar B (2005) The role of fetal breathing-like movements in lung organogenesis. Histol Histopathol 20:1261–1266PubMedGoogle Scholar
  38. Iwayama K, Eishima M (1997) Neonatal sucking behavior and its development until 14 months. Early Hum Dev 47:1–9PubMedCrossRefGoogle Scholar
  39. James DJ, Pillai M, Smoleniec J (1995) Neurobehavioral development in the human fetus. In: Lecanuet JP, Fifer WP, Krasnegor NA, Smotherman WP (eds) Fetal development. A psychobiological perspective. Lawrence Erlbaum, Hillsdale, HoveGoogle Scholar
  40. Kainer F, Prechtl HFR, Engele H, Einspieler C (1997) Assessment of the quality of general movements in fetuses and infants of women with type-1 diabetes mellitus. Early Hum Dev 50:13–25PubMedCrossRefGoogle Scholar
  41. Karson CN (1982) Spontaneous eye blink rates and dopaminergic system. Brain 106:643–653CrossRefGoogle Scholar
  42. Konstantinidou AD, Silos-Santiago I, Flaris N, Snider WD (1995) Development of the primary afferent projection in human spinal cord. J Comp Neurol 354:11–12PubMedCrossRefGoogle Scholar
  43. Koyanagi T, Horimoto N, Takashima T, Satoh S, Maeda H, Nakano H (1993) Ontogenesis of ultradian rhythm in the human fetus, observed through the alternation of eye movement and no eye movement periods. J Reprod Infant Psychol 11:129–134CrossRefGoogle Scholar
  44. Kurauchi O, Ohno Y, Mizutani S, Tomoda Y (1995) Longitudinal monitoring of fetal behaviour in twins when one is anencephalic. Obstet Gynecol 86:672–674Google Scholar
  45. Levi A, Benvenisti O, David D (2000) Significant beat-to-beat hemodynamic changes in fetal circulation: a consequence of abrupt intrathoracic pressure variation induced by hiccup. J Am Soc Echocardiogr 13:295–299PubMedCrossRefGoogle Scholar
  46. Lüchinger AB, Hadders-Algra M, van Kan CM, de Vries JIP (2008) Fetal onset of general movements. Pediatr Res 63:191–195PubMedCrossRefGoogle Scholar
  47. Lunshof S, Boer K, van Hoffen G, Wolf H, Mirmiran M (1997) The diurnal rhythm in fetal heart rate in a twin pregnancy with discordant anencephaly: comparison with three normal twin pregnancies. Early Hum Dev 48:47–57PubMedCrossRefGoogle Scholar
  48. Maršál K, Lindblad A, Lingman G, Eik-Nes SH (1984) Blood flow in the fetal descending aorta; intrinsic factors affecting fetal blood flow, i.e., fetal breathing movements and cardiac arrhythmia. Ultrasound Biol 10:339–348CrossRefGoogle Scholar
  49. Masuzaki H, Masuzaki M, Ishimaru T (1996) Color Doppler imaging of fetal yawning. Ultrasound Obstet Gynecol 8:355–360PubMedCrossRefGoogle Scholar
  50. Moessinger AC (1983) Fetal akinesia deformation sequence: an animal model. Pediatr 72:857–863Google Scholar
  51. Mueller GM, Sipes SL (1993) Isolated reversed umbilical arterial blood flow on Doppler ultrasonography and fetal hiccups. J Ultrasound Med 12:541–643Google Scholar
  52. Mulder EJH, Visser GHA (1991) Growth and motor development in fetuses of women with type 1 diabetes. II. Emergence of specific motor pattern. Early Hum Dev 25:107–115PubMedCrossRefGoogle Scholar
  53. Muro M, Shono H, Ito Y, Sugimori H (1998) Diurnal variation in baseline heart rate of anencephalic fetuses. Psychiatry Clin Neurosci 52:173–174PubMedCrossRefGoogle Scholar
  54. Needham J (1959) A history of embryology. Cambridge University Press, CambridgeGoogle Scholar
  55. Nijhuis JG (2003) Fetal behavior. Neurobiol Aging 24:S41–S46PubMedCrossRefGoogle Scholar
  56. Nijhuis JG, Prechtl HFR, Martin CB, Bots RSGM (1982) Are there behavioral states in the human fetus? Early Hum Dev 6:177–195PubMedCrossRefGoogle Scholar
  57. O’Brien RAD, Ôstberg AJC, Vrbová G (1978) Observations on the elimination of polyneural innervation in developing mammalian skeletal muscle. J Physiol 282:571–582PubMedGoogle Scholar
  58. Okado N (1981) Onset of synapse formation in the human spinal cord. J Comp Neurol 201:211–219PubMedCrossRefGoogle Scholar
  59. Okado N (1982) Early myelin formation and glia cell development in the human spinal cord. Anat Rec 202:483–490PubMedCrossRefGoogle Scholar
  60. Okado N, Kojima T (1984) Ontogeny of the central nervous system: neurogenesis, fiber connection, synaptogenesis, and myelination in the spinal cord. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Clin Dev Med 94. Blackwell, Lippincott, Oxford, PhiladelphiaGoogle Scholar
  61. Oppenheim RW (1981) Ontogenetic adaptations and retrogressive processes in the development of the nervous system and behavior: a neuroembryological perspective. In: Connolly KJ, Prechtl HFR (eds) Maturation and development: biological and psychological perspectives. Clin Dev Med 77/78. Heinemann, Lippincott, London, PhiladelphiaGoogle Scholar
  62. Oppenheim RW (1982) The neuroembryological study of behavior: progress, problems, perspectives. In: Hunt RK (ed) Neural development. Part III. Curr Top Dev Biol 17. Academic, New YorkGoogle Scholar
  63. Oppenheim RW, Calderó J, Cuitat D, Esquerda J, Ayala V, Prevette D, Wang S (2003) Rescue of developing spinal motorneurons from programmes cell death by the GABAA agonist muscimol acts by blockade of neuromuscular activity and increased intramuscular nerve branching. Mol Cell Neurosci 22:331–343PubMedCrossRefGoogle Scholar
  64. Patrick J, Fetherston W, Vick H, Voegelin R (1978) Human fetal breathing movements and gross fetal body movements at weeks 34 to 35 gestation. Am J Obstet Gynecol 130:693–699PubMedGoogle Scholar
  65. Patrick J, Campbell K, Carmichael L, Natale R, Richardson B (1982) Patterns of gross fetal body movements over 24-hour observation intervals during the last 10 weeks of pregnancy. Am J Obstet Gynecol 146:363–371Google Scholar
  66. Pena SDJ, Shokeir MHK (1974) Syndrome of camptodactyly, multiple ankyloses, facial anomalies, and pulmonary hypoplasia: a lethal condition. J Pediatr 85:373–375PubMedCrossRefGoogle Scholar
  67. Petrikovsky BM, Kaplan GP (1993) Fetal grasping of the umbilical cord causing variable fetal heart rate decelerations. J Clin Ultrasound 21:642–644PubMedCrossRefGoogle Scholar
  68. Petrikovsky BM, Kaplan GP, Holsten N (2003) Eyelid movements in normal human fetuses. J Clin Ultrasound 31:299–301PubMedCrossRefGoogle Scholar
  69. Pillai M, James D (1990) Development of human fetal behavior: a review. Fetal Diagn Ther 5:15–32PubMedCrossRefGoogle Scholar
  70. Piontelli A (2006) On the onset of human fetal behavior. In: Manca M (ed) Psychoanalysis and neuroscience. Springer, MailandGoogle Scholar
  71. Pooh RK, Ogura T (2004) Normal and abnormal fetal hand positioning and movement in early pregnancy detected by three- and four-dimensional ultrasound. Ultrasound Rev Obstet Gynecol 4:46–51CrossRefGoogle Scholar
  72. Prayer D, Brugger PC (2007) Investigation of normal organ development with fetal MRI. Eur Radiol 17:2458–2471PubMedCrossRefGoogle Scholar
  73. Prechtl HFR (1958) The directed head turning response and allied movements of the human baby. Behaviour 13:212–242CrossRefGoogle Scholar
  74. Prechtl HFR (1984) Continuity and change in early neural development. In: Prechtl HFR (ed) Continuity of neural functions from prenatal to postnatal life. Clin Dev Med 94. Blackwell, Lippincott, Oxford, PhiladelphiaGoogle Scholar
  75. Prechtl HFR (1985) Ultrasound studies of human fetal behavior. Early Hum Dev 12:91–98PubMedCrossRefGoogle Scholar
  76. Prechtl HFR (1989) Fetal behavior. In: Hill A, Volpe JJ (eds) Fetal neurology. Raven, New YorkGoogle Scholar
  77. Prechtl HFR (1990) Qualitative changes of spontaneous movements in fetus and preterm infants are a marker of neurological dysfunction. Early Hum Dev 23:151–159PubMedCrossRefGoogle Scholar
  78. Prechtl HFR (1997) The importance of fetal movements. In: Connolly KJ, Forssberg H (eds) Neurophysiology and psychology of motor development. Clin Dev Med 143/144. Cambridge University Press, CambridgeGoogle Scholar
  79. Prechtl HFR (2001) Prenatal and postnatal development of human motor behavior. In: Kalverboer AF, Gramsbergen A (eds) Handbook of brain and behavior in human development. Kluwer Academic, DordrechtGoogle Scholar
  80. Prechtl HFR, Einspieler C (1997) Is neurological assessment of the fetus possible? Eur J Obstet Gynecol Reprod Biol 75:81–84PubMedCrossRefGoogle Scholar
  81. Prechtl HFR, Nijhuis JG (1983) Eye movements in the human fetus and newborn. Behav Brain Res 10:119–124PubMedCrossRefGoogle Scholar
  82. Prechtl HFR, Fargel JW, Weinmann HM, Bakker HH (1979) Postures, motility, and respiration of low-risk preterm infants. Dev Med Child Neurol 21:3–27PubMedCrossRefGoogle Scholar
  83. Preyer W (1885) Spezielle Physiologie des Embryo. Grieben, LeipzigGoogle Scholar
  84. Provine RR, Tate BL, Geldmacher LL (1987) Yawning: No effect of 3–5 % CO2, 100 % O2, and exercise. Behav Neural Biol 48:382–393PubMedCrossRefGoogle Scholar
  85. Reinold E (1971) Beobachtung fetaler Aktivität in der ersten Hälfte der Gravidität mit dem Ultraschall. Pädiat Pädol 6:274–279Google Scholar
  86. Roodenburg PJ, Wladimiroff JW, van Es A, Prechtl HFR (1991) Classification and quantitative aspects of fetal movements during the second half of normal pregnancy. Early Hum Dev 25:19–35PubMedCrossRefGoogle Scholar
  87. Saint-Anne Dargassies S (1979) Normal and pathological fetal behavior as seen through neurological study of the premature newborn. Contrib Gynecol Obstet 6:42–49Google Scholar
  88. Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24:726–731PubMedCrossRefGoogle Scholar
  89. Schürmann M, Hesse MD, Stephan KE, Saarela M, Zilles K, Hari R, Fink GR (2005) Yearning to yawn: the neural basis of contagious yawning. Neuroimage 24:1260–1264PubMedCrossRefGoogle Scholar
  90. Sepulveda W, Mangiamarchi M (1995) Fetal yawning. Ultrasound Obstet Gynecol 5:57–59PubMedCrossRefGoogle Scholar
  91. Sherer DM, Metlay LA, Woods JR Jr (1995) Lack of mandibular movement manifested by absent fetal swallowing: a possible factor in the pathogenesis of micrognathia. Am J Perinatol 12:30–33PubMedCrossRefGoogle Scholar
  92. Sival DA, Visser GHA, Prechtl HFR (1992) The effect of intrauterine growth retardation on the quality of general movements in the human fetus. Early Hum Dev 28:119–132PubMedCrossRefGoogle Scholar
  93. Sival DA, Begeer JH, Staal-Schreinemachers AL, Vos-Niel JM, Beekhuis JR, Prechtl HFR (1997) Perinatal motor behavior and neurological outcome in spina bifida aperta. Early Hum Dev 50:27–37PubMedCrossRefGoogle Scholar
  94. Sival DA, Brouwer OF, Bruggink JLM, Vles JSH, Staal-Schreinemachers AL, Sollie KM, Sauer PJJ, Bos AF (2006) Movement analysis in neonates with spina bifida aperta. Early Hum Dev 82:227–234PubMedCrossRefGoogle Scholar
  95. Swartjes JM, van Geijn HP, Meinardi H, van Woerden EE, Mantel R (1992) Fetal motility and chronic exposure to antiepileptic drugs. Eur J Obstet Gynecol Reprod Biol 16:37–45CrossRefGoogle Scholar
  96. ten Hof J, Nijhuis IJM, Nijhuis JG, Narayan H, Taylor DJ, Visser GHA, Mulder EJH (1999) Quantitative analysis of fetal ­general movements: methodological considerations. Early Hum Dev 56:57–73PubMedCrossRefGoogle Scholar
  97. Tongsong T, Chanprapaph P, Khunamornpong S (2000) Prenatal ultrasound of regional akinesia with Pena-Shokier phenotype. Prenat Diagn 20:422–425PubMedCrossRefGoogle Scholar
  98. van Dongen LGR, Goudie EG (1980) Fetal movement patterns in the first trimester of pregnancy. Br J Obstet Gynaecol 87:191–193PubMedCrossRefGoogle Scholar
  99. van Tol-Geerdink JJ, Sparling JW, Chescheir NC (1995) The development of hand movements in utero. Am J Obstet Gynecol 172:351CrossRefGoogle Scholar
  100. van Woerden EE, van Geijn HPM, Caron FJM, van der Valk AW, Swartjes JM, Arts NF (1988) Fetal mouth movements during behavioural states 1F and 2F. Eur J Obstet Gynecol Reprod Biol 29:97–105PubMedCrossRefGoogle Scholar
  101. van Woerden EE, van Geijn HP, Caron FJM, Mantel R, Swartjes JM, Arts NF (1989) Fetal hiccups; characteristics and relation to fetal heart rate. Eur J Obstet Gynecol Reprod Biol 30:209–216PubMedCrossRefGoogle Scholar
  102. Visser GHA, Prechtl HFR (1988) Movements and behavioral states in the human fetus. In: Jones CT (ed) Fetal and neonatal development. Perinatology Press, IthacaGoogle Scholar
  103. Visser GHA, Laurini RN, de Vries JIP, Bekedam DJ, Prechtl HFR (1985) Abnormal motor behavior in anencephalic fetuses. Early Hum Dev 12:173–182PubMedCrossRefGoogle Scholar
  104. Walker BE, Quarles J (1962) Palate development in mouse fetuses after tongue removal. Arch Oral Biol 21:405–412CrossRefGoogle Scholar
  105. Wells LJ (1954) Development of the human diaphragm and pleural sacs. Contr Embryol Carneg Inst 35:107–134Google Scholar
  106. Wigglesworth JS, Desai R (1982) Is fetal respiratory function a major determinant of perinatal survival? Lancet 1(8266):264–267PubMedCrossRefGoogle Scholar
  107. Yan F, Dai SY, Akther N, Kuno A, Yanagihara T, Hata T (2006) Four-dimensional sonographic assessment of fetal facial expression early in the third trimester 94:108–113Google Scholar
  108. Yigiter AB, Kavak ZN (2006) Normal standards of fetal behavior assessed by four-dimensional sonography. J Matern Fetal Neonat Med 19:707–721CrossRefGoogle Scholar
  109. Zheng YT, Sampson MB, Soper R (1998) The significance of umbilical vein Doppler changes during fetal hiccups. J Matern Fetal Invest 8:89–91Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Physiology, Center for Physiological MedicineMedical University of GrazGrazAustria

Personalised recommendations