Skip to main content

Foods Including Polycyclic Aromatic Hydrocarbons (PAHs) and Spectroscopic Identifications of PAHs

  • Chapter
  • First Online:
Interdisciplinary Cancer Research
  • The original version of this chapter has been revised. The affiliation of the author Elif Cakir has been corrected. A correction to this chapter can be found at https://doi.org/10.1007/16833_2024_232.

Abstract

Polycyclic aromatic hydrocarbon compounds (PAHs) with carcinogenic, teratogenic, and mutagenic properties are defined as organic pollutants containing benzene rings. PAHs, which are formed by the proliferation of carbon-containing substances in high-temperature and oxygen-free environment, have reached our dinner table by polluting our air, water, and soil as a result of increasing industrial wastes, fossil fuel use, man-made factors, and natural events such as fire. In addition to environmental pollution and contamination with contaminated food contact materials in raw and processed foods, it also occurs as a result of high-temperature processing operations. Heat treatment height applied to food, distance process time parameters between food and heat source are effective on PAH formation. Cooking techniques involving high heat treatment such as drying, frying, roasting, and grilling, especially applied to meat and meat products, cause the formation of PAH compounds. In this chapter, chemical structures of PAHs, prevention of PAH formation, health effects, and FTIR/Raman spectroscopic applications will be explained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Change history

  • 13 April 2024

    A correction has been published.

References

  • Abdel-Shafy HI, Mansour MS (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

    Article  Google Scholar 

  • Abenhaim L, Moride Y, Brenot F, Rich S, Benichou J, Kurz X, Higenbottam T, Oakley C, Wouters E, Aubier M (1996) Appetite-suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med 335(9):609–616

    Google Scholar 

  • Adesina OA (2022) Level of polycyclic aromatic hydrocarbon in smoked food materials from roadside barbeque spots in western Nigeria and health implication. Polycycl Aromat Compd 42(5):1972–1977

    Google Scholar 

  • Adeyeye SAO, Ashaolu TJ (2022) Polycyclic aromatic hydrocarbons formation and mitigation in meat and meat products. Polycycl Aromat Compd 42(6):3401–3411

    Google Scholar 

  • Agus BAP, Rajentran K, Selamat J, Lestari SD, Umar NB, Hussain N (2022) Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compos Anal 116:105038

    Google Scholar 

  • Agus BAP, Rajentran K, Selamat J, Lestari SD, Umar NB, Hussain N (2023) Determination of 16 EPA PAHs in food using gas and liquid chromatography. J Food Compos Anal 116:105038. https://doi.org/10.1016/j.jfca.2022.105038

    Article  Google Scholar 

  • Alexander et al (2008) Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on polycyclic aromatic hydrocarbons in food. EFSA J 724:1–114

    Google Scholar 

  • Alexandrov K, Rojas M, Satarug S (2010) The critical DNA damage by benzo (a) pyrene in lung tissues of smokers and approaches to preventing its formation. Toxicol Lett 198(1):63–68

    Google Scholar 

  • Allamandola LJ, Tielens AGGM, Barker J (1985) Polycyclic aromatic hydrocarbons and the unidentified infrared emission bands-Auto exhaust along the Milky Way. Astrophys J Part 2 290:L25–L28, 290, L25–L28 (ISSN 0004-637X)

    Google Scholar 

  • Allamandola LJ, Sandford SA, Wopenka B (1987) Interstellar polycyclic aromatic hydrocarbons and carbon in interplanetary dust particles and meteorites. Science 237(4810):56–59

    Google Scholar 

  • Al-Rashdan A, Helaleh MI, Nisar A, Ibtisam A, Al-Ballam Z (2010) Determination of the levels of polycyclic aromatic hydrocarbons in toasted bread using gas chromatography mass spectrometry. Int J Anal Chem 2010:821216

    Google Scholar 

  • Ambade B, Sethi SS, Giri B, Biswas JK, Bauddh K (2022) Characterization, behavior, and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the estuary sediments. Bull Environ Contam Toxicol 108(2):243–252

    Google Scholar 

  • Amirdivani S, Khorshidian N, Ghobadi Dana M, Mohammadi R, Mortazavian AM, Quiterio de Souza SL, Barbosa Rocha H, Raices R (2019) Polycyclic aromatic hydrocarbons in milk and dairy products. Int J Dairy Technol 72(1):120–131

    Google Scholar 

  • Anastasio A, Mercogliano R, Vollano L, Pepe T, Cortesi ML (2004) Levels of benzo [a] pyrene (BaP) in “Mozzarella di Bufala Campana” cheese smoked according to different procedures. J Agric Food Chem 52(14):4452–4455

    Google Scholar 

  • Armstrong B, Hutchinson E, Unwin J, Fletcher T (2004) Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: a review and meta-analysis. Environ Health Perspect 112(9):970–978

    Google Scholar 

  • Bach PB, Kelley MJ, Tate RC, McCrory DC (2003) Screening for lung cancer: a review of the current literature. Chest 123(1):72S–82S

    Google Scholar 

  • Baird WM, Hooven LA, Mahadevan B (2005) Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ Mol Mutagen 45(2–3):106–114

    Google Scholar 

  • Bao K, Zaccone C, Tao Y, Wang J, Shen J, Zhang Y (2020) Source apportionment of priority PAHs in 11 lake sediment cores from Songnen Plain, Northeast China. Water Res 168:115158

    Google Scholar 

  • Barranco A, Alonso-Salces R, Crespo I, Berrueta L, Gallo B, Vicente F, Sarobe M (2004) Polycyclic aromatic hydrocarbon content in commercial Spanish fatty foods. J Food Prot 67(12):2786–2791

    Google Scholar 

  • Becker L, Bunch TE (1997) Fullerenes, fulleranes and polycyclic aromatic hydrocarbons in the Allende meteorite. Meteorit Planet Sci 32(4):479–487

    Google Scholar 

  • Beintema DA, Van den Ancker ME, Molster FJ, Waters LBFM, Tielens AGGM, Waelkens C et al (1996) The rich spectrum of circumstellar PAHs. Astron Astrophys 315:L369–L372, 315, L369–L372

    Google Scholar 

  • Bertoz V, Purcaro G, Conchione C, Moret S (2021) A review on the occurrence and analytical determination of PAHs in olive oils. Food Secur 10(2):324

    Google Scholar 

  • Boersma C, Mattioda AL, Bauschlicher CW, Peeters E, Tielens AGGM, Allamandola LJ (2008) The 5.25 and 5.7 μm astronomical polycyclic aromatic hydrocarbon emission features. Astrophys J 690(2):1208

    Google Scholar 

  • Boffetta P, Jourenkova N, Gustavsson P (1997) Cancer risk from occupational and environmental exposure to polycyclic aromatic hydrocarbons. Cancer Causes Control 8:444–472

    Google Scholar 

  • Burstyn I, Kromhout H, Johansen C, Langard S, Kauppinen T, Shaham J, Ferro G, Boffetta P (2007) Bladder cancer incidence and exposure to polycyclic aromatic hydrocarbons among asphalt pavers. Occup Environ Med 64(8):520–526

    Google Scholar 

  • Busemann H, Alexander MOD, Nittler LR (2007) Characterization of insoluble organic matter in primitive meteorites by microRaman spectroscopy. Meteorit Planet Sci 42(7–8):1387–1416

    Google Scholar 

  • Cai Y, Wang Z, Cui L, Wang J, Zuo X, Lei Y, Zhao X, Zhai X, Li J, Li W (2023) Distribution, source diagnostics, and factors influencing polycyclic aromatic hydrocarbons in the Yellow River Delta wetland. Reg Stud Mar Sci 67:103181. https://doi.org/10.1016/j.rsma.2023.103181

    Article  Google Scholar 

  • Cejpek K, Hajšlová J, Kocourek V, Tomaniová M, Cmolik J (1998) Changes in PAH levels during production of rapeseed oil. Food Addit Contam 15(5):563–574

    Google Scholar 

  • Chawda S, Tarafdar A, Sinha A, Mishra BK (2020) Profiling and health risk assessment of PAHs content in tandoori and tawa bread from India. Polycycl Aromat Compd 40:1, 21–32

    Google Scholar 

  • Chen H, Teng Y, Lu S, Wang Y, Wu J, Wang J (2016a) Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere 144:1002–1011

    Google Scholar 

  • Chen Y-C, Chiang H-C, Hsu C-Y, Yang T-T, Lin T-Y, Chen M-J, Chen N-T, Wu Y-S (2016b) Ambient PM2. 5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: seasonal variation, source apportionment and cancer risk assessment. Environ Pollut 218:372–382

    Google Scholar 

  • Chen T, Luo Y, Li A (2019) The infrared bands of polycyclic aromatic hydrocarbons in the 1.6–1.7 μm wavelength region. Astron Astrophys 632:A71

    Google Scholar 

  • Chu JW, Kao PN, Faul JL, Doyle RL (2002) High prevalence of autoimmune thyroid disease in pulmonary arterial hypertension. Chest 122(5):1668–1673

    Google Scholar 

  • Ciecierska M, Obiedziński M (2007) Influence of smoking process on polycyclic aromatic hydrocarbons’ content in meat products. Acta Sci Pol Technol Aliment 6(4):17–28

    Google Scholar 

  • Cloutis E, Szymanski P, Applin D, Goltz D (2016) Identification and discrimination of polycyclic aromatic hydrocarbons using Raman spectroscopy. Icarus 274:211–230

    Google Scholar 

  • Cohen M, Tielens AGGM, Bregman J, Witteborn FC, Rank DM, Allamandola LJ et al (1989) The infrared emission bands. III-Southern IRAS sources. Astrophys J Part 1 341:246–269, 341, 246–269 (ISSN 0004-637X)

    Google Scholar 

  • Conde FJ, Ayala JH, Afonso AM, González V (2005) Polycyclic aromatic hydrocarbons in smoke used to smoke cheese produced by the combustion of rock rose (Cistus monspeliensis) and tree heather (Erica arborea) wood. J Agric Food Chem 53(1):176–182

    Google Scholar 

  • Dennis M, Massey R, Cripps G, Venn I, Howarth N, Lee G (1991) Factors affecting the polycyclic aromatic hydrocarbon content of cereals, fats and other food products. Food Addit Contam 8(4):517–530

    Google Scholar 

  • Elaridi J, Fakhro M, Yamani O, Dimassi H, Othman H, Attieh Z (2020) GC–MS analysis of polycyclic aromatic hydrocarbons in bottled olive oil marketed in Lebanon. Toxicol Res 36:211–220

    Google Scholar 

  • European Commission (2002) Opinion of the scientific committee on food on the risks to human health of polycyclic aromatic hydrocarbons in food (Health and Consumer, Issue. Protection Directorate-General SCF/CS/CNTM/PAH/29 final report 1–65. http://www.who.int/comm/food/fs/sc/scf/out153_en.p

  • European Commission (2006) Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 364:5–24

    Google Scholar 

  • Farhadian A, Jinap S, Abas F, Sakar ZI (2010) Determination of polycyclic aromatic hydrocarbons in grilled meat. Food Control 21(5):606–610

    Google Scholar 

  • Fishman A, McGoon M, Chazova I, Fedullo P, Kneussel M, Peacock A (1998) Diagnosis and assessment of pulmonary hypertension. Primary pulmonary hypertension: executive summary from the world

    Google Scholar 

  • Galié N, Manes A, Uguccioni L, Serafini F, De Rosa M, Branzi A, Magnani B (1998) Primary pulmonary hypertension: insights into pathogenesis from epidemiology. Chest 114(3):184S–194S

    Google Scholar 

  • Gorji MEH, Ahmadkhaniha R, Moazzen M, Yunesian M, Azari A, Rastkari N (2016) Polycyclic aromatic hydrocarbons in Iranian Kebabs. Food Control 60:57–63

    Google Scholar 

  • Goudarzi G, Geravandi S, Alavi N, Idani E, Salmanzadeh S, Yari AR, Jamshidi F, Mohammadi MJ, Ranjbarzadeh A, Alamdari FA (2018) Association between cancer risk and polycyclic aromatic hydrocarbons’ exposure in the ambient air of Ahvaz, southwest of Iran. Int J Biometeorol 62:1461–1470

    Google Scholar 

  • Goudarzi G, Alavi N, Babaei AA, Geravandi S, Idani E, Salmanzadeh S, Mohammadi MJ (2022) Investigation of ambient polycyclic aromatic hydrocarbons in a populated middle eastern city. Polycycl Aromat Compd 42(5):1978–1993

    Google Scholar 

  • Guillén MD, Sopelana P (2004) Occurrence of polycyclic aromatic hydrocarbons in smoked cheese. J Dairy Sci 87(3):556–564

    Google Scholar 

  • Hao X, Li J, Yao Z (2016) Changes in PAHs levels in edible oils during deep-frying process. Food Control 66:233–240

    Google Scholar 

  • Houessou JK, Delteil C, Camel V (2006) Investigation of sample treatment steps for the analysis of polycyclic aromatic hydrocarbons in ground coffee. J Agric Food Chem 54(20):7413–7421

    Google Scholar 

  • Howsam M, Jones KC (1998) Sources of PAHs in the environment. In: PAHs and related compounds: chemistry. Springer, Berlin, Heidelberg, pp 137–174

    Google Scholar 

  • Hua H, Zhao X, Wu S, Li G (2016) Impact of refining on the levels of 4-hydroxy-trans-alkenals, parent and oxygenated polycyclic aromatic hydrocarbons in soybean and rapeseed oils. Food Control 67:82–89

    Google Scholar 

  • IARC Working Group on the Evaluation of Carcinogenic Risks to Humans (2010) Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Monogr Eval Carcinog Risks Hum 92:1

    Google Scholar 

  • Iwegbue CM, Onyonyewoma UA, Bassey FI, Nwajei GE, Martincigh BS (2015) Concentrations and health risk of polycyclic aromatic hydrocarbons in some brands of biscuits in the Nigerian market. Hum Ecol Risk Assess Int J 21(2):338–357

    Google Scholar 

  • Jakszyn P, Agudo A, Ibáñez R, García-Closas R, Pera G, Amiano P, González CA (2004) Development of a food database of nitrosamines, heterocyclic amines, and polycyclic aromatic hydrocarbons. J Nutr 134(8):2011–2014

    Google Scholar 

  • Jang T-W, Kim Y, Won J-U, Lee J-S, Song J (2018) The standards for recognition of occupational cancers related with polycyclic aromatic hydrocarbons (PAHs) in Korea. Ann Occup Environ Med 30:1–6

    Google Scholar 

  • Kacmaz S (2019) Polycyclic aromatic hydrocarbons (PAHs) in flour, bread, and breakfast cereals. In: Flour and breads and their fortification in health and disease prevention. Elsevier, London, pp 13–20

    Google Scholar 

  • Kameda Y, Shirai J, Komai T, Nakanishi J, Masunaga S (2005) Atmospheric polycyclic aromatic hydrocarbons: size distribution, estimation of their risk and their depositions to the human respiratory tract. Sci Total Environ 340(1):71–80. https://doi.org/10.1016/j.scitotenv.2004.08.009

    Article  Google Scholar 

  • Kaur R, Gupta S, Tripathi V, Chauhan A, Parashar D, Shankar P, Kashyap V (2023) Microbiome based approaches for the degradation of polycyclic aromatic hydrocarbons (PAHs): a current perception. Chemosphere 341:139951

    Google Scholar 

  • Kazerouni N, Sinha R, Hsu C-H, Greenberg A, Rothman N (2001) Analysis of 200 food items for benzo [a] pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39(5):423–436

    Google Scholar 

  • Khuman SN, Chakraborty P, Cincinelli A, Snow D, Kumar B (2018) Polycyclic aromatic hydrocarbons in surface waters and riverine sediments of the Hooghly and Brahmaputra Rivers in the Eastern and Northeastern India. Sci Total Environ 636:751–760

    Google Scholar 

  • Kim K-H, Jahan SA, Kabir E, Brown RJ (2013) A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ Int 60:71–80

    Google Scholar 

  • Koelmans AA, Bakir A, Burton GA, Janssen CR (2016) Microplastic as a vector for chemicals in the aquatic environment: critical review and model-supported reinterpretation of empirical studies. Environ Sci Technol 50(7):3315–3326

    Google Scholar 

  • Kumar S, Negi S, Maiti P (2017) Biological and analytical techniques used for detection of polyaromatic hydrocarbons. Environ Sci Pollut Res 24:25810–25827. https://doi.org/10.1007/s11356-017-0415-2

    Article  Google Scholar 

  • Lacy M, Sajina A (2020) Active galactic nuclei as seen by the Spitzer Space Telescope. Nat Astron 4(4):352–363

    Google Scholar 

  • Larouche N, Stansfield BL (2010) Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon 48(3):620–629

    Google Scholar 

  • Larsson B (1986) Polycyclic aromatic hydrocarbons in Swedish foods. Aspects on analysis, occurrence and intake. Sveriges Lantbruksuniv

    Google Scholar 

  • Larsson B, Eriksson A, Cervenka M (1987) Polycyclic aromatic hydrocarbons in crude and deodorized vegetable oils. J Am Oil Chem Soc 64(3):365–370

    Google Scholar 

  • Ledesma E, Rendueles M, Díaz M (2016) Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: processes and prevention. Food Control 60:64–87

    Google Scholar 

  • Lee C-H, Ko Y-C, Cheng LS-C, Lin Y-C, Lin H-J, Huang M-S, Huang J-J, Kao E-L, Wang H-Z (2001) The heterogeneity in risk factors of lung cancer and the difference of histologic distribution between genders in Taiwan. Cancer Causes Control 12:289–300

    Google Scholar 

  • Lee H-L, Hsieh DPH, Li L-A (2011) Polycyclic aromatic hydrocarbons in cigarette sidestream smoke particulates from a Taiwanese brand and their carcinogenic relevance. Chemosphere 82(3):477–482. https://doi.org/10.1016/j.chemosphere.2010.09.045

    Article  Google Scholar 

  • Lee J, Jeong J-H, Park S, Lee K-G (2018) Monitoring and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in processed foods and their raw materials. Food Control 92:286–292

    Google Scholar 

  • Leger A, Puget J (1984) Identification of the’unidentified’IR emission features of interstellar dust? Astron Astrophys 137(1):L5–L8, 137, L5–L8 (ISSN 0004-6361)

    Google Scholar 

  • Li A (2020) Spitzer’s perspective of polycyclic aromatic hydrocarbons in galaxies. Nat Astron 4(4):339–351

    Google Scholar 

  • Li G, Wu S, Zeng J, Wang L, Yu W (2016a) Effect of frying and aluminium on the levels and migration of parent and oxygenated PAHs in a popular Chinese fried bread youtiao. Food Chem 209:123–130

    Google Scholar 

  • Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, Li D, Shi H (2016b) Microplastics in mussels along the coastal waters of China. Environ Pollut 214:177–184

    Google Scholar 

  • Li B, Zhou S, Wang T, Sui X, Jia Z, Li Y, Wang J, Wu S (2018) An improved gridded polycyclic aromatic hydrocarbon emission inventory for the lower reaches of the Yangtze River Delta region from 2001 to 2015 using satellite data. J Hazard Mater 360:329–339

    Google Scholar 

  • Lu F, Kuhnle GK, Cheng Q (2017) Vegetable oil as fat replacer inhibits formation of heterocyclic amines and polycyclic aromatic hydrocarbons in reduced fat pork patties. Food Control 81:113–125

    Google Scholar 

  • Lutz D, Spoon HWW, Rigopoulou D, Moorwood AFM, Genzel R (1998) The nature and evolution of ultraluminous infrared galaxies: a mid-infrared spectroscopic survey. Astrophys J 505(2):L103

    Google Scholar 

  • Maher A, Nowak A (2022) Chemical contamination in bread from food processing and its environmental origin. Molecules 27(17):5406

    Google Scholar 

  • Mahmood M, Eghtesadi Araghi P, Mashinchian A, Fatemi M, Riazi G (2013) Evaluation of lysosomal stability and red blood cell membrane fragility in mudskipper (Boleophthalmus dussumieri) as a biomarker of poly aromatic hydrocarbons. Iran Sci Fish J 22(2):65–76

    Google Scholar 

  • Marshall AO, Wehrbein RL, Lieberman BS, Marshall CP (2012) Raman spectroscopic investigations of Burgess Shale–type preservation: a new way forward. PALAIOS 27(5):288–292

    Google Scholar 

  • Matsuura M, De Buizer JM, Arendt RG, Dwek E, Barlow MJ, Bevan A et al (2019) SOFIA mid-infrared observations of Supernova 1987A in 2016–forward shocks and possible dust re-formation in the post-shocked region. Mon Not R Astron Soc 482(2):1715–1723

    Google Scholar 

  • Maurya A, Singh R, Rastogi S (2023) Study of vibrational spectra of polycyclic aromatic hydrocarbons with phenyl side group. J Mol Spectrosc 391:111720

    Google Scholar 

  • McCollister D, Shaffer S, Badesch DB, Filusch A, Hunsche E, Schüler R, Wiklund I, Peacock A (2016) Development of the Pulmonary Arterial Hypertension-Symptoms and Impact (PAH-SYMPACT®) questionnaire: a new patient-reported outcome instrument for PAH. Respir Res 17(1):1–12

    Google Scholar 

  • Mojiri A, Zhou JL, Ohashi A, Ozaki N, Kindaichi T (2019) Comprehensive review of polycyclic aromatic hydrocarbons in water sources, their effects and treatments. Sci Total Environ 696:133971

    Google Scholar 

  • Moorthy B, Chu C, Carlin DJ (2015) Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 145(1):5–15

    Google Scholar 

  • Moreda W, Pérez-Camino MdC, Cert A (2001) Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J Chromatogr A 936(1–2):159–171

    Google Scholar 

  • Moret S, Conte LS (2002) A rapid method for polycyclic aromatic hydrocarbon determination in vegetable oils. J Sep Sci 25(1–2):96–100

    Google Scholar 

  • Moret S, Piani B, Bortolomeazzi R, Contel LS (1997) HPLC determination of polycyclic aromatic hydrocarbons in olive oils. Zeitschrift für Lebensmitteluntersuchung und-Forschung A 205:116–120

    Google Scholar 

  • Motorykin O, Matzke MM, Waters KM, Massey Simonich SL (2013) Association of carcinogenic polycyclic aromatic hydrocarbon emissions and smoking with lung cancer mortality rates on a global scale. Environ Sci Technol 47(7):3410–3416

    Google Scholar 

  • Obinaju BE, Martin FL (2016) ATR-FTIR spectroscopy reveals polycyclic aromatic hydrocarbon contamination despite relatively pristine site characteristics: results of a field study in The Niger Delta. Environ Int 89–90:93–101

    Google Scholar 

  • Oliveira M, Slezakova K, Delerue-Matos C, Pereira MC, Morais S (2019) Children environmental exposure to particulate matter and polycyclic aromatic hydrocarbons and biomonitoring in school environments: a review on indoor and outdoor exposure levels, major sources and health impacts. Environ Int 124:180–204

    Google Scholar 

  • Park J-S, Wade TL, Sweet S (2001) Atmospheric distribution of polycyclic aromatic hydrocarbons and deposition to Galveston Bay, Texas, USA. Atmos Environ 35(19):3241–3249. https://doi.org/10.1016/S1352-2310(01)00080-2

    Article  Google Scholar 

  • Pathak A, Rastogi S (2008) Modeling the interstellar aromatic infrared bands with co-added spectra of PAHs. Astron Astrophys 485(3):735–742

    Google Scholar 

  • Perfetto EM, Burke L, Oehrlein EM, Epstein RS (2015) Patient-focused drug development: a new direction for collaboration. Med Care 53(1):9–17

    Google Scholar 

  • Phillips DH (1999) Polycyclic aromatic hydrocarbons in the diet. Mutat ResGenet Toxicol Environ Mutagen 443(1–2):139–147

    Google Scholar 

  • Pincemaille J, Schummer C, Heinen E, Moris G (2014) Determination of polycyclic aromatic hydrocarbons in smoked and non-smoked black teas and tea infusions. Food Chem 145:807–813

    Google Scholar 

  • Pluta-Kubica A, Filipczak-Fiutak M, Domagała J, Duda I, Migdał W (2020) Contamination of traditionally smoked cheeses with polycyclic aromatic hydrocarbons and biogenic amines. Food Control 112:107115

    Google Scholar 

  • Quirico E, Raynal PI, Bourot-Denise M (2003) Metamorphic grade of organic matter in six unequilibrated ordinary chondrites. Meteorit Planet Sci 38(5):795–811

    Google Scholar 

  • Racovita RC, Secuianu C, Ciuca MD, Israel-Roming F (2020) Effects of smoking temperature, smoking time, and type of wood sawdust on polycyclic aromatic hydrocarbon accumulation levels in directly smoked pork sausages. J Agric Food Chem 68(35):9530–9536

    Google Scholar 

  • Racovita RC, Secuianu C, Israel-Roming F (2021) Quantification and risk assessment of carcinogenic polycyclic aromatic hydrocarbons in retail smoked fish and smoked cheeses. Food Control 121:107586

    Google Scholar 

  • Rascón AJ, Azzouz A, Ballesteros E (2018) Multiresidue determination of polycyclic aromatic hydrocarbons in edible oils by liquid-liquid extraction–solid-phase extraction–gas chromatography–mass spectrometry. Food Control 94:268–275

    Google Scholar 

  • Ravanbakhsh M, Yousefi H, Lak E, Ansari MJ, Suksatan W, Qasim QA, Asban P, Kianizadeh M, Mohammadi MJ (2023) Effect of polycyclic aromatic hydrocarbons (PAHs) on respiratory diseases and the risk factors related to cancer. Polycycl Aromat Compd 43(9):8371–8387

    Google Scholar 

  • Ravindra K, Sokhi R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42(13):2895–2921

    Google Scholar 

  • Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Rajendran P, Nishigaki I (2015) Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pac J Trop Biomed 5(3):182–189

    Google Scholar 

  • Rojo Camargo MC, Toledo MC, l. F. (2003) Polycyclic aromatic hydrocarbons in Brazilian vegetables and fruits. Food Control 14(1):49–53. https://doi.org/10.1016/S0956-7135(02)00052-X

    Article  Google Scholar 

  • Rotundi A, Baratta GA, Borg J, Brucato JR, Busemann H, Colangeli L et al (2008) Combined micro-Raman, micro-infrared, and field emission scanning electron microscope analyses of comet 81P/Wild 2 particles collected by Stardust. Meteorit Planet Sci 43(1-2):367–397

    Google Scholar 

  • Rybicki BA, Nock NL, Savera AT, Tang D, Rundle A (2006) Polycyclic aromatic hydrocarbon-DNA adduct formation in prostate carcinogenesis. Cancer Lett 239(2):157–167

    Google Scholar 

  • Sacks E, Schleiff M, Were M, Chowdhury AM, Perry HB (2020) Communities, universal health coverage and primary health care. Bull World Health Organ 98(11):773

    Google Scholar 

  • Sajina A, Yan L, Armus L, Choi P, Fadda D, Helou G, Spoon H (2007) Spitzer mid-infrared spectroscopy of infrared luminous galaxies at z~ 2. II. Diagnostics. Astrophys J 664(2):713

    Google Scholar 

  • Sampaio GR, Guizellini GM, da Silva SA, de Almeida AP, Pinaffi-Langley ACC, Rogero MM, de Camargo AC, Torres EA (2021) Polycyclic aromatic hydrocarbons in foods: biological effects, legislation, occurrence, analytical methods, and strategies to reduce their formation. Int J Mol Sci 22(11):6010

    Google Scholar 

  • Schaiberger PH, Kennedy TC, Miller FC, Gal J, Petty TL (1993) Pulmonary hypertension associated with long-term inhalation of “crank” methamphetamine. Chest 104(2):614–616

    Google Scholar 

  • Schmidt L, Prestes OD, Augusti PR, Moreira JCF (2023) Phenolic compounds and contaminants in olive oil and pomace – a narrative review of their biological and toxic effects. Food Biosci 53:102626

    Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG, Czaja AD, Wdowiak TJ (2005) Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized Precambrian fossils. Astrobiology 5(3):333–371

    Google Scholar 

  • Sharma MD, Elanjickal AI, Mankar JS, Krupadam RJ (2020) Assessment of cancer risk of microplastics enriched with polycyclic aromatic hydrocarbons. J Hazard Mater 398:122994

    Google Scholar 

  • Siddique R, Zahoor AF, Ahmad H, Zahid FM, Karrar E (2021) Impact of different cooking methods on polycyclic aromatic hydrocarbons in rabbit meat. Food Sci Nutr 9(6):3219–3227

    Google Scholar 

  • Singh R, Chidambara Murthy K, Jayaprakasha G (2002) Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models. J Agric Food Chem 50(1):81–86

    Google Scholar 

  • Singh L, Varshney JG, Agarwal T (2016) Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chem 199:768–781

    Google Scholar 

  • Smoke T, Smoking I (2004) IARC monographs on the evaluation of carcinogenic risks to humans. IARC Lyon 1:1–1452

    Google Scholar 

  • Sun Y, Wu S, Gong G (2019) Trends of research on polycyclic aromatic hydrocarbons in food: a 20-year perspective from 1997 to 2017. Trends Food Sci Technol 83:86–98. https://doi.org/10.1016/j.tifs.2018.11.015

    Article  Google Scholar 

  • Sun K, Song Y, He F, Jing M, Tang J, Liu R (2021) A review of human and animals exposure to polycyclic aromatic hydrocarbons: health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. Sci Total Environ 773:145403

    Google Scholar 

  • Syberg K, Khan FR, Selck H, Palmqvist A, Banta GT, Daley J, Sano L, Duhaime MB (2015) Microplastics: addressing ecological risk through lessons learned. Environ Toxicol Chem 34(5):945–953

    Google Scholar 

  • Talamini R, Bosetti C, La Vecchia C, Dal Maso L, Levi F, Bidoli E, Negri E, Pasche C, Vaccarella S, Barzan L (2002) Combined effect of tobacco and alcohol on laryngeal cancer risk: a case–control study. Cancer Causes Control 13:957–964

    Google Scholar 

  • Tan Z, Wu C, Han Y, Zhang Y, Mao L, Li D, Liu L, Su G, Yan T (2020) Fire history and human activity revealed through poly cyclic aromatic hydrocarbon (PAH) records at archaeological sites in the middle reaches of the Yellow River drainage basin, China. Palaeogeogr Palaeoclimatol Palaeoecol 560:110015

    Google Scholar 

  • Tareq ARM, Afrin S, Hossen MS, Hashi AS, Quraishi SB, Nahar Q, Begum R, Ullah AKMA (2022) Gas chromatography–mass spectrometric (GC-MS) determination of polycyclic aromatic hydrocarbons in smoked meat and fish ingested by Bangladeshi people and human health risk assessment. Polycycl Aromat Compd 42(4):1570–1580. https://doi.org/10.1080/10406638.2020.1790017

    Article  Google Scholar 

  • Teixeira VH, Casal S, Oliveira MBP (2007) PAHs content in sunflower, soybean and virgin olive oils: evaluation in commercial samples and during refining process. Food Chem 104(1):106–112

    Google Scholar 

  • Tfouni SAV, Padovani GR, Reis RM, Furlani RPZ, Camargo MCR (2014) Incidence of polycyclic aromatic hydrocarbons in vegetable oil blends. Food Control 46:539–543. https://doi.org/10.1016/j.foodcont.2014.06.028

    Article  Google Scholar 

  • Thun MJ, Hannan LM, Adams-Campbell LL, Boffetta P, Buring JE, Feskanich D, Flanders WD, Jee SH, Katanoda K, Kolonel LN (2008) Lung cancer occurrence in never-smokers: an analysis of 13 cohorts and 22 cancer registry studies. PLoS Med 5(9):e185

    Google Scholar 

  • Tielens AG (2008) Interstellar polycyclic aromatic hydrocarbon molecules. Annu Rev Astron Astrophys 46:289–337

    Google Scholar 

  • Tobiszewski M, Namieśnik J (2012) PAH diagnostic ratios for the identification of pollution emission sources. Environ Pollut 162:110–119

    Google Scholar 

  • Trivedi D (2023) Assessing regional sources of atmospheric polycyclic aromatic hydrocarbon pollution and associated human cancer risk. Massachusetts Institute of Technology, Master’s Thesis Technology and Policy

    Google Scholar 

  • Tsutsumi T, Adachi R, Matsuda R, Watanabe T, Teshima R, Akiyama H (2020) Concentrations of polycyclic aromatic hydrocarbons in smoked foods in Japan. J Food Prot 83(4):692–701

    Google Scholar 

  • Wang G, Mielke HW, Quach V, Gonzales C, Zhang Q (2004) Determination of polycyclic aromatic hydrocarbons and trace metals in New Orleans soils and sediments. Soil Sediment Contam 13(3):313–327

    Google Scholar 

  • Wang X-T, Miao Y, Zhang Y, Li Y-C, Wu M-H, Yu G (2013) Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk. Sci Total Environ 447:80–89

    Google Scholar 

  • Wang H, Liu D, Lv Y, Wang W, Wu Q, Huang L, Zhu L (2024) Ecological and health risk assessments of polycyclic aromatic hydrocarbons (PAHs) in soils around a petroleum refining plant in China: a quantitative method based on the improved hybrid model. J Hazard Mater 461:132476. https://doi.org/10.1016/j.jhazmat.2023.132476

    Article  Google Scholar 

  • Wenzl T, Simon R, Anklam E, Kleiner J (2006) Analytical methods for polycyclic aromatic hydrocarbons (PAHs) in food and the environment needed for new food legislation in the European Union. TrAC Trends Anal Chem 25(7):716–725

    Google Scholar 

  • Xu X, Liu X, Zhang J, Liang L, Wen C, Li Y, Shen M, Wu Y, He X, Liu G (2023) Formation, migration, derivation, and generation mechanism of polycyclic aromatic hydrocarbons during frying. Food Chem 425:136485

    Google Scholar 

  • Yadav SRM, Goyal B, Kumar R, Gupta S, Gupta A, Mirza AA, Sharma G, Rao S, Pasricha R, Gupta M (2020) Identification of suitable reference genes in blood samples of carcinoma lung patients using quantitative real-time polymerase chain reaction. J Carcinog 19:11

    Google Scholar 

  • Yao Z, Li J, Wu B, Hao X, Yin Y, Jiang X (2015) Characteristics of PAHs from deep-frying and frying cooking fumes. Environ Sci Pollut Res 22:16110–16120

    Google Scholar 

  • Yazdanpanah H, Kobarfard F, Tsitsimpikou C, Eslamizad S, Alehashem M, Tsatsakis A (2022) Health risk assessment of process-related contaminants in bread. Food Chem Toxicol 170:113482

    Google Scholar 

  • Yebra-Pimentel I, Fernández-González R, Martínez-Carballo E, Simal-Gándara J (2015) A critical review about the health risk assessment of PAHs and their metabolites in foods. Crit Rev Food Sci Nutr 55(10):1383–1405

    Google Scholar 

  • Yoon E, Park K, Lee H, Yang J-H, Lee C (2007) Estimation of excess cancer risk on time-weighted lifetime average daily intake of PAHs from food ingestion. Hum Ecol Risk Assess 13(3):669–680

    Google Scholar 

  • Zachara A, Juszczak L (2016) Food contamination by polycyclic aromatic hydrocarbons—legal requirements and monitoring. Food Sci Technol Qual 3(106):5–20

    Google Scholar 

  • Zelinkova Z, Wenzl T (2015) The occurrence of 16 EPA PAHs in food–a review. Polycycl Aromat Compd 35(2–4):248–284

    Google Scholar 

  • Zeng Y, Chen S, Fan Y, Li Q, Guan Y, Mai B (2021) Effects of carbonaceous materials and particle size on oral and inhalation bioaccessibility of PAHs and OPEs in airborne particles. Environ Sci Pollut Res 28:62133–62141

    Google Scholar 

  • Zhang L, Zhang L, Shi Y, Yang Z, Gong Q, Sun D (2023) PAHs in the monsoonal open ocean: homogeneous spatial pattern and wind-driven significant seasonal variations. J Hazard Mater 454:131462

    Google Scholar 

  • Zhao X, Wu S, Gong G, Li G, Zhuang L (2017) TBHQ and peanut skin inhibit accumulation of PAHs and oxygenated PAHs in peanuts during frying. Food Control 75:99–107

    Google Scholar 

  • Zhao X, Gong G, Wu S (2018) Effect of storage time and temperature on parent and oxygenated polycyclic aromatic hydrocarbons in crude and refined vegetable oils. Food Chem 239:781–788. https://doi.org/10.1016/j.foodchem.2017.07.016

    Article  Google Scholar 

  • Zhu Y, Li X, Huang J, Zhao C, Qi J, Jin Q, Wang X (2018) Correlations between polycyclic aromatic hydrocarbons and polar components in edible oils during deep frying of peanuts. Food Control 87:109–116

    Google Scholar 

  • Zhuang J, Tang J, Aljerf L (2022) Comprehensive review on mechanism analysis and numerical simulation of municipal solid waste incineration process based on mechanical grate. Fuel 320:123826

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefa Celik .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Er, A., Cakir, E., Celik, S., Ozel, A.E., Akyuz, S. (2024). Foods Including Polycyclic Aromatic Hydrocarbons (PAHs) and Spectroscopic Identifications of PAHs. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2024_214

Download citation

  • DOI: https://doi.org/10.1007/16833_2024_214

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics