Abstract
During the last decade, a succession of studies revealed unexpected new cell subtypes designated as innate lymphoid cells (ILCs), “innate” owing to their absence of rearranged antigen-specific receptors, and “lymphoid” by virtue of sharing the morphology of lymphoid cells. Based on transcription factors, function, and development trajectories, ILCs were recently categorized into 5 distinct subsets: NK cells, ILC1s, ILC2s, ILC3s, and LTi cells. Given the more comprehensive understanding of NK cells and LTi, our focus here solely centers on the helper ILCs: ILC1s, ILC2s, and ILC3s.
Recently, helper ILCs have gained attention as significant players in cancer immunology. As tissue-resident lymphocytes, they are present in numerous tumor locations and are capable of sensing and rapidly responding to cancer-related signals, positioning them as the first responders within the tumor microenvironment. Several recent studies aimed to dissect the role of helper ILCs in a wide variety of cancers. However, these cells often present a dual role in the tumor microenvironment, underscoring the complexity of ILC function in cancer immunity.
This book chapter describes the function and characteristics of the helper ILCs, focusing on their dichotomous nature in cancer. The aim is to shed light on the conditions under which these cells exhibit potent anti-tumor activities, while examining the circumstances that drive their pro-tumor activities. Furthermore, here we highlight key pathways that modulate the ILC response to cancer, serving as a roadmap for unlocking novel avenues in cancer immunotherapy.
References
Alam A, Levanduski E, Denz P, Villavicencio HS, Bhatta M, Alhorebi L, Zhang Y, Gomez EC, Morreale B, Senchanthisai S, Li J, Turowski SG, Sexton S, Sait SJ, Singh PK, Wang J, Maitra A, Kalinski P, DePinho RA et al (2022) Fungal mycobiome drives IL-33 secretion and type 2 immunity in pancreatic cancer. Cancer Cell 40(2):153–167.e11. https://doi.org/10.1016/j.ccell.2022.01.003
Bal SM, Bernink JH, Nagasawa M, Groot J, Shikhagaie MM, Golebski K, van Drunen CM, Lutter R, Jonkers RE, Hombrink P, Bruchard M, Villaudy J, Munneke JM, Fokkens W, Erjefält JS, Spits H, Ros XR (2016) IL-1β, IL-4 and IL-12 control the fate of group 2 innate lymphoid cells in human airway inflammation in the lungs. Nat Immunol 17(6):636–645. https://doi.org/10.1038/ni.3444
Bal SM, Golebski K, Spits H (2020) Plasticity of innate lymphoid cell subsets. Nat Rev Immunol 20(9):552–565. https://doi.org/10.1038/s41577-020-0282-9
Barlow JL, McKenzie ANJ (2019) Innate lymphoid cells of the lung. Annu Rev Physiol 81(1):429–452. https://doi.org/10.1146/annurev-physiol-020518-114630
Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, Munneke JM, Hazenberg MD, Villaudy J, Buskens CJ, Bemelman WA, Diefenbach A, Blom B, Spits H (2015) Interleukin-12 and -23 control plasticity of CD127+ group 1 and group 3 innate lymphoid cells in the intestinal lamina propria. Immunity 43(1):146–160. https://doi.org/10.1016/j.immuni.2015.06.019
Bernink JH, Ohne Y, Teunissen MBM, Wang J, Wu J, Krabbendam L, Guntermann C, Volckmann R, Koster J, van Tol S, Ramirez I, Shrestha Y, de Rie MA, Spits H, Romero RX, Humbles AA (2019) c-Kit-positive ILC2s exhibit an ILC3-like signature that may contribute to IL-17-mediated pathologies. Nat Immunol 20(8):992–1003. https://doi.org/10.1038/s41590-019-0423-0
Bie Q, Zhang P, Su Z, Zheng D, Ying X, Wu Y, Yang H, Chen D, Wang S, Xu H (2014) Polarization of ILC2s in peripheral blood might contribute to immunosuppressive microenvironment in patients with gastric cancer. J Immunol Res 2014:923135. https://doi.org/10.1155/2014/923135
Bruchard M, Spits H (2022) The role of ILC subsets in cancer. Semin Immunol 61–64:101654. https://doi.org/10.1016/j.smim.2022.101654
Brüggen MC, Bauer WM, Reininger B, Clim E, Captarencu C, Steiner GE, Brunner PM, Meier B, French LE, Stingl G (2016) In situ mapping of innate lymphoid cells in human skin: evidence for remarkable differences between normal and inflamed skin. J Invest Dermatol 136(12):2396–2405. https://doi.org/10.1016/j.jid.2016.07.017
Carotta S, Pang SHM, Nutt SL, Belz GT (2011) Identification of the earliest NK-cell precursor in the mouse BM. Blood 117(20):5449–5452. https://doi.org/10.1182/blood-2010-11-318956
Carrega P, Loiacono F, Di Carlo E, Scaramuccia A, Mora M, Conte R, Benelli R, Spaggiari GM, Cantoni C, Campana S, Bonaccorsi I, Morandi B, Truini M, Mingari MC, Moretta L, Ferlazzo G (2015) NCR+ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun 6(1):8280. https://doi.org/10.1038/ncomms9280
Cella M, Otero K, Colonna M (2010) Expansion of human NK-22 cells with IL-7, IL-2, and IL-1β reveals intrinsic functional plasticity. Proc Natl Acad Sci USA 107(24):10961–10966. https://doi.org/10.1073/pnas.1005641107
Cella M, Gamini R, Sécca C, Collins PL, Zhao S, Peng V, Robinette ML, Schettini J, Zaitsev K, Gordon W, Bando JK, Yomogida K, Cortez V, Fronick C, Fulton R, Lin LL, Gilfillan S, Flavell RA, Shan L et al (2019) Subsets of ILC3−ILC1-like cells generate a diversity spectrum of innate lymphoid cells in human mucosal tissues. Nat Immunol 20(8):980–991. https://doi.org/10.1038/s41590-019-0425-y
Chan IH, Jain R, Tessmer MS, Gorman D, Mangadu R, Sathe M, Vives F, Moon C, Penaflor E, Turner S, Ayanoglu G, Chang C, Basham B, Mumm JB, Pierce RH, Yearley JH, McClanahan TK, Phillips JH, Cua DJ et al (2014) Interleukin-23 is sufficient to induce rapid de novo gut tumorigenesis, independent of carcinogens, through activation of innate lymphoid cells. Mucosal Immunol 7(4):842–856. https://doi.org/10.1038/mi.2013.101
Cherrier DE, Serafini N, Di Santo JP (2018) Innate lymphoid cell development: a T cell perspective. Immunity 48(6):1091–1103. https://doi.org/10.1016/j.immuni.2018.05.010
Chevalier MF, Trabanelli S, Racle J, Salomé B, Cesson V, Gharbi D, Bohner P, Domingos-Pereira S, Dartiguenave F, Fritschi AS, Speiser DE, Rentsch CA, Gfeller D, Jichlinski P, Nardelli-Haefliger D, Jandus C, Derré L (2017) ILC2-modulated T cell–to-MDSC balance is associated with bladder cancer recurrence. J Clin Invest 127(8):2916–2929. https://doi.org/10.1172/JCI89717
Cortez VS, Cervantes-Barragan L, Robinette ML, Bando JK, Wang Y, Geiger TL, Gilfillan S, Fuchs A, Vivier E, Sun JC, Cella M, Colonna M (2016) Transforming growth factor-β signaling guides the differentiation of innate lymphoid cells in salivary glands. Immunity 44(5):1127–1139. https://doi.org/10.1016/j.immuni.2016.03.007
Cortez VS, Ulland TK, Cervantes-Barragan L, Bando JK, Robinette ML, Wang Q, White AJ, Gilfillan S, Cella M, Colonna M (2017) SMAD4 impedes the conversion of NK cells into ILC1-like cells by curtailing non-canonical TGF-β signaling. Nat Immunol 18(9):995–1003. https://doi.org/10.1038/ni.3809
Cózar B, Greppi M, Carpentier S, Narni-Mancinelli E, Chiossone L, Vivier E (2021) Tumor-infiltrating natural killer cells. Cancer Discov 11(1):34–44. https://doi.org/10.1158/2159-8290.CD-20-0655
Dadi S, Chhangawala S, Whitlock BM, Franklin RA, Luo CT, Oh SA, Toure A, Pritykin Y, Huse M, Leslie CS, Li MO (2016) Cancer Immunosurveillance by tissue-resident innate lymphoid cells and innate-like T cells. Cell 164(3):365–377. https://doi.org/10.1016/j.cell.2016.01.002
de Lucía Finkel P, Sherwood C, Saranchova I, Xia W, Munro L, Pfeifer CG et al (2021) Serum free culture for the expansion and study of type 2 innate lymphoid cells. Sci Rep 11(1):12233. https://doi.org/10.1038/s41598-021-91500-z
de Weerdt I, van Hoeven V, Munneke JM, Endstra S, Hofland T, Hazenberg MD, Kater AP (2016) Innate lymphoid cells are expanded and functionally altered in chronic lymphocytic leukemia. Haematologica 101(11):e461–e464. https://doi.org/10.3324/haematol.2016.144725
Deng Y, Wu S, Yang Y, Meng M, Chen X, Chen S, Li L, Gao Y, Cai Y, Imani S, Chen B, Li S, Deng Y, Li X (2020) Unique phenotypes of heart resident type 2 innate lymphoid cells. Front Immunol 5(11):802. https://doi.org/10.3389/fimmu.2020.00802
Di Santo JP, Lim AI, Yssel H (2017) ‘ILC-poiesis’: generating tissue ILCs from naïve precursors. Oncotarget 8(47):81729–81730. https://doi.org/10.18632/oncotarget.21046
Ducimetière L, Lucchiari G, Litscher G, Nater M, Heeb L, Nuñez NG, Wyss L, Burri D, Vermeer M, Gschwend J, Moor AE, Becher B, van den Broek M, Tugues S (2021) Conventional NK cells and tissue-resident ILC1s join forces to control liver metastasis. Proc Natl Acad Sci USA 118(27):e2026271118. https://doi.org/10.1073/pnas.2026271118
Dutton EE, Gajdasik DW, Willis C, Fiancette R, Bishop EL, Camelo A, Sleeman MA, Coccia M, Didierlaurent AM, Tomura M, Pilataxi F, Morehouse CA, Carlesso G, Withers DR (2019) Peripheral lymph nodes contain migratory and resident innate lymphoid cell populations. Sci Immunol 4(35):eaau8082. https://doi.org/10.1126/sciimmunol.aau8082
Ercolano G, Garcia-Garijo A, Salomé B, Gomez-Cadena A, Vanoni G, Mastelic-Gavillet B, Ianaro A, Speiser DE, Romero P, Trabanelli S, Jandus C (2020) Immunosuppressive mediators impair Proinflammatory innate lymphoid cell function in human malignant melanoma. Cancer Immunol Res 8(4):556–564. https://doi.org/10.1158/2326-6066.CIR-19-0504
Eyerich S, Eyerich K, Cavani A, Schmidt-Weber C (2010) IL-17 and IL-22: siblings, not twins. Trends Immunol 31(9):354–361. https://doi.org/10.1016/j.it.2010.06.004
Fort MM, Cheung J, Yen D, Li J, Zurawski SM, Lo S, Menon S, Clifford T, Hunte B, Lesley R, Muchamuel T, Hurst SD, Zurawski G, Leach MW, Gorman DM, Rennick DM (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15(6):985–995. https://doi.org/10.1016/S1074-7613(01)00243-6
Frech M, Knipfer L, Wirtz S, Zaiss MM (2020) An in vivo gene delivery approach for the isola0on of reasonable numbers of type 2 innate lymphoid cells. MethodsX 7:101054. https://doi.org/10.1016/j.mex.2020.101054
Friedman E, Gold LI, Klimstra D, Zeng ZS, Winawer S, Cohen A (1995) High levels of transforming growth factor beta 1 correlate with disease progression in human colon cancer. Cancer Epidemiol Biomarkers Prev 4(5):549–554
Fuchs A, Vermi W, Lee JS, Lonardi S, Gilfillan S, Newberry RD, Cella M, Colonna M (2013) Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-γ-producing cells. Immunity 38(4):769–781. https://doi.org/10.1016/j.immuni.2013.02.010
Gao Y, Souza-Fonseca-Guimaraes F, Bald T, Ng SS, Young A, Ngiow SF, Rautela J, Straube J, Waddell N, Blake SJ, Yan J, Bartholin L, Lee JS, Vivier E, Takeda K, Messaoudene M, Zitvogel L, Teng MWL, Belz GT et al (2017) Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells. Nat Immunol 18(9):1004–1015. https://doi.org/10.1038/ni.3800
Ghaedi M, Takei F (2021) Innate lymphoid cell development. J Allergy Clin Immunol 147(5):1549–1560. https://doi.org/10.1016/j.jaci.2021.03.009
Goc J, Lv M, Bessman NJ, Flamar AL, Sahota S, Suzuki H, Teng F, Putzel GG, Eberl G, Withers DR, Arthur JC, Shah MA, Sonnenberg GF (2021) Dysregulation of ILC3s unleashes progression and immunotherapy resistance in colon cancer. Cell 184(19):5015–5030.e16. https://doi.org/10.1016/j.cell.2021.07.029
Golebski K, Ros XR, Nagasawa M, van Tol S, Heesters BA, Aglmous H, Kradolfer CMA, Shikhagaie MM, Seys S, Hellings PW, van Drunen CM, Fokkens WJ, Spits H, Bal SM (2019) IL-1β, IL-23, and TGF-β drive plasticity of human ILC2s towards IL-17-producing ILCs in nasal inflammation. Nat Commun 10(1):2162. https://doi.org/10.1038/s41467-019-09883-7
Guillerey C, Stannard K, Chen J, Krumeich S, Miles K, Nakamura K, Smith J, Yu Y, Ng S, Harjunpää H, Teng MW, Engwerda C, Belz GT, Smyth MJ (2021) Systemic administration of IL-33 induces a population of circulating KLRG1hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma. Immunol Cell Biol 99(1):65–83. https://doi.org/10.1111/imcb.12390
Guo X, Muite K, Wroblewska J, Fu Y-X (2016) Purification and adoptive transfer of group 3 gut innate lymphoid cells. Methods Mol Biol 1422:189–196. https://doi.org/10.1007/978-1-4939-3603-8-18
Harano K, Kaneko S, Nakatsura T, Yuda J, Fuse N, Sato A, Watanabe R, Ishii G, Mukohara T, Tanabe H, Ishiguro Y, Furuya H, Wakabayashi M, Fukutani M, Shimomura M, Ueda T, Iriguchi S, Kumagai A, Nakagoshi K, Sasaki A, Doi T (2022) Abstract 5185: first in human trial of off-the shelf iPS derived anti-GPC3 NK cells for recurrent ovarian clear cell carcinoma with peritoneal dissemination. Cancer Res 82:5185. https://doi.org/10.1158/1538-7445.AM2022-5185
Heinrich B, Gertz EM, Schäffer AA, Craig A, Ruf B, Subramanyam V, McVey JC, Diggs LP, Heinrich S, Rosato U, Ma C, Yan C, Hu Y, Zhao Y, Shen TW, Kapoor V, Telford W, Kleiner DE, Stovroff MK et al (2022) The tumour microenvironment shapes innate lymphoid cells in patients with hepatocellular carcinoma. Gut 71(6):1161–1175. https://doi.org/10.1136/gutjnl-2021-325288
Hepworth MR, Monticelli LA, Fung TC, Ziegler CGK, Grunberg S, Sinha R, Mantegazza AR, Ma HL, Crawford A, Angelosanto JM, Wherry EJ, Koni PA, Bushman FD, Elson CO, Eberl G, Artis D, Sonnenberg GF (2013) Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature 498(7452):113–117. https://doi.org/10.1038/nature12240
Hernández DC, Juelke K, Müller NC, Durek P, Ugursu B, Mashreghi MF, Rückert T, Romagnani C (2021) An in vitro platform supports generation of human innate lymphoid cells from CD34+ hematopoietic progenitors that recapitulate ex vivo identity. Immunity 54(10):2417–2432.e5. https://doi.org/10.1016/j.immuni.2021.07.019
Huang Q, Jacquelot N, Preaudet A, Hediyeh-zadeh S, Souza-Fonseca-Guimaraes F, McKenzie ANJ, Hansbro PM, Davis MJ, Mielke LA, Putoczki TL, Belz GT (2021) Type 2 innate lymphoid cells protect against colorectal cancer progression and predict improved patient survival. Cancers 13(3):559. https://doi.org/10.3390/cancers13030559
Ikeda A, Ogino T, Kayama H, Okuzaki D, Nishimura J, Fujino S, Miyoshi N, Takahashi H, Uemura M, Matsuda C, Yamamoto H, Takeda K, Mizushima T, Mori M, Doki Y (2020) Human NKp44+ group 3 innate lymphoid cells associate with tumor-associated tertiary lymphoid structures in colorectal cancer. Cancer Immunol Res 8(6):724–731. https://doi.org/10.1158/2326-6066.CIR-19-0775
Ikutani M, Yanagibashi T, Ogasawara M, Tsuneyama K, Yamamoto S, Hattori Y, Kouro T, Itakura A, Nagai Y, Takaki S, Takatsu K (2012) Identification of innate IL-5–producing cells and their role in lung eosinophil regulation and antitumor immunity. J Immunol 188(2):703–713. https://doi.org/10.4049/jimmunol.1101270
Irshad S, Flores-Borja F, Lawler K, Monypenny J, Evans R, Male V, Gordon P, Cheung A, Gazinska P, Noor F, Wong F, Grigoriadis A, Fruhwirth GO, Barber PR, Woodman N, Patel D, Rodriguez-Justo M, Owen J, Martin SG, Ng T (2017) RORγt+ innate lymphoid cells promote lymph node metastasis of breast cancers. Cancer Res 77(5):1083–1096. https://doi.org/10.1158/0008-5472.CAN-16-0598
Jacquelot N, Seillet C, Wang M, Pizzolla A, Liao Y, Hediyeh-zadeh S, Grisaru-Tal S, Louis C, Huang Q, Schreuder J, Souza-Fonseca-Guimaraes F, de Graaf CA, Thia K, Macdonald S, Camilleri M, Luong K, Zhang S, Chopin M, Molden-Hauer T, Belz GT (2021) Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat Immunol 22(7):851–864. https://doi.org/10.1038/s41590-021-00943-z
Jeffery HC, McDowell P, Lutz P, Wawman RE, Roberts S, Bagnall C, Birtwistle J, Adams DH, Oo YH (2017) Human intrahepatic ILC2 are IL-13positive amphiregulinpositive and their frequency correlates with model of end stage liver disease score. PLoS One 12(12):e0188649. https://doi.org/10.1371/journal.pone.0188649
Kansler ER, Dadi S, Krishna C, Nixon BG, Stamatiades EG, Liu M, Kuo F, Zhang J, Zhang X, Capistrano K, Blum KA, Weiss K, Kedl RM, Cui G, Ikuta K, Chan TA, Leslie CS, Hakimi AA, Li MO (2022) Cytotoxic innate lymphoid cells sense cancer cell-expressed interleukin-15 to suppress human and murine malignancies. Nat Immunol 23(6):904–915. https://doi.org/10.1038/s41590-022-01213-2
Kiessling R, Klein E, Pross H, Wigzell H (1975) “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5(2):117–121. https://doi.org/10.1002/eji.1830050209
Kim BS, Siracusa MC, Saenz SA, Noti M, Monticelli LA, Sonnenberg GF, Hepworth MR, Van Voorhees AS, Comeau MR, Artis D (2013) TSLP elicits IL-33–independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med 5(170):170ra16. https://doi.org/10.1126/scitranslmed.3005374
Kim J, Kim W, Moon UJ, Kim HJ, Choi HJ, Sin JI, Park NH, Cho HR, Kwon B (2016) Intratumorally establishing type 2 innate lymphoid cells blocks tumor growth. J Immunol 196(5):2410–2423. https://doi.org/10.4049/jimmunol.1501730
Kini Bailur J, Mehta S, Zhang L, Neparidze N, Parker T, Bar N, Anderson T, Xu ML, Dhodapkar KM et al (2017) Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy. Blood Adv 1(25):2343–2347. https://doi.org/10.1182/bloodadvances.2017012732
Kirchberger S, Royston DJ, Boulard O, Thornton E, Franchini F, Szabady RL, Harrison O, Powrie F (2013) Innate lymphoid cells sustain colon cancer through production of interleukin-22 in a mouse model. J Exp Med 210(5):917–931. https://doi.org/10.1084/jem.20122308
Klose CSN, Flach M, Möhle L, Rogell L, Hoyler T, Ebert K, Fabiunke C, Pfeifer D, Sexl V, Fonseca-Pereira D, Domingues RG, Veiga-Fernandes H, Arnold SJ, Busslinger M, Dunay IR, Tanriver Y, Diefenbach A (2014) Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell 157(2):340–356. https://doi.org/10.1016/j.cell.2014.03.030
Koh J, Kim HY, Lee Y, Park IK, Kang CH, Kim YT, Kim JE, Choi M, Lee WW, Jeon YK, Chung DH (2019) IL23-producing human lung cancer cells promote tumor growth via conversion of innate lymphoid cell 1 (ILC1) into ILC3. Clin Cancer Res 25(13):4026–4037. https://doi.org/10.1158/1078-0432.CCR-18-3458
Kondo M, Weissman IL, Akashi K (1997) Identification of Clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91(5):661–672. https://doi.org/10.1016/S0092-8674(00)80453-5
Krabbendam L, Heesters BA, Kradolfer CMA, Spits H, Bernink JH (2021) Identification of human cytotoxic ILC3s. Eur J Immunol 51(4):811–823. https://doi.org/10.1002/eji.202048696
Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, Basham B, McClanahan T, Kastelein RA, Oft M (2006) IL-23 promotes tumour incidence and growth. Nature 442(7101):461–465. https://doi.org/10.1038/nature04808
Li Z, Ma R, Ma S, Tian L, Lu T, Zhang J, Mundy-Bosse BL, Zhang B, Marcucci G, Caligiuri MA, Yu J (2022) ILC1s control leukemia stem cell fate and limit development of AML. Nat Immunol 23(5):718–730. https://doi.org/10.1038/s41590-022-01198-y
Li S, Wang CS, Montel-Hagen A et al (2023) Strength of CAR signaling determines T cell versus ILC differentiation from pluripotent stem cells. Cell Rep 42(3):112241. https://doi.org/10.1016/j.celrep.2023.112241
Lim AI, Di Santo JP (2019) ILC-poiesis: ensuring tissue ILC differentiation at the right place and time. Eur J Immunol 49(1):11–18. https://doi.org/10.1002/eji.201747294
Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, Serafini N, Puel A, Bustamante J, Surace L, Masse-Ranson G, David E, Strick-Marchand H, Le Bourhis L, Cocchi R, Topazio D, Graziano P, Muscarella LA, Rogge L, Di Santo JP (2017) Systemic human ILC precursors provide a substrate for tissue ILC differentiation. Cell 168(6):1086–1100e10. https://doi.org/10.1016/j.cell.2017.02.021
Liu Y, Song Y, Lin D, Lei L, Mei Y, Jin Z, Gong H, Zhu Y, Hu B, Zhang Y, Zhao L, Teo HY, Qiu J, Jiang W, Dong C, Wu D, Huang Y, Liu H (2019) NCR− group 3 innate lymphoid cells orchestrate IL-23/IL-17 axis to promote hepatocellular carcinoma development. EBioMedicine 41:333–344. https://doi.org/10.1016/j.ebiom.2019.02.050
Long A, Dominguez D, Qin L, Chen S, Fan J, Zhang M, Fang D, Zhang Y, Kuzel TM, Zhang B (2018) Type 2 innate lymphoid cells impede IL-33–mediated tumor suppression. J Immunol 201(11):3456–3464. https://doi.org/10.4049/jimmunol.1800173
Lopez AF, Sanderson CJ, Gamble JR, Campbell HD, Young IG, Vadas MA (1988) Recombinant human interleukin 5 is a selective activator of human eosinophil function. J Exp Med 167(1):219–224. https://doi.org/10.1084/jem.167.1.219
Loyon R, Jary M, Salomé B, Gomez-Cadena A, Galaine J, Kroemer M, Romero P, Trabanelli S, Adotévi O, Borg C, Jandus C (2019) Peripheral innate lymphoid cells are increased in first line metastatic colorectal carcinoma patients: a negative correlation with Th1 immune responses. Front Immunol 10:2121. https://doi.org/10.3389/fimmu.2019.02121
Mebius RE, Rennert P, Weissman IL (1997) Developing lymph nodes collect CD4 + CD3 − LTβ + cells that can differentiate to APC, NK cells, and follicular cells but not T or B cells. Immunity 7(4):493–504. https://doi.org/10.1016/S1074-7613(00)80371-4
Miller D, Motomura K, Garcia-Flores V, Romero R, Gomez-Lopez N (2018) Innate lymphoid cells in the maternal and fetal compartments. Front Immunol 9:2396. https://doi.org/10.3389/fimmu.2018.02396
Montaldo E, Teixeira-Alves LG, Glatzer T, Durek P, Stervbo U, Hamann W, Babic M, Paclik D, Stölzel K, Gröne J, Lozza L, Juelke K, Matzmohr N, Loiacono F, Petronelli F, Huntington ND, Moretta L, Mingari MC, Romagnani C (2014) Human RORγt+CD34+ cells are lineage-specified progenitors of group 3 RORγt+ innate lymphoid cells. Immunity 41(6):988–1000. https://doi.org/10.1016/j.immuni.2014.11.010
Moral JA, Leung J, Rojas LA, Ruan J, Zhao J, Sethna Z, Ramnarain A, Gasmi B, Gururajan M, Redmond D, Askan G, Bhanot U, Elyada E, Park Y, Tuveson DA, Gönen M, Leach SD, Wolchok JD, DeMatteo RP et al (2020) ILC2s amplify PD-1 blockade by activating tissue-specific cancer immunity. Nature 579(7797):130–135. https://doi.org/10.1038/s41586-020-2015-4
Moreno-Nieves UY, Tay JK, Saumyaa S, Horowitz NB, Shin JH, Mohammad IA, Luca B, Mundy DC, Gulati GS, Bedi N, Chang S, Chen C, Kaplan MJ, Rosenthal EL, Holsinger FC, Divi V, Baik FM, Sirjani DB, Gentles AJ et al (2021) Landscape of innate lymphoid cells in human head and neck cancer reveals divergent NK cell states in the tumor microenvironment. Proc Natl Acad Sci USA 118(28):e2101169118. https://doi.org/10.1073/pnas.2101169118
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H, Furusawa J, Ohtani M, Fujii H, Koyasu S (2010) Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463(7280):540–544. https://doi.org/10.1038/nature08636
Moro K, Kabata H, Tanabe M, Koga S, Takeno N, Mochizuki M, Fukunaga K, Asano K, Betsuyaku T, Koyasu S (2016) Interferon and IL-27 antagonize the function of group 2 innate lymphoid cells and type 2 innate immune responses. Nat Immunol 17(1):76–86. https://doi.org/10.1038/ni.3309
Mortha A, Chudnovskiy A, Hashimoto D, Bogunovic M, Spencer SP, Belkaid Y, Merad M (2014) Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science 343(6178):1249288. https://doi.org/10.1126/science.1249288
Murphy JM, Ngai L, Mortha A, Crome SQ (2022) Tissue-dependent adaptations and functions of innate lymphoid cells. Front Immunol 13:836999. https://doi.org/10.3389/fimmu.2022.836999
Nagasawa M, Spits H, Ros XR (2018) Innate lymphoid cells (ILCs): cytokine hubs regulating immunity and tissue homeostasis. Cold Spring Harb Perspect Biol 10(12):a030304. https://doi.org/10.1101/cshperspect.a030304
Nixon BG, Chou C, Krishna C, Dadi S, Michel AO, Cornish AE, Kansler ER, Do MH, Wang X, Capistrano KJ, Rudensky AY, Leslie CS, Li MO (2022) Cytotoxic granzyme C–expressing ILC1s contribute to antitumor immunity and neonatal autoimmunity. Sci Immunol 7(70):eabi8642. https://doi.org/10.1126/sciimmunol.abi8642
Ouyang W, Valdez P (2008) IL-22 in mucosal immunity. Mucosal Immunol 1(5):335–338. https://doi.org/10.1038/mi.2008.26
Parker ME, Barrera A, Wheaton JD, Zuberbuehler MK, Allan DSJ, Carlyle JR, Reddy TE, Ciofani M (2020) c-Maf regulates the plasticity of group 3 innate lymphoid cells by restraining the type 1 program. J Exp Med 217(1):e20191030. https://doi.org/10.1084/jem.20191030
Penny HA, Hodge SH, Hepworth MR (2018) Orchestration of intestinal homeostasis and tolerance by group 3 innate lymphoid cells. Semin Immunopathol 40(4):357–370. https://doi.org/10.1007/s00281-018-0687-8
Pope SM, Brandt EB, Mishra A, Hogan SP, Zimmermann N, Matthaei KI, Foster PS, Rothenberg ME (2001) IL-13 induces eosinophil recruitment into the lung by an IL-5– and eotaxin-dependent mechanism. J Allergy Clin Immunol 108(4):594–601. https://doi.org/10.1067/mai.2001.118600
Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ, Locksley RM (2010) Systemically dispersed innate IL-13–expressing cells in type 2 immunity. Proc Natl Acad Sci USA 107(25):11489–11494. https://doi.org/10.1073/pnas.1003988107
Raykova A, Carrega P, Lehmann FM, Ivanek R, Landtwing V, Quast I, Lünemann JD, Finke D, Ferlazzo G, Chijioke O, Münz C (2017) Interleukins 12 and 15 induce cytotoxicity and early NK-cell differentiation in type 3 innate lymphoid cells. Blood Adv 1(27):2679–2691. https://doi.org/10.1182/bloodadvances.2017008839
Reche PA, Soumelis V, Gorman DM, Clifford T, Liu M, Travis M, Zurawski SM, Johnston J, Liu YJ, Spits H, de Waal MR, Kastelein RA, Bazan JF (2001) Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J Immunol 167(1):336–343. https://doi.org/10.4049/jimmunol.167.1.336
Renoux VM, Zriwil A, Peitzsch C, Michaëlsson J, Friberg D, Soneji S, Sitnicka E (2015) Identification of a human natural killer cell lineage-restricted progenitor in fetal and adult tissues. Immunity 43(2):394–407. https://doi.org/10.1016/j.immuni.2015.07.011
Rethacker L, Roelens M, Bejar C, Maubec E, Moins-Teisserenc H, Caignard A (2021) Specific patterns of blood ILCs in metastatic melanoma patients and their modulations in response to immunotherapy. Cancers 13(6):1446. https://doi.org/10.3390/cancers13061446
Ruf B, Greten TF, Korangy F (2023) Innate lymphoid cells and innate-like T cells in cancer — at the crossroads of innate and adaptive immunity. Nat Rev Cancer 23(6):351–371. https://doi.org/10.1038/s41568-023-00562-w
Salimi M, Wang R, Yao X, Li X, Wang X, Hu Y, Chang X, Fan P, Dong T, Ogg G (2018) Activated innate lymphoid cell populations accumulate in human tumour tissues. BMC Cancer 18(1):341. https://doi.org/10.1186/s12885-018-4262-4
Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an Interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23(5):479–490. https://doi.org/10.1016/j.immuni.2005.09.015
Schoenborn JR, Wilson CB (2007) Regulation of interferon-gamma during innate and adaptive immune responses. Adv Immunol 96:41–101. https://doi.org/10.1016/S0065-2776(07)96002-2
Scoville SD, Mundy-Bosse BL, Zhang MH, Chen L, Zhang X, Keller KA, Hughes T, Chen L, Cheng S, Bergin SM, Mao HC, McClory S, Yu J, Carson WE, Caligiuri MA, Freud AG (2016) A progenitor cell expressing transcription factor RORγt generates all human innate lymphoid cell subsets. Immunity 44(5):1140–1150. https://doi.org/10.1016/j.immuni.2016.04.007
Seehus CR, Aliahmad P, de la Torre B, Iliev ID, Spurka L, Funari VA, Kaye J (2015) The development of innate lymphoid cells requires TOX-dependent generation of a common innate lymphoid cell progenitor. Nat Immunol 16(6):599–608. https://doi.org/10.1038/ni.3168
Serafini N, Vosshenrich CAJ, Di Santo JP (2015) Transcriptional regulation of innate lymphoid cell fate. Nat Rev Immunol 15(7):415–428. https://doi.org/10.1038/nri3855
Siegler JJ, Correia MP, Hofman T, Prager I, Birgin E, Rahbari NN, Watzl C, Stojanovic A, Cerwenka A (2022) Human ILC3 exert TRAIL-mediated cytotoxicity towards cancer cells. Front Immunol 13:742571. https://doi.org/10.3389/fimmu.2022.742571
Silver JS, Kearley J, Copenhaver AM, Sanden C, Mori M, Yu L, Pritchard GH, Berlin AA, Hunter CA, Bowler R, Erjefalt JS, Kolbeck R, Humbles AA (2016) Inflammatory triggers associated with exacerbations of COPD orchestrate plasticity of group 2 innate lymphoid cells in the lungs. Nat Immunol 17(6):626–635. https://doi.org/10.1038/ni.3443
Simoni Y, Fehlings M, Kløverpris HN, McGovern N, Koo SL, Loh CY, Lim S, Kurioka A, Fergusson JR, Tang CL, Kam MH, Dennis K, Lim TKH, Fui ACY, Hoong CW, Chan JKY, Curotto de Lafaille M, Narayanan S, Baig S et al (2017) Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity 46(1):148–161. https://doi.org/10.1016/j.immuni.2016.11.005
Spits H, Cupedo T (2012) Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Ann Rev Immunol 30(1):647–675. https://doi.org/10.1146/annurev-immunol-020711-075053
Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells — a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149. https://doi.org/10.1038/nri3365
Trabanelli S, Curti A, Lecciso M, Salome B, Riether C, Ochsenbein A, Romero P, Jandus C (2015) CD127+ innate lymphoid cells are dysregulated in treatment naive acute myeloid leukemia patients at diagnosis. Haematologica 100(7):e257–e260. https://doi.org/10.3324/haematol.2014.119602
Trabanelli S, Chevalier MF, Martinez-Usatorre A, Gomez-Cadena A, Salomé B, Lecciso M, Salvestrini V, Verdeil G, Racle J, Papayannidis C, Morita H, Pizzitola I, Grandclément C, Bohner P, Bruni E, Girotra M, Pallavi R, Falvo P, Leibundgut EO, Jandus C (2017) Tumour-derived PGD2 and NKp30-B7H6 engagement drives an immunosuppressive ILC2-MDSC axis. Nat Commun 8(1):593. https://doi.org/10.1038/s41467-017-00678-2
Tsushima H, Kawata S, Tamura S, Ito N, Shirai Y, Kiso S, Imai Y, Shimomukai H, Nomura Y, Matsuda Y, Matsuzawa Y (1996) High levels of transforming growth factor beta 1 in patients with colorectal cancer: association with disease progression. Gastroenterology 110(2):375–382. https://doi.org/10.1053/gast.1996.v110.pm8566583
Turner JE, Morrison PJ, Wilhelm C, Wilson M, Ahlfors H, Renauld JC, Panzer U, Helmby H, Stockinger B (2013) IL-9–mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med 210(13):2951–2965. https://doi.org/10.1084/jem.20130071
Ueda T, Kumagai A, Iriguchi S et al (2020) Non-clinical efficacy, safety and stable clinical cell processing of induced pluripotent stem cell-derived anti-glypican-3 chimeric antigen receptor-expressing natural killer/innate lymphoid cells. Cancer Sci 111(5):1478–1490. https://doi.org/10.1111/cas.14374
Valizadeh A (2015) Role of IL-25 in immunity. J Clin Diagn Res 9(4):OE01–OE04. https://doi.org/10.7860/JCDR/2015/12235.5814
Verma R, Er JZ, Pu RW, Sheik Mohamed J, Soo RA, Muthiah HM, Tam JKC, Ding JL (2020) Eomes expression defines group 1 innate lymphoid cells during metastasis in human and mouse. Front Immunol 11:1190. https://doi.org/10.3389/fimmu.2020.01190
Villanova F, Flutter B, Tosi I, Grys K, Sreeneebus H, Perera GK, Chapman A, Smith CH, Di Meglio P, Nestle FO (2014) Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44+ ILC3 in psoriasis. J Invest Dermatol 134(4):984–991. https://doi.org/10.1038/jid.2013.477
Vivier E (2021) The discovery of innate lymphoid cells. Nat Rev Immunol 21(10):616–616. https://doi.org/10.1038/s41577-021-00595-y
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie ANJ, Mebius RE, Powrie F, Spits H (2018) Innate lymphoid cells: 10 years on. Cell 174(5):1054–1066. https://doi.org/10.1016/j.cell.2018.07.017
von Moltke J, Ji M, Liang HE, Locksley RM (2016) Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit. Nature 529(7585):221–225. https://doi.org/10.1038/nature16161
Vonarbourg C, Mortha A, Bui VL, Hernandez PP, Kiss EA, Hoyler T, Flach M, Bengsch B, Thimme R, Hölscher C, Hönig M, Pannicke U, Schwarz K, Ware CF, Finke D, Diefenbach A (2010) Regulated expression of nuclear receptor RORγt confers distinct functional fates to NK cell receptor-expressing RORγt+ innate lymphocytes. Immunity 33(5):736–751. https://doi.org/10.1016/j.immuni.2010.10.017
Wan J, Wu Y, Huang L, Tian Y, Ji X, Abdelaziz MH, Cai W, Dineshkumar K, Lei Y, Yao S, Sun C, Su Z, Wang S, Xu H (2021) ILC2-derived IL-9 inhibits colorectal cancer progression by activating CD8+ T cells. Cancer Lett 502:34–43. https://doi.org/10.1016/j.canlet.2021.01.002
Wang S, Qu Y, Xia P, Chen Y, Zhu X, Zhang J, Wang G, Tian Y, Ying J, Fan Z (2020) Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer. Cell Res 30(7):610–622. https://doi.org/10.1038/s41422-020-0312-y
Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, Degli-Esposti MA, Leslie CS, Sun JC, O’Sullivan TE (2017) ILC1 confer early host protection at initial sites of viral infection. Cell 171(4):795–808.e12. https://doi.org/10.1016/j.cell.2017.09.052
Wilhelm C, Hirota K, Stieglitz B, Van Snick J, Tolaini M, Lahl K, Sparwasser T, Helmby H, Stockinger B (2011) An IL-9 fate reporter demonstrates the induction of an innate IL-9 response in lung inflammation. Nat Immunol 12(11):1071–1077. https://doi.org/10.1038/ni.2133
Wynn TA (2003) IL-13 effector functions. Annu Rev Immunol 21(1):425–456. https://doi.org/10.1146/annurev.immunol.21.120601.141142
Xiong L, Nutt SL, Seillet C (2022) Innate lymphoid cells: more than just immune cells. Front Immunol 13:1033904. https://doi.org/10.3389/fimmu.2022.1033904
Xu W, Domingues RG, Fonseca-Pereira D, Ferreira M, Ribeiro H, Lopez-Lastra S, Motomura Y, Moreira-Santos L, Bihl F, Braud V, Kee B, Brady H, Coles MC, Vosshenrich C, Kubo M, Di Santo JP, Veiga-Fernandes H (2015) NFIL3 orchestrates the emergence of common helper innate lymphoid cell precursors. Cell Rep 10(12):2043–2054. https://doi.org/10.1016/j.celrep.2015.02.057
Xuan X, Zhou J, Tian Z, Lin Y, Song J, Ruan Z, Ni B, Zhao H, Yang W (2020) ILC3 cells promote the proliferation and invasion of pancreatic cancer cells through IL-22/AKT signaling. Clin Transl Oncol 22(4):563–575. https://doi.org/10.1007/s12094-019-02160-5
Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa SI, Gruss P (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix–loop–helix inhibitor Id2. Nature 397(6721):702–706. https://doi.org/10.1038/17812
Yu X, Wang Y, Deng M, Li Y, Ruhn KA, Zhang CC, Hooper LV (2014) The basic leucine zipper transcription factor NFIL3 directs the development of a common innate lymphoid cell precursor. elife 3:e04406. https://doi.org/10.7554/eLife.04406
Yudanin NA, Schmitz F, Flamar AL, Thome JJC, Tait Wojno E, Moeller JB, Schirmer M, Latorre IJ, Xavier RJ, Farber DL, Monticelli LA, Artis D (2019) Spatial and temporal mapping of human innate lymphoid cells reveals elements of tissue specificity. Immunity 50(2):505–519.e4. https://doi.org/10.1016/j.immuni.2019.01.012
Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W, Wang Z, Wu Q, Peng H, Wei H, Sun R, Tian Z (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19(7):723–732. https://doi.org/10.1038/s41590-018-0132-0
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sousa, L.M., Tralhão, J.G., Ferreira, M., Rodrigues-Santos, P. (2024). Innate Lymphoid Cells in Cancer: Immunobiology and Immunotherapy. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2024_368
Download citation
DOI: https://doi.org/10.1007/16833_2024_368
Published:
Publisher Name: Springer, Cham