Skip to main content

Updates on Molecular Pathogenesis of Non-Hodgkin’s Lymphoma

  • Chapter
  • First Online:
Interdisciplinary Cancer Research

Abstract

Recent advances in molecular characterization of different types of cancers improved refining the diagnostic criteria, prediction of prognosis, and identification of correct targets for drug development. Considering the board functional heterogenicity and property to transform in lymphoid malignancies, varied pathogenic mechanisms have been proposed underlying B cell, T cell, or lineage negative lymphomas. These current pieces of evidence show that although intrinsic genetic variations, epigenetic alterations, oncogenic viruses, and microenvironmental interactions are implicated in all subtypes of lymphomas, unique subtypes present accumulation for particular recurrent aberrations targeting specific pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ahmed N, Feldman AL (2020) Targeting epigenetic regulators in the treatment of T-cell lymphoma. Expert Rev Hematol 13:127–139

    Google Scholar 

  • Araujo-Ayala F, Perez-Galan P, Campo E (2021) Vulnerabilities in the tumor and microenvironment in follicular lymphoma. Hematol Oncol 39(Suppl 1):83–87

    Google Scholar 

  • Bakhshi TJ, Georgel PT (2020) Genetic and epigenetic determinants of diffuse large B-cell lymphoma. Blood Cancer J 10:123

    Google Scholar 

  • Bispo JAB, Pinheiro PS, Kobetz EK (2020) Epidemiology and etiology of leukemia and lymphoma. Cold Spring Harb Perspect Med 10:a034819

    Google Scholar 

  • Board PATE (2002) Adult non-Hodgkin lymphoma treatment (PDQ(R)): patient version. PDQ Cancer Information Summaries, Bethesda

    Google Scholar 

  • Brockelmann PJ, de Jong MRW, Jachimowicz RD (2020) Targeting DNA repair, cell cycle, and tumor microenvironment in B cell lymphoma. Cell 9:2287

    Google Scholar 

  • Burger JA, Wiestner A (2018) Targeting B cell receptor signalling in cancer: preclinical and clinical advances. Nat Rev Cancer 18:148–167

    Google Scholar 

  • Carey GB, Donjerkovic D, Mueller CM, Liu S, Hinshaw JA, Tonnetti L, Davidson W, Scott DW (2000) B-cell receptor and Fas-mediated signals for life and death. Immunol Rev 176:105–115

    Google Scholar 

  • Chen BJ, Chuang SS (2020) Lymphoid neoplasms with plasmablastic differentiation: a comprehensive review and diagnostic approaches. Adv Anat Pathol 27:61–74

    Google Scholar 

  • Choi YS (2021) Immuno-oncology for B-cell lymphomas. Blood Res 56:S70–S74

    Google Scholar 

  • Consul N, Menias CO, Lubner MG, Katabathina VS, Chahinian RA, Mansour J, Elsayes KM (2020) A review of viral-related malignancies and the associated imaging findings. AJR Am J Roentgenol 214:W1–W10

    Google Scholar 

  • Csizmar CM, Ansell SM (2021) Engaging the innate and adaptive antitumor immune response in lymphoma. Int J Mol Sci 22:3302

    Google Scholar 

  • Duy C, Beguelin W, Melnick A (2020) Epigenetic mechanisms in leukemias and lymphomas. Cold Spring Harb Perspect Med 10:a034959

    Google Scholar 

  • Fowler N, Davis E (2013) Targeting B-cell receptor signaling: changing the paradigm. Hematology Am Soc Hematol Educ Program 2013:553–560

    Google Scholar 

  • Ganapathi KA, Brown LE, Prakash S, Bhargava P (2021) New developments in non-Hodgkin lymphoid malignancies. Pathology 53:349–366

    Google Scholar 

  • Holdsworth F, Worku D, Bretton AL, Vella C, Walker E (2021) A guide to Hodgkin and non-Hodgkin lymphomas: similarities and differences. Br J Nurs 30:S16–S22

    Google Scholar 

  • Hue SS, Oon ML, Wang S, Tan SY, Ng SB (2020) Epstein-Barr virus-associated T- and NK-cell lymphoproliferative diseases: an update and diagnostic approach. Pathology 52:111–127

    Google Scholar 

  • Ioannou N, Jain K, Ramsay AG (2021) Immunomodulatory drugs for the treatment of B cell malignancies. Int J Mol Sci 22:8572

    Google Scholar 

  • Isshiki Y, Melnick A (2021) Epigenetic mechanisms of therapy resistance in diffuse large B cell lymphoma (DLBCL). Curr Cancer Drug Targets 21:274–282

    Google Scholar 

  • Jacobsen ED, Weinstock DM (2018) Challenges and implications of genomics for T-cell lymphomas. Hematology Am Soc Hematol Educ Program 2018:63–68

    Google Scholar 

  • Ke X, Wang J, Li L, Chen IH, Wang H, Yang XF (2008) Roles of CD4+CD25(high) FOXP3+ Tregs in lymphomas and tumors are complex. Front Biosci 13:3986–4001

    Google Scholar 

  • Kenkre VP, Kahl BS (2012) The future of B-cell lymphoma therapy: the B-cell receptor and its downstream pathways. Curr Hematol Malig Rep 7:216–220

    Google Scholar 

  • Koh Y (2021) Genomics of diffuse large B cell lymphoma. Blood Res 56:S75–S79

    Google Scholar 

  • Komohara Y, Harada M (2019) Potential mechanisms of spontaneous regression in patients with B-cell lymphoma; the significance of co-stimulatory molecules in lymphoma cells. J Clin Exp Hematop 59:207–210

    Google Scholar 

  • Kos IA, Thurner L, Bittenbring JT, Christofyllakis K, Kaddu-Mulindwa D (2021) Advances in lymphoma molecular diagnostics. Diagnostics (Basel) 11:2174

    Google Scholar 

  • Kumar E, Pickard L, Okosun J (2021) Pathogenesis of follicular lymphoma: genetics to the microenvironment to clinical translation. Br J Haematol 194:810–821

    Google Scholar 

  • Lai P, Wang Y (2021) Epigenetics of cutaneous T-cell lymphoma: biomarkers and therapeutic potentials. Cancer Biol Med 18:34–51

    Google Scholar 

  • Liu Y, Zhou X, Wang X (2021) Targeting the tumor microenvironment in B-cell lymphoma: challenges and opportunities. J Hematol Oncol 14:125

    Google Scholar 

  • Lucas PC, McAllister-Lucas LM, Nunez G (2004) NF-kappaB signaling in lymphocytes: a new cast of characters. J Cell Sci 117:31–39

    Google Scholar 

  • Lulla P, Heslop HE (2016) Checkpoint inhibition and cellular immunotherapy in lymphoma. Hematology Am Soc Hematol Educ Program 2016:390–396

    Google Scholar 

  • Menter T, Tzankov A, Dirnhofer S (2021) The tumor microenvironment of lymphomas: insights into the potential role and modes of actions of checkpoint inhibitors. Hematol Oncol 39:3–10

    Google Scholar 

  • Pileri A, Guglielmo A, Grandi V, Violetti SA, Fanoni D, Fava P, Agostinelli C, Berti E, Quaglino P, Pimpinelli N (2021a) The microenvironment’s role in mycosis Fungoides and Sezary syndrome: from progression to therapeutic implications. Cell 10:2780

    Google Scholar 

  • Pileri SA, Tripodo C, Melle F, Motta G, Tabanelli V, Fiori S, Vegliante MC, Mazzara S, Ciavarella S, Derenzini E (2021b) Predictive and prognostic molecular factors in diffuse large B-cell lymphomas. Cell 10:675

    Google Scholar 

  • Popovic LS, Matovina-Brko G, Popovic M, Popovic M, Cvetanovic A, Nikolic I, Kukic B, Petrovic D (2021) Immunotherapy in the treatment of lymphoma. World J Stem Cells 13:503–520

    Google Scholar 

  • Rangoonwala HI, Cascella M (2021) Peripheral T-cell lymphoma. StatPearls, Treasure Island

    Google Scholar 

  • Ribeiro ML, Reyes-Garau D, Armengol M, Fernandez-Serrano M, Roue G (2019) Recent advances in the targeting of epigenetic regulators in B-cell non-Hodgkin lymphoma. Front Genet 10:986

    Google Scholar 

  • Saha A, Robertson ES (2019) Mechanisms of B-cell oncogenesis induced by Epstein-Barr virus. J Virol 93:e00238-19

    Google Scholar 

  • Schwarzbich MA, Witzens-Harig M (2017) Cellular immunotherapy in B-cell malignancy. Oncol Res Treat 40:674–681

    Google Scholar 

  • Shindiapina P, Ahmed EH, Mozhenkova A, Abebe T, Baiocchi RA (2020) Immunology of EBV-related lymphoproliferative disease in HIV-positive individuals. Front Oncol 10:1723

    Google Scholar 

  • Sorge I, Georgi TW, Hirsch FW (2021) Lymphoma in children and adolescents. Radiologe 61:611–618

    Google Scholar 

  • Strati P, Patel S, Nastoupil L, Fanale MA, Bollard CM, Lin AY, Gordon LI (2018) Beyond chemotherapy: checkpoint inhibition and cell-based therapy in non-Hodgkin lymphoma. Am Soc Clin Oncol Educ Book 38:592–603

    Google Scholar 

  • Sukswai N, Lyapichev K, Khoury JD, Medeiros LJ (2020) Diffuse large B-cell lymphoma variants: an update. Pathology 52:53–67

    Google Scholar 

  • Tamma R, Ranieri G, Ingravallo G, Annese T, Oranger A, Gaudio F, Musto P, Specchia G, Ribatti D (2020) Inflammatory cells in diffuse large B cell lymphoma. J Clin Med 9:2418

    Google Scholar 

  • Thida AM, Gohari P (2021) Extranodal NK-cell lymphoma. StatPearls, Treasure Island

    Google Scholar 

  • Waldmann TA, Chen J (2017) Disorders of the JAK/STAT pathway in T cell lymphoma pathogenesis: implications for immunotherapy. Annu Rev Immunol 35:533–550

    Google Scholar 

  • Wang H, Fu BB, Gale RP, Liang Y (2021) NK−/T-cell lymphomas. Leukemia 35:2460–2468

    Google Scholar 

  • Warner K, Weit N, Crispatzu G, Admirand J, Jones D, Herling M (2013) T-cell receptor signaling in peripheral T-cell lymphoma – a review of patterns of alterations in a central growth regulatory pathway. Curr Hematol Malig Rep 8:163–172

    Google Scholar 

  • Wilcox RA (2016) A three-signal model of T-cell lymphoma pathogenesis. Am J Hematol 91:113–122

    Google Scholar 

  • Willard P, McKay J, Yazbeck V (2021) Role of antibody-based therapy in indolent non-Hodgkin’s lymphoma. Leuk Res Rep 16:100275

    Google Scholar 

  • Xie Y, Pittaluga S, Jaffe ES (2015) The histological classification of diffuse large B-cell lymphomas. Semin Hematol 52:57–66

    Google Scholar 

  • Xu W, Berning P, Lenz G (2021) Targeting B-cell receptor and PI3K signaling in diffuse large B-cell lymphoma. Blood 138:1110–1119

    Google Scholar 

  • Yang H, Green MR (2020) Harnessing lymphoma epigenetics to improve therapies. Hematology Am Soc Hematol Educ Program 2020:95–100

    Google Scholar 

  • Young RM, Shaffer AL 3rd, Phelan JD, Staudt LM (2015) B-cell receptor signaling in diffuse large B-cell lymphoma. Semin Hematol 52:77–85

    Google Scholar 

  • Zappasodi R, de Braud F, Di Nicola M (2015) Lymphoma immunotherapy: current status. Front Immunol 6:448

    Google Scholar 

Download references

Acknowledgments

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abolhassani .

Ethics declarations

The authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abolhassani, H. (2023). Updates on Molecular Pathogenesis of Non-Hodgkin’s Lymphoma. In: Interdisciplinary Cancer Research. Springer, Cham. https://doi.org/10.1007/16833_2023_146

Download citation

  • DOI: https://doi.org/10.1007/16833_2023_146

  • Published:

  • Publisher Name: Springer, Cham

Publish with us

Policies and ethics