Gynaecological Malignancies

  • M. Morgia
  • L. Walsh
  • M. Milosevic
  • W. Levin
  • A. Fyles
Part of the Medical Radiology book series (MEDRAD)


Gynaecological cancer patients who present with an isolated recurrence after having undergone definitive radiation treatment pose a therapeutic dilemma, balancing risks of retreatment with a desire to optimise local control. A patient’s suitability for a radical approach to retreatment is determined by multiple factors: their clinical performance status and symptomatology, previous radiotherapy and radiation-related toxicities and disease extent. Ever improving technologies have changed the goalposts for treatment, and an aggressive approach is worth pursuing in carefully selected patients, where not only palliation of local symptoms is possible but also long-term local control can be a realistic aim. In this review, clinical, tumour and radiobiological factors as well as technological features have been formulated into a treatment algorithm for the patient presenting for consideration of re-irradiation for recurrent gynaecological malignancy.


Late Toxicity Local Control Rate Stereotactic Radiotherapy Normal Tissue Complication Probability Pelvic Recurrence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aalders JG, Abeler V, Kolstad P (1984) Recurrent adenocarcinoma of the endometrium: a clinical and histopathological study of 379 patients. Gynecol Oncol 17:85–103PubMedCrossRefGoogle Scholar
  2. Andreu-Martinez FJ, Martinez-Mateu JM (2005) Hypoxia and anaemia in patients with cancer of the uterine cervix. Clin Transl Oncol 7:323–331PubMedCrossRefGoogle Scholar
  3. Andreyev J (2005) Gastrointestinal complications of pelvic radiotherapy: are they of any importance? Gut 54:1051–1054PubMedCrossRefGoogle Scholar
  4. Anthopoulos AP, Manetta A, Larson JE et al (1989) Pelvic exenteration: a morbidity and mortality analysis of a seven-year experience. Gynecol Oncol 35:219–223PubMedCrossRefGoogle Scholar
  5. Badakh DK, Grover AH (2009) Reirradiation with high-dose-rate remote afterloading brachytherapy implant in patients with locally recurrent or residual cervical carcinoma. J Cancer Res Ther 5:24–30PubMedCrossRefGoogle Scholar
  6. Bauer M, Schulz-Wendtland R (1989) The radiobiology of gynecologic HDR and LDR afterloading technics. Rontgenblatter 42:54–56PubMedGoogle Scholar
  7. Bourhis J, Overgaard J, Audry H et al (2006) Hyperfractionated or accelerated radiotherapy in head and neck cancer: a meta-analysis. Lancet 368:843–854PubMedCrossRefGoogle Scholar
  8. Brabham JG, Cardenes HR (2009) Permanent interstitial reirradiation with 198Au as salvage therapy for low volume recurrent gynecologic malignancies: a single institution experience. Am J Clin Oncol 32:417–422PubMedCrossRefGoogle Scholar
  9. Denton AS, Bond SJ, Matthews S et al (2000) National audit of the management and outcome of carcinoma of the cervix treated with radiotherapy in 1993. Clin Oncol (R Coll Radiol) 12:347–353Google Scholar
  10. Deodato F, Macchia G, Grimaldi L et al (2009) Stereotactic radiotherapy in recurrent gynecological cancer: a case series. Oncol Rep 22:415–419PubMedGoogle Scholar
  11. Eifel PJ, Levenback C, Wharton JT et al (1995) Time course and incidence of late complications in patients treated with radiation therapy for FIGO stage IB carcinoma of the uterine cervix. Int J Radiat Oncol Biol Phys 32:1289–1300PubMedCrossRefGoogle Scholar
  12. Fotopoulou C, Neumann U, Kraetschell R et al (2010) Long-term clinical outcome of pelvic exenteration in patients with advanced gynecological malignancies. J Surg Oncol 101:507–512Google Scholar
  13. Fowler JF, Van Limbergen EF (1997) Biological effect of pulsed dose rate brachytherapy with stepping sources if short half-times of repair are present in tissues. Int J Radiat Oncol Biol Phys 37:877–883PubMedCrossRefGoogle Scholar
  14. Fuller AF Jr, Elliott N, Kosloff C et al (1989) Determinants of increased risk for recurrence in patients undergoing radical hysterectomy for stage IB and IIA carcinoma of the cervix. Gynecol Oncol 33:34–39PubMedCrossRefGoogle Scholar
  15. Georg P, Kirisits C, Goldner G et al (2009) Correlation of dose-volume parameters, endoscopic and clinical rectal side effects in cervix cancer patients treated with definitive radiotherapy including MRI-based brachytherapy. Radiother Oncol 91:173–180PubMedCrossRefGoogle Scholar
  16. Guckenberger M, Bachmann J, Wulf J et al (2010) Stereotactic body radiotherapy for local boost irradiation in unfavourable locally recurrent gynaecological cancer. Radiother Oncol 94:53–59Google Scholar
  17. Gupta AK, Vicini FA, Frazier AJ et al (1999) Iridium-192 transperineal interstitial brachytherapy for locally advanced or recurrent gynecological malignancies. Int J Radiat Oncol Biol Phys 43:1055-1060 Google Scholar
  18. Hasselle MD, Rose BS, Kochanski JD et al (2010) Clinical outcomes of intensity-modulated pelvic radiation therapy for carcinoma of the cervix. Int J Radiat Oncol Biol Phys. In pressGoogle Scholar
  19. Hauspy J, Beiner ME, Harley I et al (2010) Role of adjuvant radiotherapy in granulosa cell tumors of the ovary. Int J Radiat Oncol Biol Phys. In pressGoogle Scholar
  20. Hockel M, Sclenger K, Hamm H et al (1996) Five-year experience with combined operative and radiotherapeutic treatment of recurrent gynecologic tumors infiltrating the pelvic wall. Cancer 77:1918–1933PubMedCrossRefGoogle Scholar
  21. Jones B, Blake PR (1999) Retreatment of cancer after radical radiotherapy. Br J Radiol 72:1037–1039PubMedGoogle Scholar
  22. Jhingran A, Burke TW, Eifel PJ (2003) Definitive radiotherapy for patients with isolated vaginal recurrence of endometrial carcinoma after hysterectomy. Int J Radiat Oncol Biol Phys 56:1366-1372 Google Scholar
  23. Jones TK Jr, Levitt SH, King ER (1970) Retreatment of persistent and recurrent carcinoma of the cervix with irradiation. Radiology 95:167–174PubMedGoogle Scholar
  24. Joseph KJ, Al-Mandhari Z, Pervez N et al (2008) Reirradiation after radical radiation therapy: a survey of patterns of practice among Canadian radiation oncologists. Int J Radiat Oncol Biol Phys 72:1523–1529PubMedCrossRefGoogle Scholar
  25. Kapp KS, Stuecklschweiger GF, Kapp DS et al (1997) Carcinoma of the cervix: analysis of complications after primary external beam radiation and Ir-192 HDR brachytherapy. Radiother Oncol 42:143–153PubMedCrossRefGoogle Scholar
  26. Kirisits C, Potter R, Lang S et al (2005) Dose and volume parameters for MRI-based treatment planning in intracavitary brachytherapy for cervical cancer. Int J Radiat Oncol Biol Phys 62:901–911PubMedCrossRefGoogle Scholar
  27. Kunos C, Chen W, DeBernardo R et al (2009) Stereotactic body radiosurgery for pelvic relapse of gynecologic malignancies. Technol Cancer Res Treat 8:393–400PubMedGoogle Scholar
  28. Look KY, Rocereto TF (1990) Relapse patterns in FIGO stage IB carcinoma of the cervix. Gynecol Oncol 38:114–120PubMedCrossRefGoogle Scholar
  29. Maggioni A, Roviglione G, Landoni F et al (2009) Pelvic exenteration: ten-year experience at the European Institute of Oncology in Milan. Gynecol Oncol 114:64–68PubMedCrossRefGoogle Scholar
  30. Mahe MA, Gerard JP, Dubois JB et al (1996) Intraoperative radiation therapy in recurrent carcinoma of the uterine cervix: report of the French intraoperative group on 70 patients. Int J Radiat Oncol Biol Phys 34:21–26PubMedCrossRefGoogle Scholar
  31. Manimaran S (2007) Radiobiological equivalent of low/high dose rate brachytherapy and evaluation of tumor and normal responses to the dose. Radiat Med 25:229–235PubMedCrossRefGoogle Scholar
  32. Monge RM, Jurado M, Azinovic I et al (1993) Intraoperative radiotherapy in recurrent gynecological cancer. Radiother Oncol 28: 127-133 Google Scholar
  33. Morley GW, Lindenauer SM (1976) Pelvic exenterative therapy for gynecologic malignancy: an analysis of 70 cases. Cancer 38:581–586PubMedCrossRefGoogle Scholar
  34. Mundt AJ, Lujan AE, Rotmensch J et al (2002) Intensity-modulated whole pelvic radiotherapy in women with gynecologic malignancies. Int J Radiat Oncol Biol Phys 52:1330–1337PubMedCrossRefGoogle Scholar
  35. Murphy WT, Schmitz A (1956) The results of re-irradiation in cancer of the cervix. Radiology 67:378–385PubMedGoogle Scholar
  36. Nag S, Gupta N (2000) A simple method of obtaining equivalent doses for use in HDR brachytherapy. Int J Radiat Oncol Biol Phys 46:507–513PubMedCrossRefGoogle Scholar
  37. Nieder C, Milas L, Ang KK (2000) Tissue tolerance to reirradiation. Semin Radiat Oncol 10:200–209PubMedCrossRefGoogle Scholar
  38. Ooi BS, Tjandra JJ, Green MD (1999) Morbidities of adjuvant chemotherapy and radiotherapy for resectable rectal cancer: an overview. Dis Colon Rectum 42:403–418PubMedCrossRefGoogle Scholar
  39. Petignat P, Jolicoeur M, Alobaid A et al (2006) Salvage treatment with high-dose-rate brachytherapy for isolated vaginal endometrial cancer recurrence. Gynecol Oncol 101:445–449PubMedCrossRefGoogle Scholar
  40. Phillips GL, Prem KA, Adcock LL et al (1982) Vaginal recurrence of adenocarcinoma of the endometrium. Gynecol Oncol 13:323–328PubMedCrossRefGoogle Scholar
  41. Portelance L, Chao KS, Grigsby PW et al (2001) Intensity-modulated radiation therapy (IMRT) reduces small bowel, rectum, and bladder doses in patients with cervical cancer receiving pelvic and para-aortic irradiation. Int J Radiat Oncol Biol Phys 51:261–266PubMedCrossRefGoogle Scholar
  42. Potter ME, Alvarez RD, Gay FL et al (1990) Optimal therapy for pelvic recurrence after radical hysterectomy for early-stage cervical cancer. Gynecol Oncol 37:74–77PubMedCrossRefGoogle Scholar
  43. Potter R, Haie-Meder C, Van Limbergen E, et al (2006) Recommendations from gynaecological (GYN) GEC ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78:67–77PubMedCrossRefGoogle Scholar
  44. Potter R, Dimopoulos J, Georg P et al (2007) Clinical impact of MRI assisted dose volume adaptation and dose escalation in brachytherapy of locally advanced cervix cancer. Radiother Oncol 83:148–155PubMedCrossRefGoogle Scholar
  45. Pourquier H, Delard R, Achille E et al (1987) A quantified approach to the analysis and prevention of urinary complications in radiotherapeutic treatment of cancer of the cervix. Int J Radiat Oncol Biol Phys 13:1025–1033PubMedCrossRefGoogle Scholar
  46. Prempree T, Amornmarn R, Villasanta U et al (1984) Retreatment of very late recurrent invasive squamous cell carcinoma of the cervix with irradiation. II. Criteria for patients’ selection to achieve the success. Cancer 54:1950–1955Google Scholar
  47. Randall ME, Evans LE, Greven KM et al (1993) Interstital reirradiation for recurrent gynecologic malignancies: results and analysis of prognostic factors. Gynecol Oncol 48: 23-31 Google Scholar
  48. Roberts WS, Cavanagh D, Bryson SC et al (1987) Major morbidity after pelvic exenteration: a seven-year experience. Obstet Gynecol 69:617–621PubMedGoogle Scholar
  49. Russell AH, Koh WJ, Markette K et al (1987) Radical reirradiation for recurrent or second primary carcinoma of the female reproductive tract. Gynecol Oncol 27:226–232PubMedCrossRefGoogle Scholar
  50. Sharma S, Odunsi K, Driscoll D et al (2005) Pelvic exenterations for gynecological malignancies: twenty-year experience at Roswell Park Cancer Institute. Int J Gynecol Cancer 15:475–482PubMedCrossRefGoogle Scholar
  51. Sommers GM, Grigsby PW, Perez CA et al (1989) Outcome of recurrent cervical carcinoma following definitive irradiation. Gynecol Oncol 35:150–155PubMedCrossRefGoogle Scholar
  52. Stewart FA (1986) Mechanism of bladder damage and repair after treatment with radiation and cytostatic drugs. Br J Cancer Suppl 7:280–291PubMedGoogle Scholar
  53. Stewart FA (1999) Re-treatment after full-course radiotherapy: is it a viable option? Acta Oncol 38:855–862PubMedCrossRefGoogle Scholar
  54. Stewart FA, van der Kogel AJ (1994) Retreatment tolerance of normal tissues. Semin Radiat Oncol 4:103–111PubMedCrossRefGoogle Scholar
  55. Stewart FA, Oussoren Y, Luts A (1990) Long-term recovery and reirradiation tolerance of mouse bladder. Int J Radiat Oncol Biol Phys 18:1399–1406PubMedCrossRefGoogle Scholar
  56. Thomas GM, Dembo AJ, Myhr T et al (1993) Long-term results of concurrent radiation and chemotherapy for carcinoma of the cervix recurrent after surgery. Int J Gynecol Cancer 3:193–198PubMedCrossRefGoogle Scholar
  57. Tran PT, Su Z, Hara W (2007). Long-term survivors using intraoperative radiotherapy for recurrent gynecologic malignancies. Int J Radiat Oncol Biol Phys 69: 504-511 Google Scholar
  58. Van de Kamer JB, De Leeuw AA, Moerland MA et al (2010) Determining DVH parameters for combined external beam and brachytherapy treatment: 3D biological dose adding for patients with cervical cancer. Radiother Oncol 94:248–253PubMedCrossRefGoogle Scholar
  59. Wang XE, Cai S, Ding Y et al (1998) Treatment of late recurrent vaginal malignancy after initial radiotherapy for carcinoma of the cervix: an analysis of 73 cases. Gynecol Oncol 69: 125-129 Google Scholar
  60. Xiang EW, Shu-mo C, Ya-qin D et al (1998) Treatment of late recurrent vaginal malignancy after initial radiotherapy for carcinoma of the cervix: an analysis of 73 cases. Gynecol Oncol 69:125–129CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Morgia
    • 1
  • L. Walsh
    • 1
  • M. Milosevic
    • 1
  • W. Levin
    • 1
  • A. Fyles
    • 1
  1. 1.Department of Radiation OncologyPrincess Margaret Hospital, University of TorontoTorontoCanada

Personalised recommendations