Advertisement

Neuroscientific Applications of High-Field MRI in Humans

  • Robert Turner
Chapter
Part of the Medical Radiology book series (MEDRAD)

Abstract

The chief advantages of using high-field MRI for neuroscientific research are the improvements in spatial resolution and contrast that become available. Neuroscientists are interested in the spatial organisation of brain grey matter, in cortex and deep brain structures, and in the connectivity of white matter neuronal fibres. At lower field, it is very hard to distinguish cortical areas purely by their anatomical differences, or to discriminate subcomponents of basal ganglia and thalamus. This has led to a widely accepted method of functional image analysis involving warping of individual brains to a standardised template, together with significant image smoothing, which eliminates the possibility of detailed MRI-based mapping of human brain, and severely handicaps the exploration of individual differences and monitoring of brain changes over time. Even at a field of 3 T, the spatial resolution of MR tractography is limited to about 1.5 mm isotropic, hindering discrimination of crossing fibres. However, at fields of 7 T and above, the available high isotropic resolution of 0.4 mm and the varying myelin content of grey matter allow several cortical areas to be quite easily distinguished, and the varying iron content of deeper brain structures reveals their internal features. Higher spatial isotropic resolution in tractography can also be achieved, of 1 mm or better. Because blood oxygenation-dependent contrast (BOLD) also improves at high field, functional maps with submillimetre resolution can be acquired, showing columnar structures such as ocular dominance and orientation columns. These results will enable a much more precise correlation of brain functions with the neural tissue that supports them, and is likely to bring about major conceptual changes in systems neuroscience, especially in analysis methodology.

Keywords

Fractional Anisotropy Cortical Area Brodmann Area Grey Matter Density Isotropic Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abduljalil AM, Kangarlu A, Zhang X, Burgess RE, Robitaille PM (1999) Acquisition of human multislice MR images at 8 Tesla. J Comput Assist Tomogr 23(3):335–340PubMedCrossRefGoogle Scholar
  2. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. Neuroimage 11(6 pt 1):805–821PubMedCrossRefGoogle Scholar
  3. Basser PJ, Mattiello J, Le Bihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103(3):247–254PubMedCrossRefGoogle Scholar
  4. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44(4):625–632PubMedCrossRefGoogle Scholar
  5. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34(4):537–541PubMedCrossRefGoogle Scholar
  6. Bock NA, Kocharyan A, Liu JV, Silva AC (2009) Visualizing the entire cortical myelination pattern in marmosets with magnetic resonance imaging. J Neurosci Methods 185(1):15–22PubMedCrossRefGoogle Scholar
  7. Boxerman JL, Bandettini PA, Kwong KK, Baker JR, Davis TL, Rosen BR, Weisskoff RM (1995) The intravascular contribution to fMRI signal change: Monte Carlo modeling and diffusion-weighted studies in vivo. Magn Reson Med 34(1):4–10PubMedCrossRefGoogle Scholar
  8. Bridge H, Clare S, Jenkinson M, Jezzard P, Parker AJ, Matthews PM (2005) Independent anatomical and functional measures of the V1/V2 boundary in human visual cortex. J Vis 5(2):93–102PubMedCrossRefGoogle Scholar
  9. Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Johann Ambrosius Barth Verlag, LeipzigGoogle Scholar
  10. Canals S, Beyerlein M, Merkle H, Logothetis NK (2009) Functional MRI evidence for LTP-induced neural network reorganization. Curr Biol 19(5):398–403PubMedCrossRefGoogle Scholar
  11. Cheng K, Waggoner RA, Tanaka K (2001) Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. Neuron 32(2):359–374PubMedCrossRefGoogle Scholar
  12. Deichmann R, Josephs O, Hutton C, Corfield DR, Turner R (2002) Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging. Neuroimage 15(1):120–135PubMedCrossRefGoogle Scholar
  13. De Vita E, Thomas DL, Roberts S, Parkes HG, Turner R, Kinchesh P, Shmueli K, Yousry TA, Ordidge RJ (2003) High resolution MRI of the brain at 4.7 Tesla using fast spin echo imaging. Br J Radiol 76(909):631–637PubMedCrossRefGoogle Scholar
  14. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335PubMedCrossRefGoogle Scholar
  15. Flechsig P (1920) Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetischer Grundlage. Thieme, LeipzigGoogle Scholar
  16. Frahm J, Merboldt KD, Hänicke W (1993) Functional MRI of human brain activation at high spatial resolution. Magn Reson Med 29(1):139–144PubMedCrossRefGoogle Scholar
  17. Fukuda M, Moon CH, Wang P, Kim SG (2006) Mapping iso-orientation columns by contrast agent-enhanced functional magnetic resonance imaging: reproducibility, specificity, and evaluation by optical imaging of intrinsic signal. J Neurosci 26(46):11821–11832PubMedCrossRefGoogle Scholar
  18. Goense JB, Logothetis NK (2006) Laminar specificity in monkey V1 using high-resolution SE-fMRI. Magn Reson Imaging 24(4):381–392PubMedCrossRefGoogle Scholar
  19. Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640PubMedCrossRefGoogle Scholar
  20. Hackett TA, Preuss TM, Kaas JH (2001) Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. J Comp Neurol 441(3):197–222PubMedCrossRefGoogle Scholar
  21. Heidemann RM, Fasano F, Vogler M, Leuze C, Pfeuffer J, Turner R (2008) Improving image quality by combining outer volume suppression and parallel imaging: zoomed EPI with GRAPPA at 7T. Proc Int Soc Magn Reson Med 16:1284Google Scholar
  22. Hinds O, Polimeni JR, Rajendran N, Balasubramanian M, Amunts K, Zilles K, Schwartz EL, Fischl B, Triantafyllou C (2009) Locating the functional and anatomical boundaries of human primary visual cortex. Neuroimage 46(4):915–922PubMedCrossRefGoogle Scholar
  23. Hoffmann MB, Stadler J, Kanowski M, Speck O (2009) Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T. Clin Neurophysiol 120(1):108–116PubMedCrossRefGoogle Scholar
  24. Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P (2009) Predicting human resting-state functional connectivity from structural connectivity. Proc Natl Acad Sci USA 106(6):2035–2040PubMedCrossRefGoogle Scholar
  25. Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46(1):114–125PubMedCrossRefGoogle Scholar
  26. Jin T, Kim SG (2008) Cortical layer-dependent dynamic blood oxygenation, cerebral blood flow and cerebral blood volume responses during visual stimulation. Neuroimage 43(1):1–9PubMedCrossRefGoogle Scholar
  27. Kim SG, Rostrup E, Larsson HB, Ogawa S, Paulson OB (1999) Determination of relative CMRO2 from CBF and BOLD changes: significant increase of oxygen consumption rate during visual stimulation. Magn Reson Med 41(6):1152–1161PubMedCrossRefGoogle Scholar
  28. Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of brain. Magn Reson Med 20(2):285–291PubMedCrossRefGoogle Scholar
  29. Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4):631–637PubMedCrossRefGoogle Scholar
  30. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng HM, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679PubMedCrossRefGoogle Scholar
  31. Leite FP, Tsao D, Vanduffel W, Fize D, Sasaki Y, Wald LL, Dale AM, Kwong KK, Orban GA, Rosen BR, Tootell RB, Mandeville JB (2002) Repeated fMRI using iron oxide contrast agent in awake, behaving macaques at 3 Tesla. Neuroimage 16(2):283–294PubMedCrossRefGoogle Scholar
  32. Logothetis NK, Guggenberger H, Peled S, Pauls J (1999) Functional imaging of the monkey brain. Nat Neurosci 2:555–562PubMedCrossRefGoogle Scholar
  33. Le Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 161(2):401–407PubMedGoogle Scholar
  34. Li TQ, Yao B, van Gelderen P, Merkle H, Dodd S, Talagala L, Koretsky AP, Duyn J (2009) Characterization of T(2)* heterogeneity in human brain white matter. Magn Reson Med 62(6):1652–1657PubMedCrossRefGoogle Scholar
  35. Lin CP, Tseng WY, Cheng HC, Chen JH (2001) Validation of diffusion tensor magnetic resonance axonal fiber imaging with registered manganese-enhanced optic tracts. Neuroimage 14(5):1035–1047PubMedCrossRefGoogle Scholar
  36. Lin FH, Belliveau JW, Dale AM, Hämäläinen MS (2006) Distributed current estimates using cortical orientation constraints. Hum Brain Mapp 27(1):1–13PubMedCrossRefGoogle Scholar
  37. Mangia S, Tkác I, Gruetter R, Van de Moortele PF, Maraviglia B, Uğurbil K (2007) Sustained neuronal activation raises oxidative metabolism to a new steady-state level: evidence from 1H NMR spectroscopy in the human visual cortex. J Cereb Blood Flow Metab 27(5):1055–1063PubMedGoogle Scholar
  38. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 19:L55CrossRefGoogle Scholar
  39. Menon RS, Ogawa S, Strupp JP, Uğurbil K (1997) Ocular dominance in human V1 demonstrated by functional magnetic resonance imaging. J Neurophysiol 77(5):2780–2787PubMedGoogle Scholar
  40. Moseley ME, Cohen Y, Kucharczyk J, Mintorovitch J, Asgari HS, Wendland MF, Tsuruda J, Norman D (1990) Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology 176(2):439–445PubMedGoogle Scholar
  41. O’Brien JS, Sampson EL (1965) Lipid composition of the normal human brain: gray matter, white matter, and myelin. J Lipid Res 6(4):537–544PubMedGoogle Scholar
  42. Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5955PubMedCrossRefGoogle Scholar
  43. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–9872PubMedCrossRefGoogle Scholar
  44. Oshio K, Feinberg DA (1991) GRASE (Gradient- and spin-echo) imaging: a novel fast MRI technique. Magn Reson Med 20(2):344–349PubMedCrossRefGoogle Scholar
  45. Otazo R, Mueller B, Ugurbil K, Wald L, Posse S (2006) Magn Reson Med 56:1200–1210CrossRefGoogle Scholar
  46. Pfeuffer J, van de Moortele PF, Yacoub E, Shmuel A, Adriany G, Andersen P, Merkle H, Garwood M, Ugurbil K, Hu X (2002) Zoomed functional imaging in the human brain at 7 Tesla with simultaneous high spatial and high temporal resolution. Neuroimage 17(1):272–286PubMedCrossRefGoogle Scholar
  47. Ramanna S, Feinberg DA (2008) Single-shot 3D GRASE with cylindrical k-space trajectories. Magn Reson Med 60(4):976–980PubMedCrossRefGoogle Scholar
  48. Sigalovsky IS, Fischl B, Melcher JR (2006) Mapping an intrinsic MR property of gray matter in auditory cortex of living humans: a possible marker for primary cortex and hemispheric differences. NeuroImage 32:1524–1537PubMedCrossRefGoogle Scholar
  49. Simmons JM, Saad ZS, Lizak MJ, Ortiz M, Koretsky AP, Richmond BJ (2008) Mapping prefrontal circuits in vivo with manganese-enhanced magnetic resonance imaging in monkeys. J Neurosci 28(30):7637–7647PubMedCrossRefGoogle Scholar
  50. Talairach J, Tournoux P (1993) Referentially oriented cerebral MRI anatomy: an atlas of stereotaxic anatomical correlations for gray and white matter. Thieme Medical Publishers, New YorkGoogle Scholar
  51. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250PubMedCrossRefGoogle Scholar
  52. Turner R, Le Bihan D, Maier J, Vavrek R, Hedges LK, Pekar J (1990a) Echo-planar imaging of intravoxel incoherent motion. Radiology 177(2):407–414PubMedGoogle Scholar
  53. Turner R, von Kienlin M, Moonen CT, van Zijl PC (1990b) Single-shot localized echo-planar imaging (STEAM-EPI) at 4.7 tesla. Magn Reson Med 14(2):401–408PubMedCrossRefGoogle Scholar
  54. Turner R, Le Bihan D, Moonen CTW, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain deoxygenation changes. Magn Reson Med 22:159–166PubMedCrossRefGoogle Scholar
  55. Turner R, Jezzard P, Wen H, Kwong KK, Le Bihan D, Zeffiro T, Balaban RS (1993) Functional mapping of the human visual cortex at 4 and 1.5 tesla using deoxygenation contrast EPI. Magn Reson Med 29(2):277–279PubMedCrossRefGoogle Scholar
  56. Turner R, Oros-Peusquens AM, Romanzetti S, Zilles K, Shah NJ (2008) Optimised in vivo visualisation of cortical structures in the human brain at 3 T using IR-TSE. Magn Reson Imaging 26(7):935–942PubMedCrossRefGoogle Scholar
  57. Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–461Google Scholar
  58. Walters NB, Eickhoff SB, Schleicher A, Zilles K, Amunts K, Egan GF, Watson JD (2007) Observer-independent analysis of high-resolution MR images of the human cerebral cortex: in vivo delineation of cortical areas. Hum Brain Mapp 28(1):1–8PubMedCrossRefGoogle Scholar
  59. Weigel M, Hennig J (2006) Contrast behavior and relaxation effects of conventional and hyperecho-turbo spin echo sequences at 1.5 and 3 T. Magn Reson Med 55(4):826–835PubMedCrossRefGoogle Scholar
  60. Weiskopf N, Hutton C, Josephs O, Turner R, Deichmann R (2007) Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility-induced gradients in the readout direction. MAGMA 20(1):39–49PubMedCrossRefGoogle Scholar
  61. Yacoub E, Shmuel A, Logothetis N, Uğurbil K (2007) Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla. Neuroimage 37(4):1161–1177PubMedCrossRefGoogle Scholar
  62. Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105(30):10607–10612PubMedCrossRefGoogle Scholar
  63. Zhao F, Wang P, Hendrich K, Ugurbil K, Kim SG (2006) Cortical layer-dependent BOLD and CBV responses measured by spin-echo and gradient-echo fMRI: insights into hemodynamic regulation. Neuroimage 30(4):1149–1160PubMedCrossRefGoogle Scholar
  64. Zhu XH, Zhang N, Zhang Y, Uğurbil K, Chen W (2008) New insights into central roles of cerebral oxygen metabolism in the resting and stimulus-evoked brain. J Cereb Blood Flow Metab. Sep 10Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Max-Planck-Institute for Human Cognitive and Brain SciencesLeipzigGermany

Personalised recommendations