Molecular and Translational Research

  • Dominik von Elverfeldt
  • Wilfried Reichardt
  • Laura Harsan
Part of the Medical Radiology book series (MEDRAD)


MR imaging and spectroscopy of small animals has been around for more than 3 decades and in fact preceded clinical MR in humans. With the advance of ‘molecular imaging’, the field has taken a new twist by strengthening the link of research on animal models with molecular biology at one side and with applications in translational research on humans on the other side. Given the wealth of research in small animal MR over the past and especially the explosive and very heterogeneous growth of the field today, it would be futile to attempt to present a comprehensive overview in a single book chapter. The authors have therefore limited the scope to some illustrative examples from their own research focusing on translational aspects and examples, where small animal MR has a direct link and implication to UHF-MR in humans. The rather eclectic selection is thus not meant to be representative and the omission of important topics like MR spectroscopy, functional imaging or research into brain ischemia—to name just a few—by no means meant to derogate the relevance of the extremely lively research efforts by the large variety of laboratories working in this field.


Apparent Diffusion Coefficient Fractional Anisotropy Point Spread Function Fiber Tracking Diffusion Tensor Magnetic Resonance Imaging 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ahrens ET, Flores R et al (2005) In vivo imaging platform for tracking immunotherapeutic cells. Nat Biotechnol 23(8):983–987PubMedCrossRefGoogle Scholar
  2. Alajati A, Laib AM et al (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445PubMedCrossRefGoogle Scholar
  3. Allport JR, Weissleder R (2001) In vivo imaging of gene and cell therapies. Exp Hematol 29(11):1237–1246PubMedCrossRefGoogle Scholar
  4. Aoki I, Tanaka C et al (2002) Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI). Magn Reson Med 48(6):927–933PubMedCrossRefGoogle Scholar
  5. Badea A, Nicholls PJ et al (2007) Neuroanatomical phenotypes in the reeler mouse. Neuroimage 34(4):1363–1374PubMedCrossRefGoogle Scholar
  6. Badea A, Johnson GA et al (2009a) Genetic dissection of the mouse brain using high-field magnetic resonance microscopy. Neuroimage 45(4):1067–1079PubMedCrossRefGoogle Scholar
  7. Badea A, Johnson GA et al (2009b) Genetic dissection of the mouse CNS using magnetic resonance microscopy. Curr Opin Neurol 22(4):379–386PubMedCrossRefGoogle Scholar
  8. Balaban RS (2001) Challenges in small animal noninvasive imaging. ILAR J 42(3):248–263PubMedGoogle Scholar
  9. Baloch S, Verma R et al (2009) Quantification of brain maturation and growth patterns in C57BL/6 J mice via computational neuroanatomy of diffusion tensor images. Cereb Cortex 19(3):675–687PubMedCrossRefGoogle Scholar
  10. Baltes C, Radzwill N et al (2009) Micro MRI of the mouse brain using a novel 400 MHz cryogenic quadrature RF probe. NMR Biomed 22(8):834–842PubMedCrossRefGoogle Scholar
  11. Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14(3):271–278PubMedCrossRefGoogle Scholar
  12. Boretius S, Kasper L et al (2009a) MRI of cellular layers in mouse brain in vivo. Neuroimage 47(4):1252–1260PubMedCrossRefGoogle Scholar
  13. Boretius S, Michaelis T et al (2009b) In vivo MRI of altered brain anatomy and fiber connectivity in adult Pax6 deficient mice. Cereb Cortex 19(12):2838–2847PubMedCrossRefGoogle Scholar
  14. Boretius S, Wurfel J et al (2007) High-field diffusion tensor imaging of mouse brain in vivo using single-shot STEAM MRI. J Neurosci Methods 161(1):112–117PubMedCrossRefGoogle Scholar
  15. Boska MD, Hasan KM et al (2007) Quantitative diffusion tensor imaging detects dopaminergic neuronal degeneration in a murine model of Parkinson’s disease. Neurobiol Dis 26(3):590–596PubMedCrossRefGoogle Scholar
  16. Bryant LH Jr, Jordan EK et al (2002) Pharmacokinetics of a high-generation dendrimer-Gd-DOTA. Acad Radiol 9(1):S29–S33PubMedCrossRefGoogle Scholar
  17. Budde MD, Kim JH et al (2007) Toward accurate diagnosis of white matter pathology using diffusion tensor imaging. Magn Reson Med 57(4):688–695PubMedCrossRefGoogle Scholar
  18. Budde MD, Xie M et al (2009) Axial diffusivity is the primary correlate of axonal injury in the experimental autoimmune encephalomyelitis spinal cord: a quantitative pixelwise analysis. J Neurosci 29(9):2805–2813PubMedCrossRefGoogle Scholar
  19. Bulte JW, Douglas T et al (2001) Magnetodendrimers allow endosomal magnetic labeling and in vivo tracking of stem cells. Nat Biotechnol 19(12):1141–1147PubMedCrossRefGoogle Scholar
  20. Calvet JP, Grantham JJ (2001) The genetics and physiology of polycystic kidney disease. Semin Nephrol 21(2):107–123PubMedCrossRefGoogle Scholar
  21. Chahboune H, Ment LR et al (2007) Neurodevelopment of C57B/L6 mouse brain assessed by in vivo diffusion tensor imaging. NMR Biomed 20(3):375–382PubMedCrossRefGoogle Scholar
  22. Charles River Laboratories International I (2010)
  23. Chen WT, Thirumalai D et al (2010) Dynamic contrast-enhanced folate-receptor-targeted MR imaging using a Gd-loaded PEG-dendrimer-folate conjugate in a mouse xenograft tumor model. Mol Imaging Biol 12(2):145–154PubMedCrossRefGoogle Scholar
  24. Coussens LM, Hanahan D, Arbeit JM (1996) Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol 149:1899–1917PubMedGoogle Scholar
  25. D’Arcangelo G (2005) The reeler mouse: anatomy of a mutant. Int Rev Neurobiol 71:383–417PubMedCrossRefGoogle Scholar
  26. Dauguet J, Peled S et al (2007) Comparison of fiber tracts derived from in vivo DTI tractography with 3D histological neural tract tracer reconstruction on a macaque brain. Neuroimage 37(2):530–538PubMedCrossRefGoogle Scholar
  27. Delikatny EJ, Poptani H (2005) MR techniques for in vivo molecular and cellular imaging. Radiol Clin North Am 43(1):205–220PubMedCrossRefGoogle Scholar
  28. Dorr AE, Lerch JP et al (2008) High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6 J mice. Neuroimage 42(1):60–69PubMedCrossRefGoogle Scholar
  29. Driehuys B, Nouls J et al (2008) Small animal imaging with magnetic resonance microscopy. Ilar J 49(1):35–53PubMedGoogle Scholar
  30. Dyrby TB, Sogaard LV et al (2007) Validation of in vitro probabilistic tractography. Neuroimage 37(4):1267–1277PubMedCrossRefGoogle Scholar
  31. Enochs WS, Harsh G et al (1999) Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J Magn Reson Imaging 9(2):228–232PubMedCrossRefGoogle Scholar
  32. Flacke S, Fischer S et al (2001) Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104(11):1280–1285PubMedCrossRefGoogle Scholar
  33. Flogel U, Ding Z et al (2008) In vivo monitoring of inflammation after cardiac and cerebral ischemia by fluorine magnetic resonance imaging. Circulation 118(2):140–148PubMedCrossRefGoogle Scholar
  34. Fritsch A, Loeckermann S et al (2008) A hypomorphic mouse model of dystrophic epidermolysis bullosa reveals mechanisms of disease and response to fibroblast therapy. J Clin Invest 118(5):1669–1679PubMedCrossRefGoogle Scholar
  35. Grantham JJ (2006) CRISP: opening a new frontier in the diagnosis and treatment of PKD. Nephrol News Issues 20(9):29–30PubMedGoogle Scholar
  36. Grantham JJ, Torres VE et al (2006) Volume progression in polycystic kidney disease. N Engl J Med 354(20):2122–2130PubMedCrossRefGoogle Scholar
  37. Greenberg NM, DeMayo F et al (1995) Prostate cancer in a transgenic mouse. Proc Natl Acad Sci USA 92(8):3439–3443PubMedCrossRefGoogle Scholar
  38. Grundmann K, Reischmann B et al (2007) Overexpression of human wildtype torsinA and human DeltaGAG torsinA in a transgenic mouse model causes phenotypic abnormalities. Neurobiol Dis 27(2):190–206PubMedCrossRefGoogle Scholar
  39. Hahn PF, Saini S (1998) Liver-specific MR imaging contrast agents. Radiol Clin North Am 36(2):287–297PubMedCrossRefGoogle Scholar
  40. Harisinghani MG, Barentsz J et al (2003) Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348(25):2491–2499PubMedCrossRefGoogle Scholar
  41. Harsan L-A, Paul D et al (2010b) In vivo diffusion tensor magnetic resonance imaging and fiber tracking of the mouse brain. NMR Biomed 23(7):884–896PubMedCrossRefGoogle Scholar
  42. Harsan LA, Poulet P et al (2006) Brain dysmyelination and recovery assessment by noninvasive in vivo diffusion tensor magnetic resonance imaging. J Neurosci Res 83(3):392–402PubMedCrossRefGoogle Scholar
  43. Harsan LA, Poulet P et al (2007) Astrocytic hypertrophy in dysmyelination influences the diffusion anisotropy of white matter. J Neurosci Res 85(5):935–944PubMedCrossRefGoogle Scholar
  44. Harsan LA, Steibel J et al (2008) Recovery from chronic demyelination by thyroid hormone therapy: myelinogenesis induction and assessment by diffusion tensor magnetic resonance imaging. J Neurosci 28(52):14189–14201PubMedCrossRefGoogle Scholar
  45. Harsan L-A, Reisert M, Schnell S, Hennig J, von Elverfeldt D, Staiger JF (2010a) Validation of in vivo mouse brain fiber tracking with correlative axonal tracing in wild-type and reeler animals. ISMRM precedingsGoogle Scholar
  46. Hashizume H, Baluk P et al (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156(4):1363–1380PubMedCrossRefGoogle Scholar
  47. Hayashida Y, Yakushiji T et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16(12):2637–2643PubMedCrossRefGoogle Scholar
  48. Heyn C, Bowen CV et al (2005) Detection threshold of single SPIO-labeled cells with FIESTA. Magn Reson Med 53(2):312–320PubMedCrossRefGoogle Scholar
  49. Hoehn M, Kustermann E et al (2002) Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci USA 99(25):16267–16272PubMedCrossRefGoogle Scholar
  50. Humphries PD, Sebire NJ et al (2007) Tumors in pediatric patients at diffusion-weighted MR imaging: apparent diffusion coefficient and tumor cellularity. Radiology 245(3):848–854PubMedCrossRefGoogle Scholar
  51. Jezzard P, Balaban RS (1995) Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med 34(1):65–73PubMedCrossRefGoogle Scholar
  52. Jiang Y, Johnson GA (2010) Microscopic diffusion tensor imaging of the mouse brain. Neuroimage 50(2):465–471PubMedCrossRefGoogle Scholar
  53. Johnson GA, Ali-Sharief A et al (2007) High-throughput morphologic phenotyping of the mouse brain with magnetic resonance histology. Neuroimage 37(1):82–89PubMedCrossRefGoogle Scholar
  54. Johnston KC, Wagner DP et al (2007) Validation of an acute ischemic stroke model: does diffusion-weighted imaging lesion volume offer a clinically significant improvement in prediction of outcome? Stroke 38(6):1820–1825PubMedCrossRefGoogle Scholar
  55. Jones DK (2004) The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: a monte carlo study. Magn Reson Med 51(4):807–815PubMedCrossRefGoogle Scholar
  56. Kim S, Pickup S et al (2009) Enhanced delineation of white matter structures of the fixed mouse brain using Gd-DTPA in microscopic MRI. NMR Biomed 22(3):303–309PubMedCrossRefGoogle Scholar
  57. Kobayashi H, Kawamoto S et al (2004) Micro-MRI methods to detect renal cysts in mice. Kidney Int 65(4):1511–1516PubMedCrossRefGoogle Scholar
  58. Kooi ME, Cappendijk VC et al (2003) Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107(19):2453–2458PubMedCrossRefGoogle Scholar
  59. Lager DJ, Qian Q et al (2001) The pck rat: a new model that resembles human autosomal dominant polycystic kidney and liver disease. Kidney Int 59(1):126–136PubMedCrossRefGoogle Scholar
  60. Larvaron P, Boespflug-Tanguy O et al (2007) In vivo analysis of the post-natal development of normal mouse brain by DTI. NMR Biomed 20(4):413–421PubMedCrossRefGoogle Scholar
  61. Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4(6):469–480PubMedCrossRefGoogle Scholar
  62. Lin CY, Sun SW et al (2005) Unsupervised identification of white matter tracts in a mouse brain using a directional correlation-based region growing (DCRG) algorithm. Neuroimage 28(2):380–388PubMedCrossRefGoogle Scholar
  63. Liu W, Dahnke H et al (2007) In vivo MRI using positive-contrast techniques in detection of cells labeled with superparamagnetic iron oxide nanoparticles. NMR Biomed 21(3):242–250Google Scholar
  64. Liu S, Lu W et al (2002) A defect in a novel Nek-family kinase causes cystic kidney disease in the mouse and in zebrafish. Development 129(24):5839–5846PubMedCrossRefGoogle Scholar
  65. Louie AY, Huber MM et al (2000) In vivo visualization of gene expression using magnetic resonance imaging. Nat Biotechnol 18(3):321–325PubMedCrossRefGoogle Scholar
  66. Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39(6):597–612PubMedGoogle Scholar
  67. Mason JL, Toews A et al (2004) Oligodendrocytes and progenitors become progressively depleted within chronically demyelinated lesions. Am J Pathol 164(5):1673–1682PubMedCrossRefGoogle Scholar
  68. Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11(1):107–116PubMedCrossRefGoogle Scholar
  69. Maxwell RJ, Wilson J et al (2002) Evaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI. NMR Biomed 15(2):89–98PubMedCrossRefGoogle Scholar
  70. Modo M, Cash D et al (2002) Tracking transplanted stem cell migration using bifunctional, contrast agent-enhanced, magnetic resonance imaging. Neuroimage 17(2):803–811PubMedCrossRefGoogle Scholar
  71. Morgan B, Thomas AL et al (2003) Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J Clin Oncol 21(21):3955–3964PubMedCrossRefGoogle Scholar
  72. Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies—a technical review. NMR Biomed 15(7–8):468–480PubMedCrossRefGoogle Scholar
  73. Mori S, Crain BJ et al (1999) Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol 45(2):265–269PubMedCrossRefGoogle Scholar
  74. Nair G, Tanahashi Y et al (2005) Myelination and long diffusion times alter diffusion-tensor-imaging contrast in myelin-deficient shiverer mice. Neuroimage 28(1):165–174PubMedCrossRefGoogle Scholar
  75. Nauta WJ (1952) Selective silver impregnation of degenerating axons in the central nervous system. Stain Technol 27(3):175–179PubMedGoogle Scholar
  76. Nauta WJ (1993) Some early travails of tracing axonal pathways in the brain. J Neurosci 13(4):1337–1345PubMedGoogle Scholar
  77. Patterson DM, Padhani AR et al (2008) Technology insight: water diffusion MRI–a potential new biomarker of response to cancer therapy. Nat Clin Pract Oncol 5(4):220–233PubMedCrossRefGoogle Scholar
  78. Paul D, Zaitsev M et al (2009) Implementation and application of PSF-Based EPI Distortion correction to high field animal imaging. Int J Biomed Imaging 2009:946271PubMedCrossRefGoogle Scholar
  79. Petiet A, Hedlund L et al (2007) Staining methods for magnetic resonance microscopy of the rat fetus. J Magn Reson Imaging 25(6):1192–1198PubMedCrossRefGoogle Scholar
  80. Rane S, Nair G et al (2010) DTI at long diffusion time improves fiber tracking. NMR Biomed 23(5):459–465PubMedCrossRefGoogle Scholar
  81. Reber PJ, Wong EC et al (2002) Comparing the brain areas supporting nondeclarative categorization and recognition memory. Brain Res Cogn Brain Res 14(2):245–257PubMedCrossRefGoogle Scholar
  82. Reese TG, Heid O et al (2003) Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magn Reson Med 49(1):177–182PubMedCrossRefGoogle Scholar
  83. Reichardt W, Durr C et al (2008) Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation. J Immunol 181(7):4770–4779PubMedGoogle Scholar
  84. Ren T, Zhang J et al (2007) Diffusion tensor magnetic resonance imaging and tract-tracing analysis of Probst bundle structure in Netrin1- and DCC-deficient mice. J Neurosci 27(39):10345–10349PubMedCrossRefGoogle Scholar
  85. Rudin M, McSheehy PM et al (2005) PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed 18(5):308–321PubMedCrossRefGoogle Scholar
  86. Ruehm SG, Corot C et al (2001) Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 103(3):415–422PubMedGoogle Scholar
  87. Russel WMS, Burch RL (1959) The principles of humane experimental technique. London, MethuenGoogle Scholar
  88. Schneider JE, Bamforth SD et al (2003a) Rapid identification and 3D reconstruction of complex cardiac malformations in transgenic mouse embryos using fast gradient echo sequence magnetic resonance imaging. J Mol Cell Cardiol 35(2):217–222PubMedCrossRefGoogle Scholar
  89. Schneider JE, Bamforth SD et al (2003b) High-resolution, high-throughput magnetic paragraph sign resonance imaging of mouse embryonic paragraph sign anatomy using a fast gradient-echo sequence. Magma 16(1):43–51PubMedCrossRefGoogle Scholar
  90. Schneider JE, Bose J et al (2004) Identification of cardiac malformations in mice lacking Ptdsr using a novel high-throughput magnetic resonance imaging technique. BMC Dev Biol 4:16PubMedCrossRefGoogle Scholar
  91. Schwarz M, Katagiri Y et al (2004) Reversibility versus persistence of GPIIb/IIIa blocker-induced conformational change of GPIIb/IIIa (alphaIIbbeta3, CD41/CD61). J Pharmacol Exp Ther 308(3):1002–1011PubMedCrossRefGoogle Scholar
  92. Seung HS (2009) Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron 62(1):17–29PubMedCrossRefGoogle Scholar
  93. Shapiro EM, Skrtic S et al (2004) MRI detection of single particles for cellular imaging. Proc Natl Acad Sci USA 101(30):10901–10906PubMedCrossRefGoogle Scholar
  94. Sharief AA, Badea A et al (2008) Automated segmentation of the actively stained mouse brain using multi-spectral MR microscopy. Neuroimage 39(1):136–145PubMedCrossRefGoogle Scholar
  95. Shillingford JM, Murcia NS et al (2006) The mTOR pathway is regulated by polycystin-1, and its inhibition reverses renal cystogenesis in polycystic kidney disease. Proc Natl Acad Sci USA 103(14):5466–5471PubMedCrossRefGoogle Scholar
  96. Sizonenko SV, Camm EJ et al (2007) Developmental changes and injury induced disruption of the radial organization of the cortex in the immature rat brain revealed by in vivo diffusion tensor MRI. Cereb Cortex 17(11):2609–2617PubMedCrossRefGoogle Scholar
  97. Song SK, Sun SW et al (2002) Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage 17(3):1429–1436PubMedCrossRefGoogle Scholar
  98. Song SK, Kim JH et al (2004) Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition. Neurobiol Dis 15(3):640–647PubMedCrossRefGoogle Scholar
  99. Song SK, Yoshino J et al (2005) Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage 26(1):132–140PubMedCrossRefGoogle Scholar
  100. Spuentrup E, Buecker A et al (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111(11):1377–1382PubMedCrossRefGoogle Scholar
  101. Squillaci E, Manenti G et al (2004) Correlation of diffusion-weighted MR imaging with cellularity of renal tumours. Anticancer Res 24(6):4175–4179PubMedGoogle Scholar
  102. Srinivas M, Morel PA et al (2007) Fluorine-19 MRI for visualization and quantification of cell migration in a diabetes model. Magn Reson Med 58(4):725–734PubMedCrossRefGoogle Scholar
  103. Strecker R, Scheffler K et al (2003) DCE-MRI in clinical trials: data acquisition techniques and analysis methods. Int J Clin Pharmacol Ther 41(12):603–605PubMedGoogle Scholar
  104. Sun Y, Zhou J et al (2002) Magnetic resonance imaging assessment of a murine model of recessive polycystic kidney disease. Comp Med 52(5):433–438PubMedGoogle Scholar
  105. Sun SW, Song SK et al (2005) Detection of age-dependent brain injury in a mouse model of brain amyloidosis associated with Alzheimer’s disease using magnetic resonance diffusion tensor imaging. Exp Neurol 191(1):77–85PubMedCrossRefGoogle Scholar
  106. Sun SW, Liang HF et al (2006) Noninvasive detection of cuprizone induced axonal damage and demyelination in the mouse corpus callosum. Magn Reson Med 55(2):302–308PubMedCrossRefGoogle Scholar
  107. Takahashi H, Ueyama Y et al (1986) A new mouse model of genetically transmitted polycystic kidney disease. J Urol 135(6):1280–1283PubMedGoogle Scholar
  108. Taouli B, Vilgrain V et al (2003) Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two single-shot echo-planar MR imaging sequences: prospective study in 66 patients. Radiology 226(1):71–78PubMedCrossRefGoogle Scholar
  109. Thoeny HC, De Keyzer F (2007) Extracranial applications of diffusion-weighted magnetic resonance imaging. Eur Radiol 17(6):1385–1393PubMedCrossRefGoogle Scholar
  110. Tyszka JM, Readhead C et al (2006) Statistical diffusion tensor histology reveals regional dysmyelination effects in the shiverer mouse mutant. Neuroimage 29(4):1058–1065PubMedCrossRefGoogle Scholar
  111. Van der Linden A, Van Meir V et al (2004) Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed 17(8):602–612PubMedCrossRefGoogle Scholar
  112. Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21(5):1147–1151PubMedCrossRefGoogle Scholar
  113. Verma R, Mori S et al (2005) Spatiotemporal maturation patterns of murine brain quantified by diffusion tensor MRI and deformation-based morphometry. Proc Natl Acad Sci USA 102(19):6978–6983PubMedCrossRefGoogle Scholar
  114. von zur Muhlen C, von Elverfeldt D et al (2008) Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation 118(3):258–267CrossRefGoogle Scholar
  115. Walczak P, Kedziorek DA et al (2007) Applicability and limitations of MR tracking of neural stem cells with asymmetric cell division and rapid turnover: the case of the shiverer dysmyelinated mouse brain. Magn Reson Med 58(2):261–269PubMedCrossRefGoogle Scholar
  116. Walz G (2006) Therapeutic approaches in autosomal dominant polycystic kidney disease (ADPKD): is there light at the end of the tunnel? Nephrol Dial Transplant 21(7):1752–1757PubMedCrossRefGoogle Scholar
  117. Wang Y, Zhang J et al (2006) Axonal growth and guidance defects in Frizzled3 knock-out mice: a comparison of diffusion tensor magnetic resonance imaging, neurofilament staining, and genetically directed cell labeling. J Neurosci 26(2):355–364PubMedCrossRefGoogle Scholar
  118. Watanabe T (2001) Mapping of retinal projections in the living rat using high-resolution 3D gradient-echo MRI with Mn 2+-induced contrast. Magn Reson Med 46(3):424PubMedCrossRefGoogle Scholar
  119. Weidensteiner C, Rausch M et al (2006) Quantitative dynamic contrast-enhanced MRI in tumor-bearing rats and mice with inversion recovery TrueFISP and two contrast agents at 4.7 T. J Magn Reson Imaging 24(3):646–656PubMedCrossRefGoogle Scholar
  120. Wickersham IR, Lyon DC et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53(5):639–647PubMedCrossRefGoogle Scholar
  121. Wilson PD (2004) Polycystic kidney disease: new understanding in the pathogenesis. Int J Biochem Cell Biol 36(10):1868–1873PubMedCrossRefGoogle Scholar
  122. Winter PM, Morawski AM et al (2003) Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. Circulation 108(18):2270–2274PubMedCrossRefGoogle Scholar
  123. Yoshikawa MI, Ohsumi S et al (2008) Relation between cancer cellularity and apparent diffusion coefficient values using diffusion-weighted magnetic resonance imaging in breast cancer. Radiat Med 26(4):222–226PubMedCrossRefGoogle Scholar
  124. Young P, Qiu L et al (2008) Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci 11(6):721–728PubMedCrossRefGoogle Scholar
  125. Zhang J, Chen YB et al (2005a) Magnetic resonance diffusion tensor microimaging reveals a role for Bcl-x in brain development and homeostasis. J Neurosci 25(8):1881–1888PubMedCrossRefGoogle Scholar
  126. Zhang J, Miller MI et al (2005b) Mapping postnatal mouse brain development with diffusion tensor microimaging. Neuroimage 26(4):1042–1051PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Dominik von Elverfeldt
    • 1
  • Wilfried Reichardt
    • 1
  • Laura Harsan
    • 1
  1. 1.Department of Medical PhysicsUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations