Clinical Neuro and Beyond

  • Mark E. Ladd
  • Elke R. Gizewski
  • Dagmar Timmann
Part of the Medical Radiology book series (MEDRAD)


Magnetic resonance imaging (MRI) is one of the most important methods for the diagnosis and therapy monitoring of disease, and in particular neurological disease. Today, magnets up to 3 T are in use in clinical routine. An important trend in clinical care for the coming years could be the introduction of MRI systems with even higher static magnetic fields, particularly 7 T. These imagers offer the potential to significantly enhance not only spatial resolution, but also certain tissue contrasts. In this chapter, initial research results are presented which already demonstrate potential advantages of the ultra-high magnetic field for neurological diagnostics. Although the technical challenges for examining organs in the abdomen and thorax are much higher than in the brain, very preliminary work is also being pursued targeted toward clinical application of 7 T in these body regions. Further investigations are required, however, to evaluate the clinical relevance of these techniques. It can be expected that 7 T MRI scanners could find their way from the research environment into clinical practice in the next few years, with initial applications very likely in the brain; thus, the significance of MRI for neurology will once again be extended.


Cerebellar Cortex Blood Oxygenation Level Dependent Dentate Nucleus Cerebellar Nucleus Cavernous Hemangioma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Parts of this work were supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG Ti 239/9-1), the Dr. Werner Jackstädt Foundation, and the German Federal Ministry of Education and Research (Bundesministerium für Bildung und Forschung, BMBF 01EZ0716).


  1. Abi-Abdallah D, Robin V, Drochon A, Fokapu O (2007) Alterations in human ECG due to the MagnetoHydroDynamic effect: a method for accurate R peak detection in the presence of high MHD artifacts. Conf Proc IEEE Eng Med Biol Soc 2007, 1842–1845PubMedGoogle Scholar
  2. Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17PubMedCrossRefGoogle Scholar
  3. Boddaert N, Le Quan Sang KH, Rotig A et al (2007) Selective iron chelation in Friedreich ataxia: biologic and clinical implications. Blood 110:401–408PubMedCrossRefGoogle Scholar
  4. Brandauer B, Hermsdorfer J, Beck A et al (2008) Impairments of prehension kinematics and grasping forces in patients with cerebellar degeneration and the relationship to cerebellar atrophy. Clin Neurophysiol 119:2528–2537PubMedCrossRefGoogle Scholar
  5. Brass SD, Chen NK, Mulkern RV, Bakshi R (2006) Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging 17:31–40PubMedCrossRefGoogle Scholar
  6. Breyer T, Wanke I, Maderwald S et al (2009) Imaging of patients with hippocampal sclerosis at 7 Tesla: initial results. Acad Radiol 17:421–426PubMedCrossRefGoogle Scholar
  7. Cecil KM (2006) MR Spectroscopy of metabolic disorders. Neuroimaging Clin N Am 16:87–116, viiiPubMedCrossRefGoogle Scholar
  8. Chavhan GB, Babyn PS, Thomas B, Shroff MM, Haacke EM (2009) Principles, techniques, and applications of T2*-based MR imaging and its special applications. Radiographics 29:1433–1449PubMedCrossRefGoogle Scholar
  9. Cho ZH, Kang CK, Han JY et al (2008) Observation of the lenticulostriate arteries in the human brain in vivo using 7.0T MR angiography. Stroke 39:1604–1606PubMedCrossRefGoogle Scholar
  10. Darwish T, Wood B (2009) Nephrogenic systemic fibrosis: what internists need to know. Mo Med 106:373–376PubMedGoogle Scholar
  11. Dashner RA, Kangarlu A, Clark DL, RayChaudhury A, Chakeres DW (2004) Limits of 8-Tesla magnetic resonance imaging spatial resolution of the deoxygenated cerebral microvasculature. J Magn Reson Imaging 19:303–307PubMedCrossRefGoogle Scholar
  12. Derex L, Nighoghossian N, Hermier M et al (2004) Thrombolysis for ischemic stroke in patients with old microbleeds on pretreatment MRI. Cerebrovasc Dis 17:238–241PubMedCrossRefGoogle Scholar
  13. Dimitrova A, de Greiff A, Schoch B et al (2006) Activation of cerebellar nuclei comparing finger, foot and tongue movements as revealed by fMRI. Brain Res Bull 71:233–241PubMedCrossRefGoogle Scholar
  14. European Federation of Neurological Societies Task Force (2001) The future of magnetic resonance-based techniques in neurology. Eur J Neurol 8:17–25CrossRefGoogle Scholar
  15. Frauenrath T, Hezel F, Heinrichs U et al (2009) Feasibility of cardiac gating free of interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla using an MR-stethoscope. Invest Radiol 44:539–547PubMedCrossRefGoogle Scholar
  16. Ge Y, Zohrabian VM, Grossman RI (2008) Seven-Tesla magnetic resonance imaging: new vision of microvascular abnormalities in multiple sclerosis. Arch Neurol 65:812–816PubMedCrossRefGoogle Scholar
  17. Gizewski ER, de Greiff A, Maderwald S et al (2007) fMRI at 7 T: whole-brain coverage and signal advantages even infratentorially? Neuroimage 37:761–768PubMedCrossRefGoogle Scholar
  18. Habas C (2009) Functional imaging of the deep cerebellar nuclei: a review. Cerebellum 9:22–28PubMedCrossRefGoogle Scholar
  19. Habas C, Guillevin R, Abanou A (2009) In vivo structural and functional imaging of the human rubral and inferior olivary nuclei: a mini-review. Cerebellum 9:167–173CrossRefGoogle Scholar
  20. Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P (2008) Time-of-flight magnetic resonance angiography at 7 Tesla. Invest Radiol 43:568–573PubMedCrossRefGoogle Scholar
  21. Hoult DI, Phil D (2000) Sensitivity and power deposition in a high-field imaging experiment. J Magn Reson Imaging 12:46–67PubMedCrossRefGoogle Scholar
  22. International Electrotechnical Commission (2008) Medical electrical equipment – Part 2–33: Particular requirements for the safety of magnetic resonance equipment for medical diagnosis. IEC 60601-2-33. 2.2 edn.Google Scholar
  23. Kang CK, Hong SM, Han JY et al (2008) Evaluation of MR angiography at 7.0 Tesla MRI using birdcage radio frequency coils with end caps. Magn Reson Med 60:330–338PubMedCrossRefGoogle Scholar
  24. Kang CK, Park CW, Han JY et al (2009) Imaging and analysis of lenticulostriate arteries using 7.0-Tesla magnetic resonance angiography. Magn Reson Med 61:136–144PubMedCrossRefGoogle Scholar
  25. Katscher U, Bornert P (2006) Parallel RF transmission in MRI. NMR Biomed 19:393–400PubMedCrossRefGoogle Scholar
  26. Klomp DW, Bitz AK, Heerschap A, Scheenen TW (2009) Proton spectroscopic imaging of the human prostate at 7 T. NMR Biomed 22:495–501PubMedCrossRefGoogle Scholar
  27. Koeppen AH (2005) The pathogenesis of spinocerebellar ataxia. Cerebellum 4:62–73PubMedCrossRefGoogle Scholar
  28. Koeppen AH, Michael SC, Knutson MD et al (2007) The dentate nucleus in Friedreich’s ataxia: the role of iron-responsive proteins. Acta Neuropathol 114:163–173PubMedCrossRefGoogle Scholar
  29. Kollia K, Maderwald S, Putzki N et al (2009) First clinical study on ultra-high-field MR imaging in patients with multiple sclerosis: comparison of 1.5T and 7T. AJNR Am J Neuroradiol 30:699–702PubMedCrossRefGoogle Scholar
  30. Koopmans PJ, Manniesing R, Niessen WJ, Viergever MA, Barth M (2008) MR venography of the human brain using susceptibility weighted imaging at very high field strength. MAGMA 21:149–158PubMedCrossRefGoogle Scholar
  31. Kraff O, Bitz AK, Kruszona S et al (2009) An eight-channel phased array RF coil for spine MR imaging at 7 T. Invest Radiol 44:734–740PubMedCrossRefGoogle Scholar
  32. Kueper M, Diedrichsen J, Thuerling M et al (2009) Functional imaging of the deep cerebellar nuclei using 7 T MRI. In: Neuroscience, Society for Neuroscience. Chicago :BB32 460.8Google Scholar
  33. Ladd ME (2007) High-field-strength magnetic resonance:potential and limits. Top Magn Reson Imaging 18:139–152PubMedCrossRefGoogle Scholar
  34. Lee SH, Bae HJ, Kwon SJ et al (2004) Cerebral microbleeds are regionally associated with intracerebral hemorrhage. Neurology 62:72–76PubMedGoogle Scholar
  35. Lee J, Hirano Y, Fukunaga M, Silva AC, Duyn JH (2010) On the contribution of deoxy-hemoglobin to MRI gray-white matter phase contrast at high field. Neuroimage 49:193–198PubMedCrossRefGoogle Scholar
  36. Li TQ, van Gelderen P, Merkle H et al (2006) Extensive heterogeneity in white matter intensity in high-resolution T2*-weighted MRI of the human brain at 7.0 T Neuroimage 32:1032–1040PubMedCrossRefGoogle Scholar
  37. Logothetis NK, Wandell BA (2004) Interpreting the BOLD signal. Annu Rev Physiol 66:735–769PubMedCrossRefGoogle Scholar
  38. Logothetis N, Merkle H, Augath M, Trinath T, Ugurbil K (2002) Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron 35:227–242PubMedCrossRefGoogle Scholar
  39. Maderwald S, Ladd SC, Gizewski ER et al (2008) To TOF or not to TOF: strategies for non-contrast-enhanced intracranial MRA at 7 T. MAGMA 21:159–167PubMedCrossRefGoogle Scholar
  40. Maderwald S, Küper M, Thürling M et al (2009a) 3D visualization of deep cerebellar nuclei using 7T MRI. In: Proceedings of the 17th scientific meeting. International Society for Magnetic Resonance in Medicine, Honolulu, p 963Google Scholar
  41. Maderwald S, Orzada S, Schäfer L et al (2009b) 7T Human in vivo cardiac imaging with an 8-Channel transmit/receive array. In: Proceedings 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Honolulu, p 821Google Scholar
  42. Mainero C, Benner T, Radding A et al (2009) In vivo imaging of cortical pathology in multiple sclerosis using ultra-high field MRI. Neurology 73:941–948PubMedCrossRefGoogle Scholar
  43. Marques JP, Maddage R, Mlynarik V, Gruetter R (2009) On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T. Neuroimage 46:345–352PubMedCrossRefGoogle Scholar
  44. Metcalf M, Xu D, Okuda DT et al (2009) High-resolution phased-array MRI of the human brain at 7 Tesla: initial experience in multiple sclerosis patients. J Neuroimaging 20:141–147PubMedCrossRefGoogle Scholar
  45. Metzger GJ, Snyder C, Akgun C et al (2008) Local B1+ shimming for prostate imaging with transceiver arrays at 7T based on subject-dependent transmit phase measurements. Magn Reson Med 59:396–409PubMedCrossRefGoogle Scholar
  46. Meyer JS, Quach M, Thornby J, Chowdhury M, Huang J (2005) MRI identifies MCI subtypes: vascular versus neurodegenerative. J Neurol Sci 229–230:121–129PubMedCrossRefGoogle Scholar
  47. Moenninghoff C, Maderwald S, Theysohn JM et al (2009) Imaging of adult astrocytic brain tumours with 7 T MRI: preliminary results. Eur Radiol 20:704–713CrossRefGoogle Scholar
  48. Monninghoff C, Maderwald S, Theysohn JM et al (2009a) Evaluation of intracranial aneurysms with 7 T versus 1.5 T time-of-flight MR angiography—initial experience. Rofo 181:16–23Google Scholar
  49. Monninghoff C, Maderwald S, Wanke I (2009b) Pre-interventional assessment of a vertebrobasilar aneurysm with 7 Tesla time-of-flight MR angiography. Rofo 181:266–268Google Scholar
  50. Moseley ME, Liu C, Rodriguez S, Brosnan T (2009) Advances in magnetic resonance neuroimaging. Neurol Clin 27:1–19, xiiiPubMedCrossRefGoogle Scholar
  51. Orzada S, Quick H, Ladd M et al (2009) A flexible 8-channel transmit/receive body coil for 7 T human imaging. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 2999Google Scholar
  52. Orzada S, Maderwald S, Kraff O et al (2010) 16-channel Tx/Rx body coil for RF shimming with selected Cp modes at 7T. In: Proceedings 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine. Stockholm, p 50Google Scholar
  53. Otazo R, Mueller B, Ugurbil K, Wald L, Posse S (2006) Signal-to-noise ratio and spectral linewidth improvements between 1.5 and 7 Tesla in proton echo-planar spectroscopic imaging. Magn Reson Med 56:1200–1210PubMedCrossRefGoogle Scholar
  54. Pfeuffer J, van de Moortele PF, Yacoub E et al (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17:272–286PubMedCrossRefGoogle Scholar
  55. Poser BA, Norris DG (2009) Investigating the benefits of multi-echo EPI for fMRI at 7 T. Neuroimage 45:1162–1172PubMedCrossRefGoogle Scholar
  56. Rabe K, Kraff O, Orzada S et al (2009) Volumetrische und relaxometrische Vermessung des Nucleus dentatus im 7T Magnetfeld bei Patienten mit einer Friedreich Ataxie. Akt Neurol 36:S54CrossRefGoogle Scholar
  57. Schild H (2005) Clinical highfield MR. Rofo 177:621–631PubMedGoogle Scholar
  58. Schlamann M, Maderwald S, Becker W et al (2010) Cerebral cavernous hemangiomas at 7 Tesla: initial experience. Acad Radiol 17:3–6PubMedCrossRefGoogle Scholar
  59. Schulz JB, Boesch S, Burk K et al (2009) Diagnosis and treatment of Friedreich ataxia: a European perspective. Nat Rev Neurol 5:222–234PubMedCrossRefGoogle Scholar
  60. Schulz JB, Borkert J, Wolf S et al (2010) Visualization, quantification and correlation of brain atrophy with clinical symptoms in spinocerebellar ataxia types 1, 3 and 6. Neuroimage 49:158–168PubMedCrossRefGoogle Scholar
  61. Snyder CJ, DelaBarre L, Metzger GJ et al (2009) Initial results of cardiac imaging at 7 Tesla. Magn Reson Med 61:517–524PubMedCrossRefGoogle Scholar
  62. Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7T. MAGMA 21:73–86PubMedCrossRefGoogle Scholar
  63. Srinivasan R, Ratiney H, Hammond-Rosenbluth KE, Pelletier D, Nelson SJ (2009) MR spectroscopic imaging of glutathione in the white and gray matter at 7 T with an application to multiple sclerosis. Magn Reson Imaging (in press)Google Scholar
  64. Strick PL, Dum RP, Fiez JA (2009) Cerebellum and nonmotor function. Annu Rev Neurosci 32:413–434PubMedCrossRefGoogle Scholar
  65. Sultan F, Möck M, Thier P (2000) Functional architecture of the cerebellar system. In: Klockgether T (ed) Neurological Ataxia, Marcel Dekker, New York, pp 1–52Google Scholar
  66. Tallantyre EC, Brookes MJ, Dixon JE et al (2008) Demonstrating the perivascular distribution of MS lesions in vivo with 7-Tesla MRI. Neurology 70:2076–2078PubMedCrossRefGoogle Scholar
  67. Theysohn JM, Maderwald S, Kraff O et al (2008) Subjective acceptance of 7 Tesla MRI for human imaging. MAGMA 21:63–72PubMedCrossRefGoogle Scholar
  68. Theysohn JM, Kraff O, Maderwald S et al (2009) The human hippocampus at 7 T–in vivo MRI. Hippocampus 19:1–7PubMedCrossRefGoogle Scholar
  69. Timmann D, Daum I (2007) Cerebellar contributions to cognitive functions: a progress report after two decades of research. Cerebellum 6:159–162PubMedCrossRefGoogle Scholar
  70. Umutlu L, Bitz AK, Maderwald S et al (2010) 7T liver MRI in humans: initial results. In: Proceedings of the 18th scientific meeting, International Society for Magnetic Resonance in Medicine, Stockholm, p 2624Google Scholar
  71. United States Food and Drug Administration. Guidance for industry and FDA staff: criteria for significant risk investigations of magnetic resonance diagnostic devices, 2003Google Scholar
  72. van den Bergen B, Van den Berg CA, Bartels LW, Lagendijk JJ (2007) 7 T body MRI: B1 shimming with simultaneous SAR reduction. Phys Med Biol 52:5429–5441PubMedCrossRefGoogle Scholar
  73. van Elderen SG, Versluis MJ, Webb AG et al (2009) Initial results on in vivo human coronary MR angiography at 7 T. Magn Reson Med 62:1379–1384PubMedCrossRefGoogle Scholar
  74. Vaughan JT, Garwood M, Collins CM et al (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30PubMedCrossRefGoogle Scholar
  75. Vaughan JT, Snyder CJ, DelaBarre LJ et al (2009) Whole-body imaging at 7T: preliminary results. Magn Reson Med 61:244–248PubMedCrossRefGoogle Scholar
  76. Waldvogel D, van Gelderen P, Hallett M (1999) Increased iron in the dentate nucleus of patients with Friedrich’s ataxia. Ann Neurol 46:123–125PubMedCrossRefGoogle Scholar
  77. Walter M, Stadler J, Tempelmann C, Speck O, Northoff G (2008) High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. MAGMA 21:103–111PubMedCrossRefGoogle Scholar
  78. Wang D, Heberlein K, LaConte S, Hu X (2004) Inherent insensitivity to RF inhomogeneity in FLASH imaging. Magn Reson Med 52:927–931PubMedCrossRefGoogle Scholar
  79. Weiller C, May A, Sach M, Buhmann C, Rijntjes M (2006) Role of functional imaging in neurological disorders. J Magn Reson Imaging 23:840–850PubMedCrossRefGoogle Scholar
  80. Werring DJ, Frazer DW, Coward LJ et al (2004) Cognitive dysfunction in patients with cerebral microbleeds on T2*-weighted gradient-echo MRI. Brain 127:2265–2275PubMedCrossRefGoogle Scholar
  81. Wiesinger F, Van de Moortele PF, Adriany G et al (2006) Potential and feasibility of parallel MRI at high field. NMR Biomed 19:368–378PubMedCrossRefGoogle Scholar
  82. Yacoub E, Shmuel A, Pfeuffer J et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594PubMedCrossRefGoogle Scholar
  83. Zijlmans M, de Kort GA, Witkamp TD et al (2009) 3T versus 1.5T phased-array MRI in the presurgical work-up of patients with partial epilepsy of uncertain focus. J Magn Reson Imaging 30:256–262PubMedCrossRefGoogle Scholar
  84. Zwanenburg JJ, Hendrikse J, Takahara T, Visser F, Luijten PR (2008) MR angiography of the cerebral perforating arteries with magnetization prepared anatomical reference at 7 T: comparison with time-of-flight. J Magn Reson Imaging 28:1519–1526PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Mark E. Ladd
    • 1
  • Elke R. Gizewski
    • 2
  • Dagmar Timmann
    • 3
  1. 1.Erwin L. Hahn Institute for Magnetic Resonance ImagingUniversity Duisburg-EssenEssenGermany
  2. 2.Department of NeuroradiologyUniversity Hospital GiessenGiessenGermany
  3. 3.Experimental Neurology, Department of NeurologyUniversity Hospital EssenEssenGermany

Personalised recommendations