Cancer of the Lung

  • Joe Y. Chang
Part of the Medical Radiology book series (MEDRAD)


Lung cancer is the leading cause of cancer death worldwide. Radiation therapy plays a crucial role in the management of lung cancer. However, conventional radiotherapy using two-dimensional radiotherapy to 60–66 GY is associated with low local control and potential significant toxicity. Evolving radiotherapy technologies, such as four-dimensional (4-D) image-based motion management, daily on-board imaging and adaptive radiotherapy, have enabled us to improve the therapeutic index for lung cancer by permitting the design of image-guided personalized treatments that deliver adequate doses conforming to the target while sparing the surrounding critical normal tissues. These achievements have permitted the implementation of intensity-modulated radiation therapy, stereotactic body radiation therapy, and proton therapy in lung cancer. These cutting-edge technologies may improve lung cancer control and patient survival.


Planning Target Volume Clinical Target Volume Stereotactic Body Radiation Therapy Gross Tumor Volume Radiation Therapy Oncology Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arriagada R, Bergman B, Dunant A et al (2004) Cisplatin-based adjuvant chemotherapy in patients with completely resected non-small-cell lung cancer. N Engl J Med 350(4):351–360PubMedCrossRefGoogle Scholar
  2. Bortfeld T, Jokivarsi K, Goitein M et al (2002) Effects of intra-fraction motion on IMRT dose delivery: Statistical analysis and simulation. Phys Med Biol 47:2203–2220PubMedCrossRefGoogle Scholar
  3. Bradley J, Thorstad W, Mutic S et al (2004) Impact of FDG-PET on radiation therapy volume delineation in non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 59(1):78–86PubMedCrossRefGoogle Scholar
  4. Bradley J, Moughan J, Graham M et al (2010) A phase I/II dose escalation study with concurrent chemotherapy for patients with inoperable stage I to III NSCLC: phase I result of RTOG 0117. Int J Radiat Oncol Biol Phys 77:367–372Google Scholar
  5. Britton KR, Starkschall G, Tucker SL et al (2007) Assessment of gross tumor volume regression and motion changes during radiotherapy for non-small-cell lung cancer as measured by four-dimensional computed tomography. Int J Radiat Oncol Biol Phys 68:1036–1046PubMedCrossRefGoogle Scholar
  6. Britton KR, Starkschall G, Liu H et al (2009) Consequences of anatomic changes and respiratory motion on radiation dose distributions in conformal radiotherapy for locally advanced non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 73:94–102PubMedCrossRefGoogle Scholar
  7. Bush DA, Slater JD, Shin BB et al (2004) Hypofractionated proton beam radiotherapy for stage I lung cancer. Chest 126:1198–1203PubMedCrossRefGoogle Scholar
  8. Cerfolio RJ, Bryant AS, Eloubeidi MA et al (2010) The true false negative rates of esophageal and endobronchial ultrasound in the staging of mediastinal lymph nodes in patients with non-small cell lung cancer. Ann Thorac Surg 90(2):427–434PubMedCrossRefGoogle Scholar
  9. Chang JY, Liu H, Komaki R (2005) Intensity-modulated radiation therapy and proton radiotherapy for non-small cell lung cancer. Curr Oncol Rep 7:255–259PubMedCrossRefGoogle Scholar
  10. Chang JY, Zhang X, Wang X et al (2006) Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in stage I or stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 65:1087–1096PubMedCrossRefGoogle Scholar
  11. Chang JY, Balter PA, Dong L et al (2008) Stereotactic body radiation therapy in centrally and superiorly located Stage I or isolated recurrent non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 72:967–971PubMedCrossRefGoogle Scholar
  12. Chang JY, Komaki R, Wen HY et al (2009a) Toxicity and patterns of failure of dose-escalated proton therapy in early-stage medically inoperable non-small cell lung cancer. J Thorac Oncol 4:S525Google Scholar
  13. Chang JY, Komaki R, Bucci MK et al (2009b) Failure patterns and toxicity of concurrent proton therapy and chemotherapy for stage III non-small cell lung cancer. Int J Radiat Oncol Biol Phys 75(3):S446CrossRefGoogle Scholar
  14. Curran W, Scott C, Langer C et al (2003) Long term benefit is observed in a phase III comparison of sequential vs concurrent chemo-radiation for patients with unresectable NSCLC:RTOG 9410. Proc Am Soc Clin Oncol 22:621aGoogle Scholar
  15. Dosoretz D, Galmarini D, Rubenstein J et al (1993) Local control in medically inoperable lung cancer: an analysis of its importance in outcome and factors determining the probability of tumor eradication. Int J Radiat Oncol Biol Phys 27:507–516PubMedCrossRefGoogle Scholar
  16. Douillard JY, Rosell R, Delena M et al (2005) Phase III adjuvant vinorelbine (N) and cisplatin (P) versus observation (OBS) in completely resected (stage I–III)non-small cell lung cnacer (NSCLC) patients (pts): final results after 70-month median follow-up. J Clin Oncol 23:7013CrossRefGoogle Scholar
  17. Douillard JY, Rosell R, De Lena M et al (2008) Impact of postoperative radiation therapy on survival in patients with complete resection and Stage I, II, or IIIA non-small-cell lung cancer treated with adjuvant chemotherapy: the Adjuvant Navelbine International Trialist Association (ANITA) randomized trial. Int J Radiat Oncol Biol Phys 72(3):695–701PubMedCrossRefGoogle Scholar
  18. Edge SB, Byrd DR, Compton CC et al (2009) American Joint Committee on Cancer, American Cancer Society. AJCC cancer staging manual, 7th edn. Springer-Verlag, BerlinGoogle Scholar
  19. Engelsman M, Rietzel E, Kooy HM (2006) Four-dimensional proton treatment planning. Int J Radiat Oncol Biol Phys 64:1589–1595PubMedCrossRefGoogle Scholar
  20. Fournel P, Robinet G, Thomas P et al (2005) Randomized phase III trial of sequential chemoradiotherapy compared with concurrent chemoradiotherapy in locally advanced non-small-cell lung cancer: Groupe Lyon-Saint-Etienne d’Oncologie Thoracique-Groupe Francais de Pneumo-Cancerologie NPC 95–01 Study. J Clin Oncol 23(25):5910–5917PubMedCrossRefGoogle Scholar
  21. Fox J, Ford E, Redmond K et al (2009) Quantification of tumor volume changes during radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 74:341–348PubMedCrossRefGoogle Scholar
  22. Furuse K, Fukuoka M, Kawahara M et al (1999) Phase III study of concurrent versus sequential thoracic radiotherapy in combination with mitomycin, vindesine, and cisplatin in unresectable stage III non-small-cell lung cancer. J Clin Oncol 17(9):2692–2699PubMedGoogle Scholar
  23. Giraud P, Antoine M, Larrouy A et al (2000) Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning. Int J Radiat Oncol Biol Phys 48(4):1015–1024PubMedCrossRefGoogle Scholar
  24. Gomez DR, Chang JY (2011) Adaptive radiation for lung cancer. J Oncol [Epub 2010 Aug 4]Google Scholar
  25. Hata M, Tokuuye K, Kagei K et al (2007) Hypofractionated high-dose proton beam therapy for stage I non-small cell lung cancer: preliminary results of a phase I/II clinical study. Int J Radiat Oncol Biol Phys 68:786–793PubMedCrossRefGoogle Scholar
  26. Hui Z, Zhang X, Starkschall G et al (2008) Effects of interfractional motion and anatomic changes on proton therapy dose distribution in lung cancer. Int J Radiat Oncol Biol Phys 72:1385–1395PubMedCrossRefGoogle Scholar
  27. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics. CA Cancer J Clin 59:225–249PubMedCrossRefGoogle Scholar
  28. Kang Y, Zhang X, Chang JY et al (2007) 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys 67:906–914PubMedCrossRefGoogle Scholar
  29. Kaskowitz L, Graham M, Emami B et al (1993) Radiation therapy alone for stage I non-small cell lung cancer. Int J Radiat Oncol Biol Phys 27:517–523PubMedCrossRefGoogle Scholar
  30. Kelly P, Balter PA et al (2010) Stereotactic body radiation therapy for patients with lung cancer previously treated with thoracic radiation. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  31. Klopp A, Chang J, Liu H et al (2007) Intra-thoracic patterns of failure for non-small-cell lung cancer (NSCLC) with PET/CT-defined target delineation. Int J Radiat Oncol Biol Phys 69:1409–1416PubMedCrossRefGoogle Scholar
  32. Klopp AH, Eapen GA, Komaki RR (2006b) Endobronchial brachytherapy: an effective option for palliation of malignant bronchial obstruction. Clin Lung Cancer 8(3):203–207PubMedCrossRefGoogle Scholar
  33. Komaki R, Allen P, Roth J et al (2005a) Optimal treatment for superior sulcus tumors (SST): surgery first followed by adjunct RT/ChT improved survival for patients with resectable SST. Lung Cancer 49:s79CrossRefGoogle Scholar
  34. Komaki R, Swann RS, Ettinger DS et al (2005b) Phase I study of thoracic radiation dose escalation with concurrent chemotherapy for patients with limited small-cell lung cancer: Report of Radiation Therapy Oncology Group (RTOG) protocol 97–12. Int J Radiat Oncol Biol Phys 62(2):342–350PubMedCrossRefGoogle Scholar
  35. Liao ZX, Komaki RR, Thames HD Jr et al (2010) Influence of technologic advances on outcomes in patients with unresectable, locally advanced non-small-cell lung cancer receiving concomitant chemoradiotherapy. Int J Radiat Oncol Biol Phys 76(3):775–781PubMedCrossRefGoogle Scholar
  36. Liu H (2008) The physics aspects of intensity-modulated radiation therapy for lung cancers. In: Cox JD, Chang JY, Komaki R (eds) Image-guided radiotherapy of lung cancer. Taylor and Francis, London, pp 91–112Google Scholar
  37. Liu H, Wang X, Dong L et al (2004) Feasibility of sparing lung and other thoracic structures with intensity-modulated radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58(4):1268–1279PubMedCrossRefGoogle Scholar
  38. Liu H, Balter P, Tutt T et al (2007) Assessing respiration-induced tumor motion and internal target volume using 4DCT for radiation therapy of lung cancer. Int J Radiat Oncol Biol Phys 68(2):531–540PubMedCrossRefGoogle Scholar
  39. Lung Cancer Study Group (1986) Effects of postoperative mediastinal radiation on completely resected Stage II and Stage III epidermoid cancer of the lung. N Engl J Med 315:1377–1381CrossRefGoogle Scholar
  40. Marks LB, Yorke ED, Jackson A et al (2010) Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys 76(3):S10–S19PubMedCrossRefGoogle Scholar
  41. Martel M, Sahijdak W, Hayman J et al (1997) Incidental dose to clinically negative nodes from conformal treatment fields for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 45(3 Supplement 1):244Google Scholar
  42. Miller AA, Wang XF, Bogart JA et al (2007) Phase II trial of paclitaxel-topotecan-etoposide followed by consolidation chemoradiotherapy for limited-stage small cell lung cancer: CALGB 30002. J Thoracic Oncol 2(7):645–651CrossRefGoogle Scholar
  43. Murshed H, Liu H, Liao Z et al (2004) Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 58(4):1258–1267PubMedCrossRefGoogle Scholar
  44. Nagata Y, Takayama K, Matsuo Y et al (2005) Clinical outcomes of a phase I/II study of 48 Gy of stereotactic body radiotherapy in 4 fractions for primary lung cancer using a stereotactic body frame. Int J Radiat Oncol Biol Phys 63(5):1427–1431PubMedCrossRefGoogle Scholar
  45. Nelson C, Starkschall G, Morice R et al (2006) Estimation of lung tumor setup uncertainties using bony landmarks and implanted fiducials. Med Phys 33(6):2033CrossRefGoogle Scholar
  46. Onishi H, Araki T, Shirato H et al (2004) Stereotactic hypofractionated high-dose irradiation for stage I non-small cell lung carcinoma clinical outcome in 245 subjects in a Japanese multiinstitutional study. Cancer 101(7):1623–1631PubMedCrossRefGoogle Scholar
  47. Onishi H, Shirato H, Nagata Y et al (in press) Stereotactic body radiotherapy (SBRT) for operable stage I non-small-cell lung cancer: can SBRT be comparable to surgery? Int J Radiat Oncol Biol PhysGoogle Scholar
  48. Perez C, Stanley K, Rubin P et al (1980) A prospective randomized study of various irradiation doses and fractionation schedules in the treatment of inoperable non-oat-cell carcinoma of the lung. Preliminary report by the Radiation Therapy Oncology Group. Cancer 45:2744–2753PubMedCrossRefGoogle Scholar
  49. Perez C, Stanley K, Grundy G et al (1982) Impact of irradiation technique and tumor extent in tumor control and survival of patients with unresectable non-oat cell carcinoma of the lung: report by the Radiation Therapy Oncology Group. Cancer 50:1091–1099PubMedCrossRefGoogle Scholar
  50. Pieterman R, van Putten J, Meuzelaar J et al (2000) Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343(4):254–261PubMedCrossRefGoogle Scholar
  51. Pignon JP, Arriagada R, Ihde DC et al (1992) A meta-analysis of thoracic radiotherapy for small-cell lung cancer. N Engl J Med 327:1618–1624PubMedCrossRefGoogle Scholar
  52. Register SP, Zhang X, Mohan R, Chang JY (2010) Proton stereotactic body radiation therapy for clinically challenging cases of centrally and superiorly located stage i non-small-cell lung cancer. Int J Radiat Oncol Biol Phys (in press, Epub ahead of print)Google Scholar
  53. Rosenzweig K, Hanley J, Mah D et al (2000) The deep inspiration breath-hold technique in the treatment of inoperable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 48(1):81–87PubMedCrossRefGoogle Scholar
  54. Rosenzweig KE, Sim SE, Mychalczak B et al (2001) Elective nodal irradiation in the treatment of non-small-cell lung cancer with three-dimensional conformal radiation therapy. Int J Radiat Oncol Biol Phys 50(3):681–685PubMedCrossRefGoogle Scholar
  55. Rusch VW, Giroux DJ, Kraut MJ et al (2001) Induction chemoradiation and surgical resection for non-small cell lung carcinomas of the superior sulcus: Initial results of Southwest Oncology Group Trial 9416 (Intergroup Trial 0160). J Thorac Cardiovasc Surg 121:472–483PubMedCrossRefGoogle Scholar
  56. Sasaki R, Komaki R, Macapinlac H et al (2005) Fluorodeoxyglucose uptake by positron emission tomography predicts outcome of non-small-cell lung cancer. J Clin Oncol 23(6):1136–1143PubMedCrossRefGoogle Scholar
  57. Schild S, McGinnis W, Graham D et al (2006) Results of a phase I trial of concurrent chemotherapy and escalating doses of radiation for unresectable non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 65(4):1106–1111PubMedCrossRefGoogle Scholar
  58. Schwarz M, Van der Geer J, Van Herk M et al (2006) Impact of geometrical uncertainties on 3-D CRT and IMRT dose distributions for lung cancer treatment. Int J Radiat Oncol Biol Phys 65:1260–1269PubMedCrossRefGoogle Scholar
  59. Seco J, Robertson D, Trofimov A et al (2009) Breathing interplay effects during proton beam scanning: simulation and statistical analysis. Phys Med Biol 54:283–294CrossRefGoogle Scholar
  60. Senan S, Burgers J, Samson M et al (2002) Can elective nodal irradiation be omitted in Stage III non-small-cell lung cancer? Analysis of recurrences in a phase II study of induction chemotherapy and involved-field radiotherapy. Int J Radiat Oncol Biol Phys 54(4):999–1006PubMedCrossRefGoogle Scholar
  61. Shervin MS, Komaki R, Heymach JV et al (2010). Outcomes of intensity-modulated radiotherapy guided by PET-CT for the definitive treatment of limited-stage small cell lung cancer. Int J Radiat Oncol Biol Phys (in press)Google Scholar
  62. Socinski M, Rosenman J, Halle J et al (2001) Dose-escalating conformal thoracic radiation therapy with induction and concurrent carboplatin/paclitaxel in unresectable stage IIIA/B non-small-cell lung carcinoma. Cancer 92(5):1213–1223PubMedCrossRefGoogle Scholar
  63. Strauss G, Herndon J, Maddaus M et al (2004) Randomized clinical trial of adjuvant chemotherapy with paclitaxel, carboplatin following resection in Stage IB non-small cell lung cancer (NSCLC): Report of cancer, leukemia group B (CALGB) protocol 9633. J Clin Oncol 22(14):7019Google Scholar
  64. Sulman E, Komaki R, Kloop AH et al (2009) Exclusion of elective nodal irradiation does not decrease local regional control of non-small-cell lung cancer. Radiat Oncol 4:5PubMedCrossRefGoogle Scholar
  65. Timmerman R, McGarry R, Yiannoutsos C et al (2006) Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol 24(30):4833–4839PubMedCrossRefGoogle Scholar
  66. Timmerman R, Paulus R, Galvin J et al (2010) Stereotactic body radiation for inoperable early stage lung cancer. JAMA 303(11):1070–1076PubMedCrossRefGoogle Scholar
  67. Turrisi AT, Kim K, Blum R et al (1999) Twice-daily compared with once-daily thoracic radiotherapy in limited small-cell lung cancer treated concurrently with cisplatin and etoposide. N Engl J Med 28:265–271CrossRefGoogle Scholar
  68. van Loon J, De Ruysscher D, Wanders R et al (2010) Selective nodal irradiation on basis of (18)FDG-PET scans in limited-disease small-cell lung cancer: a prospective study. Int J Radiat Oncol Biol Phys 77:329–336PubMedCrossRefGoogle Scholar
  69. Warde P, Payne D (1992) Does thoracic irradiation improve survival and local control in limited-stage small-cell carcinoma of the lung? A meta-analysis. J Clin Oncol 10:890–895Google Scholar
  70. Xia T, Li H, Sun Q et al (2006) Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non-small-cell lung cancer. Int J Radiat Oncol Biol Phys 66:117–125PubMedCrossRefGoogle Scholar
  71. Yom SS, Liao Z, Liu HH et al (2007) Initial evaluation of treatment-related pneumonitis in advanced-stage non-small cell lung cancer patients treated with concurrent chemotherapy and intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys 68:94–102PubMedCrossRefGoogle Scholar
  72. Yuan S, Sun X, Li M et al (2007) A randomized study of involved-field irradiation versus elective nodal irradiation in combination with concurrent chemotherapy for inoperable stage III nonsmall cell lung cancer. Am J Clin Oncol 30(3):239–244PubMedCrossRefGoogle Scholar
  73. Zhang X, Li X, Quan M et al (2010a) A methodology for automatic intensity-modulated radiation treatment planning for lung cancer. Phys Med Biol (manuscript submitted)Google Scholar
  74. Zhang X, Li Y, Pan X et al (2010b) Intensity-modulated proton therapy reduces normal tissue doses compared with intensity-modulated radiation therapy or passive scattering proton therapy and enables individualized radical radiotherapy for extensive stage IIIB non-small cell lung cancer: a virtual clinical study. Int J Radiat Oncol Biol Phys 77(2):357–366PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of Radiation OncologyMD Anderson Cancer CenterHoustonUSA

Personalised recommendations