Skip to main content

Personalized Immuno-Oncology with Immunodeficiency Mouse Models

  • Chapter
  • First Online:
Cancer Research: An Interdisciplinary Approach

Part of the book series: Interdisciplinary Cancer Research ((ICR,volume 1))

Abstract

In the past decades, cancer therapies are evolved from a non-specific approach to a precise and accurate therapy. Precision (or personalized) cancer therapy, in which a patient’s own tumor information is used to help make a diagnosis, a treatment plan, or a prognosis, provides an encouraging solution to overcome the failure of current conventional treatments. Relevant preclinical animal models are critical to translate this concept into clinical application. In this chapter, we overviewed how immunodeficient mouse strains were contributed to the development of personalized immune-oncology therapy, so-called personalized I/O therapy. Patient-derived xenograft (PDX) mice, which are generated by directly engrafting tumor tissues into immunodeficient mice, can largely retain the genetics of the human tumors. PDX models are a versatile platform for the study of tumor biology, and are highly predictive of patients’ responses to many cancer therapies. The human immune-tumor interaction can be further replicated in the PDX-human immune system (HIS) mice after a transplantation of PDX mice with allogeneic or autologous immune cells. This PDX-HIS dual-humanized model represents a valuable avatar of patients in clinical decision-making for I/O therapy. Many novel strategies based on personalized I/O treatment are either under preclinical study or in clinical trials, and represent our hope for fighting the cancer in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdirahman SM, Christie M, Preaudet A, Burstroem MCU, Mouradov D, Lee B, Sieber OM, Putoczki TL (2020) A biobank of colorectal cancer patient-derived xenografts. Cancers (Basel) 12(9)

    Google Scholar 

  • Adams CP, Brantner VV (2006) Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood) 25(2):420–428

    PubMed  Google Scholar 

  • Ahmadbeigi N, Alatab S, Vasei M, Ranjbar A, Aghayan S, Khorsand A, Moradzadeh K, Darvishyan Z, Jamali M, Muhammadnejad S (2021) Characterization of a xenograft model for anti-CD19 CAR T cell studies. Clin Transl Oncol 23(10):2181–2190

    CAS  PubMed  Google Scholar 

  • Albinger N, Hartmann J, Ullrich E (2021) Current status and perspective of CAR-T and CAR-NK cell therapy trials in Germany. Gene Ther 28(9):513–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT, Wu Y, Boot A, Covington KR, Gordenin DA, Bergstrom EN, Islam SMA, Lopez-Bigas N, Klimczak LJ, McPherson JR, Morganella S, Sabarinathan R, Wheeler DA, Mustonen V, PCAWG Mutational Signatures Working Group, Getz G, Rozen SG, Stratton MR, PCAWG Consortium (2020) The repertoire of mutational signatures in human cancer. Nature 578(7793):94–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ameratunga M, Xu W, Lopez J (2018) Personalized cancer immunotherapy: today’s challenge and Tomorrow’s promise. J Immunother Precis Oncol 1(2):56–67

    Google Scholar 

  • Ansell SM, Lin Y (2020) Immunotherapy of lymphomas. J Clin Invest 130(4):1576–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bareham B, Georgakopoulos N, Matas-Cespedes A, Curran M, Saeb-Parsy K (2021) Modeling human tumor-immune environments in vivo for the preclinical assessment of immunotherapies. Cancer Immunol Immunother 70(10):2737–2750

    PubMed  PubMed Central  Google Scholar 

  • Berney T, Molano RD, Pileggi A, Cattan P, Li H, Ricordi C, Inverardi L (2001) Patterns of engraftment in different strains of immunodeficient mice reconstituted with human peripheral blood lymphocytes. Transplantation 72(1):133–140

    CAS  PubMed  Google Scholar 

  • Billerbeck E, Horwitz JA, Labitt RN, Donovan BM, Vega K, Budell WC, Koo GC, Rice CM, Ploss A (2013) Characterization of human antiviral adaptive immune responses during hepatotropic virus infection in HLA-transgenic human immune system mice. J Immunol 191(4):1753–1764

    CAS  PubMed  Google Scholar 

  • Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301(5900):527–530

    CAS  PubMed  Google Scholar 

  • Brehm MA, Racki WJ, Leif J, Burzenski L, Hosur V, Wetmore A, Gott B, Herlihy M, Ignotz R, Dunn R, Shultz LD, Greiner DL (2012) Engraftment of human HSCs in nonirradiated newborn NOD-scid IL2rgamma null mice is enhanced by transgenic expression of membrane-bound human SCF. Blood 119(12):2778–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Shultz LD, Luban J, Greiner DL (2013) Overcoming current limitations in humanized mouse research. J Infect Dis 208(Suppl 2):S125–S130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brehm MA, Kenney LL, Wiles MV, Low BE, Tisch RM, Burzenski L, Mueller C, Greiner DL, Shultz LD (2019) Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression. FASEB J 33(3):3137–3151

    CAS  PubMed  Google Scholar 

  • Calmeiro J, Carrascal MA, Tavares AR, Ferreira DA, Gomes C, Falcao A, Cruz MT, Neves BM (2020) Dendritic cell vaccines for cancer immunotherapy: the role of human conventional type 1 dendritic cells. Pharmaceutics 12(2)

    Google Scholar 

  • Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP (2015) Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 348(6236):803–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cassidy JW, Caldas C, Bruna A (2015) Maintaining tumor heterogeneity in patient-derived tumor xenografts. Cancer Res 75(15):2963–2968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen F, Zou Z, Du J, Su S, Shao J, Meng F, Yang J, Xu Q, Ding N, Yang Y, Liu Q, Wang Q, Sun Z, Zhou S, Du S, Wei J, Liu B (2019) Neoantigen identification strategies enable personalized immunotherapy in refractory solid tumors. J Clin Invest 129(5):2056–2070

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Yu Z, Tan X, Jiang H, Xu Z, Fang Y, Han D, Hong W, Wei W, Tu J (2021) CAR-macrophage: a new immunotherapy candidate against solid tumors. Biomed Pharmacother 139:111605

    CAS  PubMed  Google Scholar 

  • Chulpanova DS, Kitaeva KV, Rutland CS, Rizvanov AA, Solovyeva VV (2020) Mouse tumor models for advanced cancer immunotherapy. Int J Mol Sci 21(11)

    Google Scholar 

  • Cogels MM, Rouas R, Ghanem GE, Martinive P, Awada A, Van Gestel D, Krayem M (2021) Humanized mice as a valuable pre-clinical model for cancer immunotherapy research. Front Oncol 11:784947

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgun KN, Rahmig S, Mende N, Reinke S, Hauber I, Schafer C, Petzold A, Weisbach H, Heidkamp G, Purbojo A, Cesnjevar R, Platz A, Bornhauser M, Schmitz M, Dudziak D, Hauber J, Kirberg J, Waskow C (2014) Kit regulates HSC engraftment across the human-mouse species barrier. Cell Stem Cell 15(2):227–238

    CAS  PubMed  Google Scholar 

  • Curran M, Mairesse M, Matas-Cespedes A, Bareham B, Pellegrini G, Liaunardy A, Powell E, Sargeant R, Cuomo E, Stebbings R, Betts CJ, Saeb-Parsy K (2020) Recent advancements and applications of human immune system mice in preclinical Immuno-oncology. Toxicol Pathol 48(2):302–316

    PubMed  Google Scholar 

  • Dagogo-Jack I, Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15(2):81–94

    CAS  PubMed  Google Scholar 

  • De La Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E (2018) Humanized mice for the study of immuno-oncology. Trends Immunol 39(9):748–763

    PubMed  Google Scholar 

  • Farghaly SA (2017) Combination therapy of cytotoxic t-lymphocyte-associated antigen 4 (ctla-4) and programmed death 1 (pd 1) blocker, check point inhibitors for treatment of patients with advanced and recurrent epithelial ovarian cancer. Eur J Gynaecol Oncol 38(1):7–9

    CAS  PubMed  Google Scholar 

  • Forsberg EMV, Lindberg MF, Jespersen H, Alsen S, Bagge RO, Donia M, Svane IM, Nilsson O, Ny L, Nilsson LM, Nilsson JA (2019) HER2 CAR-T cells eradicate uveal melanoma and T-cell therapy-resistant human melanoma in IL2 transgenic NOD/SCID IL2 receptor knockout mice. Cancer Res 79(5):899–904

    CAS  PubMed  Google Scholar 

  • From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), World Stroke Organization (WSO), Sacks D, Baxter B, Campbell BCV, Carpenter JS, Cognard C, Dippel D, Eesa M, Fischer U, Hausegger K, Hirsch JA, Hussain MS, Jansen O, Jayaraman MV, Khalessi AA, Kluck BW, Lavine S, Meyers PM, Ramee S, Rufenacht DA, Schirmer CM, Vorwerk D (2018) Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int J Stroke 13(6):612–632

    Google Scholar 

  • Fujii E, Kato A, Suzuki M (2020) Patient-derived xenograft (PDX) models: characteristics and points to consider for the process of establishment. J Toxicol Pathol 33(3):153–160

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gang M, Marin ND, Wong P, Neal CC, Marsala L, Foster M, Schappe T, Meng W, Tran J, Schaettler M, Davila M, Gao F, Cashen AF, Bartlett NL, Mehta-Shah N, Kahl BS, Kim MY, Cooper ML, DiPersio JF, Berrien-Elliott MM, Fehniger TA (2020) CAR-modified memory-like NK cells exhibit potent responses to NK-resistant lymphomas. Blood 136(20):2308–2318

    PubMed  PubMed Central  Google Scholar 

  • Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, Patnaik A, Aggarwal C, Gubens M, Horn L, Carcereny E, Ahn MJ, Felip E, Lee JS, Hellmann MD, Hamid O, Goldman JW, Soria JC, Dolled-Filhart M, Rutledge RZ, Zhang J, Lunceford JK, Rangwala R, Lubiniecki GM, Roach C, Emancipator K, Gandhi L, Investigators K (2015) Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 372(21):2018–2028

    PubMed  Google Scholar 

  • Gately S (2019) Human microbiota and personalized cancer treatments: role of commensal microbes in treatment outcomes for cancer patients. Cancer Treat Res 178:253–264

    CAS  PubMed  Google Scholar 

  • Gitto SB, Kim H, Rafail S, Omran DK, Medvedev S, Kinose Y, Rodriguez-Garcia A, Flowers AJ, Xu H, Schwartz LE, Powell DJ Jr, Simpkins F (2020) An autologous humanized patient-derived-xenograft platform to evaluate immunotherapy in ovarian cancer. Gynecol Oncol 156(1):222–232

    CAS  PubMed  Google Scholar 

  • Gong Y, Klein Wolterink RGJ, Wang J, Bos GMJ, Germeraad WTV (2021) Chimeric antigen receptor natural killer (CAR-NK) cell design and engineering for cancer therapy. J Hematol Oncol 14(1):73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SE, Junttila MR, de Sauvage FJ (2015) Translational value of mouse models in oncology drug development. Nat Med 21(5):431–439

    CAS  PubMed  Google Scholar 

  • Greenblatt MB, Vrbanac V, Tivey T, Tsang K, Tager AM, Aliprantis AO (2012) Graft versus host disease in the bone marrow, liver and thymus humanized mouse model. PLoS One 7(9):e44664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guil-Luna S, Sedlik C, Piaggio E (2021) Humanized mouse models to evaluate cancer Immunotherapeutics. Ann Rev Cancer Biol 5(1):119–136

    Google Scholar 

  • Hanazawa A, Ito R, Katano I, Kawai K, Goto M, Suemizu H, Kawakami Y, Ito M, Takahashi T (2018) Generation of human immunosuppressive myeloid cell populations in human Interleukin-6 transgenic NOG mice. Front Immunol 9:152

    PubMed  PubMed Central  Google Scholar 

  • Heppner GH (1984) Tumor heterogeneity. Cancer Res 44(6):2259–2265

    CAS  PubMed  Google Scholar 

  • Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4(9):998–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Invrea F, Rovito R, Torchiaro E, Petti C, Isella C, Medico E (2020) Patient-derived xenografts (PDXs) as model systems for human cancer. Curr Opin Biotechnol 63:151–156

    CAS  PubMed  Google Scholar 

  • Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, Ueyama Y, Koyanagi Y, Sugamura K, Tsuji K, Heike T, Nakahata T (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100(9):3175–3182

    CAS  PubMed  Google Scholar 

  • Ito R, Takahashi T, Katano I, Kawai K, Kamisako T, Ogura T, Ida-Tanaka M, Suemizu H, Nunomura S, Ra C, Mori A, Aiso S, Ito M (2013) Establishment of a human allergy model using human IL-3/GM-CSF-transgenic NOG mice. J Immunol 191(6):2890–2899

    CAS  PubMed  Google Scholar 

  • Jain KK (2021) Personalized Immuno-oncology. Med Princ Pract 30(1):1–16

    PubMed  Google Scholar 

  • Jespersen H, Lindberg MF, Donia M, Soderberg EMV, Andersen R, Keller U, Ny L, Svane IM, Nilsson LM, Nilsson JA (2017) Clinical responses to adoptive T-cell transfer can be modeled in an autologous immune-humanized mouse model. Nat Commun 8(1):707

    PubMed  PubMed Central  Google Scholar 

  • Johnson JI, Decker S, Zaharevitz D, Rubinstein LV, Venditti JM, Schepartz S, Kalyandrug S, Christian M, Arbuck S, Hollingshead M, Sausville EA (2001) Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. Br J Cancer 84(10):1424–1431

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kanaki Z, Voutsina A, Markou A, Pateras IS, Potaris K, Avgeris M, Makrythanasis P, Athanasiadis EI, Vamvakaris I, Patsea E, Vachlas K, Lianidou E, Georgoulias V, Kotsakis A, Klinakis A (2021) Generation of non-small cell lung cancer patient-derived xenografts to study intratumor heterogeneity. Cancers (Basel) 13(10)

    Google Scholar 

  • Katano I, Takahashi T, Ito R, Kamisako T, Mizusawa T, Ka Y, Ogura T, Suemizu H, Kawakami Y, Ito M (2015) Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse. J Immunol 194(7):3513–3525

    CAS  PubMed  Google Scholar 

  • Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D’Angelo SP, Shih KC, Lebbe C, Linette GP, Milella M, Brownell I, Lewis KD, Lorch JH, Chin K, Mahnke L, von Heydebreck A, Cuillerot JM, Nghiem P (2016) Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 17(10):1374–1385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lang J, Ota T, Kelly M, Strauch P, Freed BM, Torres RM, Nemazee D, Pelanda R (2016) Receptor editing and genetic variability in human autoreactive B cells. J Exp Med 213(1):93–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Zheng W, Wang H, Cheng Y, Fang Y, Wu F, Sun G, Sun G, Lv C, Hui B (2021) Application of animal models in cancer research: recent progress and future prospects. Cancer Manag Res 13:2455–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  • Madden K, Kasler MK (2019) Immune checkpoint inhibitors in lung cancer and melanoma. Semin Oncol Nurs 35(5):150932

    PubMed  Google Scholar 

  • Marin-Jimenez JA, Capasso A, Lewis MS, Bagby SM, Hartman SJ, Shulman J, Navarro NM, Yu H, Rivard CJ, Wang X, Barkow JC, Geng D, Kar A, Yingst A, Tufa DM, Dolan JT, Blatchford PJ, Freed BM, Torres RM, Davila E, Slansky JE, Pelanda R, Eckhardt SG, Messersmith WA, Diamond JR, Lieu CH, Verneris MR, Wang JH, Kiseljak-Vassiliades K, Pitts TM, Lang J (2021) Testing cancer immunotherapy in a human immune system mouse model: correlating treatment responses to human chimerism, therapeutic variables and immune cell phenotypes. Front Immunol 12:607282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marusyk A, Polyak K (2010) Tumor heterogeneity: causes and consequences. Biochim Biophys Acta 1805(1):105–117

    CAS  PubMed  Google Scholar 

  • Matsuda M, Ono R, Iyoda T, Endo T, Iwasaki M, Tomizawa-Murasawa M, Saito Y, Kaneko A, Shimizu K, Yamada D, Ogonuki N, Watanabe T, Nakayama M, Koseki Y, Kezuka-Shiotani F, Hasegawa T, Yabe H, Kato S, Ogura A, Shultz LD, Ohara O, Taniguchi M, Koseki H, Fujii SI, Ishikawa F (2019) Human NK cell development in hIL-7 and hIL-15 knockin NOD/SCID/IL2rgKO mice. Life Sci Alliance 2(2)

    Google Scholar 

  • McIntosh BE, Brown ME, Duffin BM, Maufort JP, Vereide DT, Slukvin II, Thomson JA (2015) Nonirradiated NOD,B6.SCID Il2rgamma−/− Kit(W41/W41) (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Rep 4(2):171–180

    CAS  Google Scholar 

  • Naran K, Nundalall T, Chetty S, Barth S (2018) Principles of immunotherapy: implications for treatment strategies in cancer and infectious diseases. Front Microbiol 9:3158

    PubMed  PubMed Central  Google Scholar 

  • Ny L, Rizzo LY, Belgrano V, Karlsson J, Jespersen H, Carstam L, Bagge RO, Nilsson LM, Nilsson JA (2020) Supporting clinical decision making in advanced melanoma by preclinical testing in personalized immune-humanized xenograft mouse models. Ann Oncol 31(2):266–273

    CAS  PubMed  Google Scholar 

  • Okada S, Vaeteewoottacharn K, Kariya R (2019) Application of highly immunocompromised mice for the establishment of patient-derived xenograft (PDX) models. Cell 8(8)

    Google Scholar 

  • Olson B, Li Y, Lin Y, Liu ET, Patnaik A (2018) Mouse models for cancer immunotherapy research. Cancer Discov 8(11):1358–1365

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, Cuthbert A, Burzenski L, Gott B, Lyons B, Foreman O, Rossini AA, Greiner DL (2008) Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol 154(2):270–284

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rius Ruiz I, Vicario R, Morancho B, Morales CB, Arenas EJ, Herter S, Freimoser-Grundschober A, Somandin J, Sam J, Ast O, Barriocanal AM, Luque A, Escorihuela M, Varela I, Cuartas I, Nuciforo P, Fasani R, Peg V, Rubio I, Cortes J, Serra V, Escriva-de-Romani S, Sperinde J, Chenna A, Huang W, Winslow J, Albanell J, Seoane J, Scaltriti M, Baselga J, Tabernero J, Umana P, Bacac M, Saura C, Klein C, Arribas J (2018) p95HER2-T cell bispecific antibody for breast cancer treatment. Sci Transl Med 10(461)

    Google Scholar 

  • Rivera M, Fichtner I, Wulf-Goldenberg A, Sers C, Merk J, Patone G, Alp KM, Kanashova T, Mertins P, Hoffmann J, Stein U, Walther W (2021) Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine. Neoplasia 23(1):21–35

    CAS  PubMed  Google Scholar 

  • Roopenian DC, Akilesh S (2007) FcRn: the neonatal fc receptor comes of age. Nat Rev Immunol 7(9):715–725

    CAS  PubMed  Google Scholar 

  • Rosenberg JE, Hoffman-Censits J, Powles T, van der Heijden MS, Balar AV, Necchi A, Dawson N, O’Donnell PH, Balmanoukian A, Loriot Y, Srinivas S, Retz MM, Grivas P, Joseph RW, Galsky MD, Fleming MT, Petrylak DP, Perez-Gracia JL, Burris HA, Castellano D, Canil C, Bellmunt J, Bajorin D, Nickles D, Bourgon R, Frampton GM, Cui N, Mariathasan S, Abidoye O, Fine GD, Dreicer R (2016) Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 387(10031):1909–1920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosfjord E, Lucas J, Li G, Gerber HP (2014) Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol 91(2):135–143

    CAS  PubMed  Google Scholar 

  • Rotte A (2019) Combination of CTLA-4 and PD-1 blockers for treatment of cancer. J Exp Clin Cancer Res 38(1):255

    PubMed  PubMed Central  Google Scholar 

  • Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sheykhhasan M, Manoochehri H, Dama P (2022) Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther 29:1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shultz LD, Lyons BL, Burzenski LM, Gott B, Chen X, Chaleff S, Kotb M, Gillies SD, King M, Mangada J, Greiner DL, Handgretinger R (2005) Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. J Immunol 174(10):6477–6489

    CAS  PubMed  Google Scholar 

  • Shultz LD, Goodwin N, Ishikawa F, Hosur V, Lyons BL, Greiner DL (2014) Human cancer growth and therapy in immunodeficient mouse models. Cold Spring Harb Protoc 2014(7):694–708

    PubMed  PubMed Central  Google Scholar 

  • Siegler EL, Wang P (2018) Preclinical models in chimeric antigen receptor-engineered T-cell therapy. Hum Gene Ther 29(5):534–546

    CAS  PubMed  Google Scholar 

  • Sippel TR, Radtke S, Olsen TM, Kiem HP, Rongvaux A (2019) Human hematopoietic stem cell maintenance and myeloid cell development in next-generation humanized mouse models. Blood Adv 3(3):268–274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Jin CH, Tan S, Liu W, Yang YG (2020) Human immune system mice with autologous tumor for modeling cancer immunotherapies. Front Immunol 11:591669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanyi JL, Bobisse S, Ophir E, Tuyaerts S, Roberti A, Genolet R, Baumgartner P, Stevenson BJ, Iseli C, Dangaj D, Czerniecki B, Semilietof A, Racle J, Michel A, Xenarios I, Chiang C, Monos DS, Torigian DA, Nisenbaum HL, Michielin O, June CH, Levine BL, Powell DJ Jr, Gfeller D, Mick R, Dafni U, Zoete V, Harari A, Coukos G, Kandalaft LE (2018) Personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med 10(436)

    Google Scholar 

  • Vahatupa M, Pemmari T, Junttila I, Pesu M, Jarvinen TAH (2019) Chemical-induced skin carcinogenesis model using Dimethylbenz[a]Anthracene and 12-O-Tetradecanoyl Phorbol-13-acetate (DMBA-TPA). J Vis Exp 154

    Google Scholar 

  • Verma B, Wesa A (2020) Establishment of humanized mice from peripheral blood mononuclear cells or cord blood CD34+ hematopoietic stem cells for immune-oncology studies evaluating new therapeutic agents. Curr Protoc Pharmacol 89(1):e77

    CAS  PubMed  Google Scholar 

  • Walsh NC, Kenney LL, Jangalwe S, Aryee KE, Greiner DL, Brehm MA, Shultz LD (2017) Humanized mouse models of clinical disease. Annu Rev Pathol 12:187–215

    CAS  PubMed  Google Scholar 

  • Watanabe Y, Takahashi T, Okajima A, Shiokawa M, Ishii N, Katano I, Ito R, Ito M, Minegishi M, Minegishi N, Tsuchiya S, Sugamura K (2009) The analysis of the functions of human B and T cells in humanized NOD/shi-scid/gammac(null) (NOG) mice (hu-HSC NOG mice). Int Immunol 21(7):843–858

    CAS  PubMed  Google Scholar 

  • Weaver JL, Zadrozny LM, Gabrielson K, Semple KM, Shea KI, Howard KE (2019) BLT-immune humanized mice as a model for Nivolumab-induced immune-mediated adverse events: comparison of the NOG and NOG-EXL strains. Toxicol Sci 169(1):194–208

    CAS  PubMed  Google Scholar 

  • Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, Segal NH, Ariyan CE, Gordon RA, Reed K, Burke MM, Caldwell A, Kronenberg SA, Agunwamba BU, Zhang X, Lowy I, Inzunza HD, Feely W, Horak CE, Hong Q, Korman AJ, Wigginton JM, Gupta A, Sznol M (2013) Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med 369(2):122–133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wunderlich M, Chou FS, Link KA, Mizukawa B, Perry RL, Carroll M, Mulloy JC (2010) AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia 24(10):1785–1788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yaguchi T, Kobayashi A, Katano I, Ka Y, Ito M, Kawakami Y (2013) MHC class I/II deficient NOG mice are useful for analysis of human T/B cell responses for human tumor immunology research. J Immunother Cancer 1(Suppl 1):P39

    PubMed Central  Google Scholar 

  • Yin L, Wang XJ, Chen DX, Liu XN, Wang XJ (2020) Humanized mouse model: a review on preclinical applications for cancer immunotherapy. Am J Cancer Res 10(12):4568–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yong KSM, Her Z, Chen Q (2018) Humanized mice as unique tools for human-specific studies. Arch Immunol Ther Exp 66(4):245–266

    Google Scholar 

  • Yoshida GJ (2020) Applications of patient-derived tumor xenograft models and tumor organoids. J Hematol Oncol 13(1):4

    PubMed  PubMed Central  Google Scholar 

  • Zhang J, Spath SS, Marjani SL, Zhang W, Pan X (2018) Characterization of cancer genomic heterogeneity by next-generation sequencing advances precision medicine in cancer treatment. Precis Clin Med 1(1):29–48

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Liu M, Chan XY, Tan SY, Subramaniam S, Fan Y, Loh E, Chang KTE, Tan TC, Chen Q (2017) Uncovering the mystery of opposite circadian rhythms between mouse and human leukocytes in humanized mice. Blood 130(18):1995–2005

    CAS  PubMed  Google Scholar 

Download references

Disclosure of Interest

None to declare.

Ethical Approval and Informed Consent

Non-applicable.

Funding

The study was supported by Ministry of Science and Technology, Taiwan MOST-110-2314-B-006-086-MY3, MOST-110-2314-B-048-MY2, and the Center of Applied Nanomedicine, National Cheng Kung University from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan to T.W.W.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tak-Wah Wong or Chun-Keung Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, JL., Ma, WH., Wong, TW., Yu, CK. (2023). Personalized Immuno-Oncology with Immunodeficiency Mouse Models. In: Rezaei, N. (eds) Cancer Research: An Interdisciplinary Approach. Interdisciplinary Cancer Research, vol 1. Springer, Cham. https://doi.org/10.1007/16833_2023_133

Download citation

Publish with us

Policies and ethics