Skip to main content

Epi-Drugs Targeting RNA Dynamics in Cancer

  • Chapter
  • First Online:
Cancer Research: An Interdisciplinary Approach

Abstract

From the early discovery of ribonucleic acid in 1868, the RNA world has seen constant evolution. To date, more than ten types of RNA species are recognized and have been shown to regulate a plethora of physiological processes, including transcription and splicing. In addition, a crucial role for RNA modifications (epitranscriptomics) in RNA dynamics has also started to be unraveled. The deposition of N6-methyladenosine (m6A) mark has demonstrated to dramatically influence the RNA transcripts’ stability as well as their functioning and processing. Notably, altered RNA levels and the aberrant distribution of m6A have been reported in cancer, and convincing evidence supports their role in oncogenesis. Thus, the idea of targeting the RNA dynamics to rescue the correct RNA metabolism led to the recent development of several epigenetic drugs (epidrugs). Currently, only some of these epigenetic drugs have shown great efficiency and reached clinical trials. However, efforts to improve their specificity and reduce side effects are ongoing. In this context, new hopes are coming from the epitranscriptomic landscape and the expanding universe of epigenetic factors. RNA-modifying enzymes can be novel molecular targets, broadening the horizons for drug discovery. In this chapter, we will discuss the role of different RNA classes and m6A modification in biological processes that affect transcription as well as their involvement in cancer and the applicability of epidrugs for future therapeutic interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TUT4:

3′ terminal uridylyl transferase

5caC:

5-Carboxylcytosine

5fC:

5-Formylcytosine

5hmC:

5-Hydroxymethylcytosine

m7G:

7-Methylguanosine

AML:

Acute myeloid leukemia

ADAR:

Adenosine deaminase acting on RNA

ALKBH5:

AlkB Homolog 5, RNA Demethylase

APA:

Alternative polyadenylation sites

AS:

Alternative splicing

AR:

Androgen receptor

AON:

Antisense mutation-specific oligonucleotide

asRNAs:

Antisense RNAs

U2AF:

Auxiliary Factor of U2

BBP:

Branchpoint Binding Protein

BIN1:

Bridging Integrator 1

CTCF:

CCCTC-binding factor

CLCN1:

Chloride Voltage-Gated Channel 1

circRNAs:

Circular RNAs

CRC:

Colon rectal cancer

CPSF:

Cleavage and poly (A) adenylation specificity factor

CstF:

Cleavage stimulation factor

CTD :

C-terminal domain

USP7:

Deubiquitinated by the ubiquitin-specific peptidase 7

DGCR5:

DiGeorge syndrome critical region gene 5

DNMTs:

DNA methyltransferases

HAKAI:

E3 ubiquitin-protein ligase

EZH2:

Enhancer of zeste homolog 2

eRNAs:

Enhancer RNA

epidrugs:

Epigenetic drugs

EMT :

Epithelial-mesenchymal transition

ESCC:

Esophageal squamous cell carcinoma

EX:

Exon skipping

FTO:

Fat Mass and Obesity-related transcript

FGFR2 :

Fibroblast Growth Factor Receptor 2

FDA:

Food and Drug Administration

GMP:

Guanosine monophosphate

HDACi:

HDAC inhibitors

HCV:

Hepatitis C virus

HP1:

Heterochromatin protein 1

hnRNPG :

Heterogeneous nuclear ribonucleoprotein G

HDACi:

Histone deacetylase

IGF2BPs:

Insulin-like growth factor 2 mRNA-binding proteins

IR:

Intron retention

IDHs:

Isocitrate dehydrogenases

KLK3:

Kallikrein Related Peptidase 3

lncRNAs:

Long ncRNAs

MA:

Meclofenamic acid

mRNA :

Messenger RNA

5mC:

Methylation in position 5 of cytosine

METTL:

Methyltransferase

METTL3i:

METTL3 inhibitors

miRNA:

MicroRNA

MLL:

Mixed-lineage leukemia

MRG15:

MORF-related gene on chromosome 15

MUC1:

Mucin 1

ME:

Mutually exclusive

MDS:

Myelodysplastic syndrome

Mcl-1:

Myeloid cell leukemia-1

DM:

Myotonic dystrophy

m6A:

N6-methyladenosine

ncRNA :

Noncoding RNAs

PAP:

poly-A polymerase

PolyA:

polyadenylation

PR C2:

Polycomb Repressive complex 2

PTB/hnRNPI:

Polypyrimidine tract binding protein

PIC :

Pre-initiation complex

ψ:

Pseudouridine

PKM:

Pyruvate kinase

R-2HG:

R-2-hydroxyglutarate

snRNPs:

Ribonucleoproteins

rRNA :

Ribosomal RNA

RBM15/15B:

RNA Binding Motif Protein 15

piRNA:

RNA interacting with PIWI

epitranscriptomics:

RNA modifications

Pol :

RNA polymerases

SAM:

S-adenosylmethionine

SRSF3:

Ser-/Arg-rich splicing factor 3

SRSF10:

Serine and Arginine Rich Splicing Factor 10

SRSF6:

Serine-/arginine-rich splicing factor 6

siRNA:

Small interfering RNA

snRNA:

Small nuclear RNA

snoRNA:

Small nucleolar RNA

T-ALL:

T cell acute lymphoblastic leukemia

TBP :

TATA-binding protein

TET:

Ten-Eleven Translocation

TFs :

Transcription factors

TSS :

Transcription start site

tRNA:

Transfer RNA

TNP2:

Transition nuclear protein 2

VIRMA:

Vir Like m6A Methyltransferase Associated

YTHs:

YTH-family of m6A reader proteins

ZC3H13:

Zinc Finger CCCH-Type Containing 13

ZEB:

Zinc finger E-box-binding homeobox

References

  • Ahuja N, Sharma AR, Baylin SB (2016) Epigenetic therapeutics: a new weapon in the war against cancer. Annu Rev Med 67:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aimiuwu J, Wang H, Chen P, Xie Z, Wang J, Liu S, Klisovic R, Mims A, Blum W, Marcucci G, Chan KK (2012) RNA-dependent inhibition of ribonucleotide reductase is a major pathway for 5-azacytidine activity in acute myeloid leukemia. Blood 119:5229–5238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    CAS  PubMed  Google Scholar 

  • Arimbasseri AG, Maraia RJ (2016) RNA polymerase III advances: structural and tRNA functional views. Trends Biochem Sci 41:546–559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ayoubi TA, Van De Ven WJ (1996) Regulation of gene expression by alternative promoters. FASEB J 10:453–460

    CAS  PubMed  Google Scholar 

  • Barbieri I, Kouzarides T (2020) Role of RNA modifications in cancer. Nat Rev Cancer 20:303–322

    CAS  PubMed  Google Scholar 

  • Bedi RK, Huang D, Eberle SA, Wiedmer L, Śledź P, Caflisch A (2020) Small-molecule inhibitors of METTL3, the major human epitranscriptomic writer. ChemMedChem 15:744–748

    CAS  PubMed  Google Scholar 

  • Berdasco M, Esteller M (2022) Towards a druggable epitranscriptome: compounds that target RNA modifications in cancer. Br J Pharmacol 179:2868–2889

    CAS  PubMed  Google Scholar 

  • Blackwell TK, Walker AK (2006) Transcription mechanisms. WormBook:1–16

    Google Scholar 

  • Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crécy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM (2018) MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res 46:D303–d307

    CAS  PubMed  Google Scholar 

  • Bojang P Jr, Ramos KS (2014) The promise and failures of epigenetic therapies for cancer treatment. Cancer Treat Rev 40:153–169

    CAS  PubMed  Google Scholar 

  • Brosius J, Raabe CA (2016) What is an RNA? A top layer for RNA classification. RNA Biol 13:140–144

    PubMed  PubMed Central  Google Scholar 

  • Caldas C, So CW, MacGregor A, Ford AM, McDonald B, Chan LC, Wiedemann LM (1998) Exon scrambling of MLL transcripts occur commonly and mimic partial genomic duplication of the gene. Gene 208:167–176

    CAS  PubMed  Google Scholar 

  • Cao J, Mu Q, Huang H (2018) The roles of insulin-like growth factor 2 mRNA-binding protein 2 in cancer and cancer stem cells. Stem Cells Int 2018:4217259

    PubMed  PubMed Central  Google Scholar 

  • Catuogno S, Esposito CL, Ungaro P, de Franciscis V (2018) Nucleic acid aptamers targeting epigenetic regulators: an innovative therapeutic option. Pharmaceuticals (Basel) 11

    Google Scholar 

  • Chen LL, Yang L (2015) Regulation of circRNA biogenesis. RNA Biol 12:381–388

    PubMed  PubMed Central  Google Scholar 

  • Chen B, Hong Y, Gui R, Zheng H, Tian S, Zhai X, Xie X, Chen Q, Qian Q, Ren X, Fan L, Jiang C (2022) N6-methyladenosine modification of circ_0003215 suppresses the pentose phosphate pathway and malignancy of colorectal cancer through the miR-663b/DLG4/G6PD axis. Cell Death Dis 13:804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495

    CAS  PubMed  Google Scholar 

  • Colgan DF, Manley JL (1997) Mechanism and regulation of mRNA polyadenylation. Genes Dev 11:2755–2766

    CAS  PubMed  Google Scholar 

  • Conte M, Dell’Aversana C, Sgueglia G, Carissimo A, Altucci L (2019) HDAC2-dependent miRNA signature in acute myeloid leukemia. FEBS Lett 593:2574–2584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cottrell KA, Torres LS, Dizon MG, Weber JD (2021) 8-azaadenosine and 8-chloroadenosine are not selective inhibitors of ADAR. Cancer Res Commun 1:56–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Q, Shi H, Ye P, Li L, Qu Q, Sun G, Sun G, Lu Z, Huang Y, Yang CG, Riggs AD, He C, Shi Y (2017) m(6)A RNA methylation regulates the self-renewal and tumorigenesis of glioblastoma stem cells. Cell Rep 18:2622–2634

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Zhang C, Ma S, Li Z, Wang W, Li Y, Ma Y, Fang J, Wang Y, Cao W, Guan F (2021) RNA m6A demethylase FTO-mediated epigenetic up-regulation of LINC00022 promotes tumorigenesis in esophageal squamous cell carcinoma. J Exp Clin Cancer Res 40:294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai F, Zhang Y, Zhu X, Shan N, Chen Y (2012) Anticancer role of MUC1 aptamer-miR-29b chimera in epithelial ovarian carcinoma cells through regulation of PTEN methylation. Target Oncol 7:217–225

    PubMed  Google Scholar 

  • Dai W, Liu S, Zhang J, Pei M, Xiao Y, Li J, Hong L, Lin J, Wang J, Wu X, Liu G, Chen Y, Wang Y, Lin Z, Yang Q, Zhi F, Li G, Tang W, Li A, Xiang L, Wang J (2021) Vorinostat triggers miR-769-5p/3p-mediated suppression of proliferation and induces apoptosis via the STAT3-IGF1R-HDAC3 complex in human gastric cancer. Cancer Lett 521:196–209

    CAS  PubMed  Google Scholar 

  • Dana H, Chalbatani GM, Mahmoodzadeh H, Karimloo R, Rezaiean O, Moradzadeh A, Mehmandoost N, Moazzen F, Mazraeh A, Marmari V, Ebrahimi M, Rashno MM, Abadi SJ, Gharagouzlo E (2017) Molecular mechanisms and biological functions of siRNA. Int J Biomed Sci 13:48–57

    PubMed  PubMed Central  Google Scholar 

  • Darnell FE (1976) mRNA structure and function. Prog Nucleic Acid Res Mol Biol 19:493–511

    CAS  PubMed  Google Scholar 

  • David CJ, Chen M, Assanah M, Canoll P, Manley JL (2010) HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368

    CAS  PubMed  Google Scholar 

  • Davuluri RV, Suzuki Y, Sugano S, Plass C, Huang TH (2008) The functional consequences of alternative promoter use in mammalian genomes. Trends Genet 24:167–177

    CAS  PubMed  Google Scholar 

  • De Conti L, Baralle M, Buratti E (2013) Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip Rev RNA 4:49–60

    PubMed  Google Scholar 

  • Dell’Aversana C, Giorgio C, D’Amato L, Lania G, Matarese F, Saeed S, Di Costanzo A, Belsito Petrizzi V, Ingenito C, Martens JHA, Pallavicini I, Minucci S, Carissimo A, Stunnenberg HG, Altucci L (2017) miR-194-5p/BCLAF1 deregulation in AML tumorigenesis. Leukemia 31:2315–2325

    PubMed  PubMed Central  Google Scholar 

  • Deng LJ, Deng WQ, Fan SR, Chen MF, Qi M, Lyu WY, Qi Q, Tiwari AK, Chen JX, Zhang DM, Chen ZS (2022) m6A modification: recent advances, anticancer targeted drug discovery and beyond. Mol Cancer 21:52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diesch J, Zwick A, Garz AK, Palau A, Buschbeck M, Götze KS (2016) A clinical-molecular update on azanucleoside-based therapy for the treatment of hematologic cancers. Clin Epigenetics 8:71

    PubMed  PubMed Central  Google Scholar 

  • Dillon N (2004) Heterochromatin structure and function. Biol Cell 96:631–637

    CAS  PubMed  Google Scholar 

  • Dolbois A, Bedi RK, Bochenkova E, Müller A, Moroz-Omori EV, Huang D, Caflisch A (2021) 1,4,9-Triazaspiro[5.5]undecan-2-one Derivatives as Potent and Selective METTL3 Inhibitors. J Med Chem 64:12738–12760

    CAS  PubMed  Google Scholar 

  • Douglas AG, Wood MJ (2011) RNA splicing: disease and therapy. Brief Funct Genomics 10:151–164

    CAS  PubMed  Google Scholar 

  • Du Y, Yuan Y, Xu L, Zhao F, Wang W, Xu Y, Tian X (2022) Discovery of METTL3 small molecule inhibitors by virtual screening of natural products. Front Pharmacol 13:878135

    PubMed  PubMed Central  Google Scholar 

  • Duan Y, Jia Y, Wang J, Liu T, Cheng Z, Sang M, Lv W, Qin J, Liu L (2021) Long noncoding RNA DGCR5 involves in tumorigenesis of esophageal squamous cell carcinoma via SRSF1-mediated alternative splicing of Mcl-1. Cell Death Dis 12:587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dupuis-Sandoval F, Poirier M, Scott MS (2015) The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip Rev RNA 6:381–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes JCR, Acuña SM, Aoki JI, Floeter-Winter LM, Muxel SM (2019) Long non-coding RNAs in the regulation of gene expression: physiology and disease. Noncoding RNA 5

    Google Scholar 

  • Ferreira HJ, Esteller M (2018) Non-coding RNAs, epigenetics, and cancer: tying it all together. Cancer Metastasis Rev 37:55–73

    CAS  PubMed  Google Scholar 

  • Forterre A, Komuro H, Aminova S, Harada M (2020) A comprehensive review of cancer MICRORNA therapeutic delivery strategies. Cancers (Basel) 12

    Google Scholar 

  • Frías-Lasserre D, Villagra CA (2017) The importance of ncRNAs as epigenetic mechanisms in phenotypic variation and organic evolution. Front Microbiol 8:2483

    PubMed  PubMed Central  Google Scholar 

  • Ghorbaninejad M, Khademi-Shirvan M, Hosseini S, Baghaban Eslaminejad M (2020) Epidrugs: novel epigenetic regulators that open a new window for targeting osteoblast differentiation. Stem Cell Res Ther 11:456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giegé R, Jühling F, Pütz J, Stadler P, Sauter C, Florentz C (2012) Structure of transfer RNAs: similarity and variability. Wiley Interdiscip Rev RNA 3:37–61

    PubMed  Google Scholar 

  • Goodall GJ, Wickramasinghe VO (2021) RNA in cancer. Nat Rev Cancer 21:22–36

    CAS  PubMed  Google Scholar 

  • Grabski DF, Broseus L, Kumari B, Rekosh D, Hammarskjold ML, Ritchie W (2021) Intron retention and its impact on gene expression and protein diversity: a review and a practical guide. Wiley Interdiscip Rev RNA 12:e1631

    CAS  PubMed  Google Scholar 

  • Grelet S, Link LA, Howley B, Obellianne C, Palanisamy V, Gangaraju VK, Diehl JA, Howe PH (2017) A regulated PNUTS mRNA to lncRNA splice switch mediates EMT and tumour progression. Nat Cell Biol 19:1105–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gulati P, Avezov E, Ma M, Antrobus R, Lehner P, O’Rahilly S, Yeo GS (2014) Fat mass and obesity-related (FTO) shuttles between the nucleus and cytoplasm. Biosci Rep 34

    Google Scholar 

  • Haberle V, Stark A (2018) Eukaryotic core promoters and the functional basis of transcription initiation. Nat Rev Mol Cell Biol 19:621–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hogg SJ, Beavis PA, Dawson MA, Johnstone RW (2020) Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 19:776–800

    CAS  PubMed  Google Scholar 

  • Hotchkiss RD (1948) The quantitative separation of purines, pyrimidines, and nucleosides by paper chromatography. J Biol Chem 175:315–332

    CAS  PubMed  Google Scholar 

  • Hsieh CL, Fei T, Chen Y, Li T, Gao Y, Wang X, Sun T, Sweeney CJ, Lee GS, Chen S, Balk SP, Liu XS, Brown M, Kantoff PW (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA 111:7319–7324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26:2119–2137

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu C, Liu X, Zeng Y, Liu J, Wu F (2021) DNA methyltransferase inhibitors combination therapy for the treatment of solid tumor: mechanism and clinical application. Clin Epigenetics 13:166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Humphreys KJ, Cobiac L, Le Leu RK, Van der Hoek MB, Michael MZ (2013) Histone deacetylase inhibition in colorectal cancer cells reveals competing roles for members of the oncogenic miR-17-92 cluster. Mol Carcinog 52:459–474

    CAS  PubMed  Google Scholar 

  • Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y (2011) Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333:1300–1303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov M, Barragan I, Ingelman-Sundberg M (2014) Epigenetic mechanisms of importance for drug treatment. Trends Pharmacol Sci 35:384–396

    CAS  PubMed  Google Scholar 

  • Iwamori N, Tominaga K, Sato T, Riehle K, Iwamori T, Ohkawa Y, Coarfa C, Ono E, Matzuk MM (2016) MRG15 is required for pre-mRNA splicing and spermatogenesis. Proc Natl Acad Sci USA 113:E5408–E5415

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karijolich J, Yu YT (2010) Spliceosomal snRNA modifications and their function. RNA Biol 7:192–204

    CAS  PubMed  Google Scholar 

  • Kim S, Kim H, Fong N, Erickson B, Bentley DL (2011) Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci USA 108:13564–13569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp K, Gasiorowski JZ, Chen D, Gilmore R, Norton JT, Wang C, Leary DJ, Chan EK, Dean DA, Huang S (2007) Pol I transcription and pre-rRNA processing are coordinated in a transcription-dependent manner in mammalian cells. Mol Biol Cell 18:394–403

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kretschmer J, Rao H, Hackert P, Sloan KE, Höbartner C, Bohnsack MT (2018) The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. Rna 24:1339–1350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EM, Shin S, Cha HJ, Yoon Y, Bae S, Jung JH, Lee SM, Lee SJ, Park IC, Jin YW, An S (2009) Suberoylanilide hydroxamic acid (SAHA) changes microRNA expression profiles in A549 human non-small cell lung cancer cells. Int J Mol Med 24:45–50

    CAS  PubMed  Google Scholar 

  • Lee Y, Choe J, Park OH, Kim YK (2020a) Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet 36:177–188

    CAS  PubMed  Google Scholar 

  • Lee JH, Xiong F, Li W (2020b) Enhancer RNAs in cancer: regulation, mechanisms and therapeutic potential. RNA Biol 17:1550–1559

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Wang R, Xiong F, Krakowiak J, Liao Z, Nguyen PT, Moroz-Omori EV, Shao J, Zhu X, Bolt MJ, Wu H, Singh PK, Bi M, Shi CJ, Jamal N, Li G, Mistry R, Jung SY, Tsai KL, Ferreon JC, Stossi F, Caflisch A, Liu Z, Mancini MA, Li W (2021) Enhancer RNA m6A methylation facilitates transcriptional condensate formation and gene activation. Mol Cell 81:3368–3385.e3369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Choi N, Kim S, Jin MS, Shen H, Kim YC (2022) Eltrombopag as an allosteric inhibitor of the METTL3-14 complex affecting the m(6)A methylation of RNA in acute myeloid leukemia cells. Pharmaceuticals (Basel) 15

    Google Scholar 

  • Lepore I, Dell’Aversana C, Pilyugin M, Conte M, Nebbioso A, De Bellis F, Tambaro FP, Izzo T, Garcia-Manero G, Ferrara F, Irminger-Finger I, Altucci L (2013) HDAC inhibitors repress BARD1 isoform expression in acute myeloid leukemia cells via activation of miR-19a and/or b. PLoS One 8:e83018

    PubMed  PubMed Central  Google Scholar 

  • Lin S, Gregory RI (2015) Identification of small molecule inhibitors of Zcchc11 TUTase activity. RNA Biol 12:792–800

    PubMed  PubMed Central  Google Scholar 

  • Lu TX, Rothenberg ME (2018) MicroRNA. J Allergy Clin Immunol 141:1202–1207

    CAS  PubMed  Google Scholar 

  • Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T (2010) Regulation of alternative splicing by histone modifications. Science 327:996–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mao W, Wang K, Xu B, Zhang H, Sun S, Hu Q, Zhang L, Liu C, Chen S, Wu J, Chen M, Li W, Peng B (2021) Correction to: ciRS-7 is a prognostic biomarker and potential gene therapy target for renal cell carcinoma. Mol Cancer 20:155

    PubMed  PubMed Central  Google Scholar 

  • Marina RJ, Oberdoerffer S (2016) Epigenomics meets splicing through the TETs and CTCF. Cell Cycle 15:1397–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsuo M, Masumura T, Nishio H, Nakajima T, Kitoh Y, Takumi T, Koga J, Nakamura H (1991) Exon skipping during splicing of dystrophin mRNA precursor due to an intraexon deletion in the dystrophin gene of Duchenne muscular dystrophy kobe. J Clin Invest 87:2127–2131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mikhaylichenko O, Bondarenko V, Harnett D, Schor IE, Males M, Viales RR, Furlong EEM (2018) The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription. Genes Dev 32:42–57

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miranda Furtado CL, Dos Santos Luciano MC, Silva Santos RD, Furtado GP, Moraes MO, Pessoa C (2019) Epidrugs: targeting epigenetic marks in cancer treatment. Epigenetics 14:1164–1176

    PubMed  PubMed Central  Google Scholar 

  • Mohammad NS, Nazli R, Zafar H, Fatima S (2022) Effects of lipid based multiple micronutrients supplement on the birth outcome of underweight pre-eclamptic women: a randomized clinical trial. Pak J Med Sci 38:219–226

    PubMed  PubMed Central  Google Scholar 

  • Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA (2020) Epidrug repurposing: discovering new faces of old acquaintances in cancer therapy. Front Oncol 10:605386

    PubMed  PubMed Central  Google Scholar 

  • Moroz-Omori EV, Huang D, Kumar Bedi R, Cheriyamkunnel SJ, Bochenkova E, Dolbois A, Rzeczkowski MD, Li Y, Wiedmer L, Caflisch A (2021) METTL3 inhibitors for epitranscriptomic modulation of cellular processes. ChemMedChem 16:3035–3043

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakao S, Mabuchi M, Shimizu T, Itoh Y, Takeuchi Y, Ueda M, Mizuno H, Shigi N, Ohshio I, Jinguji K, Ueda Y, Yamamoto M, Furukawa T, Aoki S, Tsujikawa K, Tanaka A (2014) Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorg Med Chem Lett 24:1071–1074

    CAS  PubMed  Google Scholar 

  • Nepali K, Liou JP (2021) Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends. J Biomed Sci 28:27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newell-Price J, Clark AJ, King P (2000) DNA methylation and silencing of gene expression. Trends Endocrinol Metab 11:142–148

    CAS  PubMed  Google Scholar 

  • Noller HF, Green R, Heilek G, Hoffarth V, Hüttenhofer A, Joseph S, Lee I, Lieberman K, Mankin A, Merryman C et al (1995) Structure and function of ribosomal RNA. Biochem Cell Biol 73:997–1009

    CAS  PubMed  Google Scholar 

  • Peng Y, Croce CM (2016) The role of MicroRNAs in human cancer. Signal Transduct Target Ther 1:15004

    PubMed  PubMed Central  Google Scholar 

  • Pohl M, Bortfeldt RH, Grützmann K, Schuster S (2013) Alternative splicing of mutually exclusive exons–a review. Biosystems 114:31–38

    CAS  PubMed  Google Scholar 

  • Qian Y, Shi L, Luo Z (2020) Long non-coding RNAS in cancer: implications for diagnosis, prognosis, and therapy. Front Med (Lausanne) 7:612393

    PubMed  Google Scholar 

  • Rahhal R, Seto E (2019) Emerging roles of histone modifications and HDACs in RNA splicing. Nucleic Acids Res 47:4911–4926

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raina M, Ibba M (2014) tRNAs as regulators of biological processes. Front Genet 5:171

    PubMed  PubMed Central  Google Scholar 

  • Ramanathan A, Robb GB, Chan SH (2016) mRNA capping: biological functions and applications. Nucleic Acids Res 44:7511–7526

    PubMed  PubMed Central  Google Scholar 

  • Reda El Sayed S, Cristante J, Guyon L, Denis J, Chabre O, Cherradi N (2021) MicroRNA therapeutics in cancer: current advances and challenges. Cancers (Basel) 13

    Google Scholar 

  • Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, He E, Shen B, He C (2017) YTHDC1 mediates nuclear export of N(6)-methyladenosine methylated mRNAs. Elife 6

    Google Scholar 

  • Saint-André V, Batsché E, Rachez C, Muchardt C (2011) Histone H3 lysine 9 trimethylation and HP1γ favor inclusion of alternative exons. Nat Struct Mol Biol 18:337–344

    PubMed  Google Scholar 

  • Sang L, Wu X, Yan T, Naren D, Liu X, Zheng X, Zhang N, Wang H, Li Y, Gong Y (2022) The m(6)A RNA methyltransferase METTL3/METTL14 promotes leukemogenesis through the mdm2/p53 pathway in acute myeloid leukemia. J Cancer 13:1019–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato K, Ito R, Agarwal K, Hosokawa K (1988) Mechanism of transcription termination in eukaryotic cell. Nucleic Acids Symp Ser:185–188

    Google Scholar 

  • Scott LJ (2020) Givosiran: first approval. Drugs 80:335–339

    PubMed  Google Scholar 

  • Seshasayee AS, Sivaraman K, Luscombe NM (2011) An overview of prokaryotic transcription factors : a summary of function and occurrence in bacterial genomes. Subcell Biochem 52:7–23

    CAS  PubMed  Google Scholar 

  • Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C (2017) YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res 27:315–328

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shin S, Lee EM, Cha HJ, Bae S, Jung JH, Lee SM, Yoon Y, Lee H, Kim S, Kim H, Lee SJ, Park IC, Jin YW, An S (2009) MicroRNAs that respond to histone deacetylase inhibitor SAHA and p53 in HCT116 human colon carcinoma cells. Int J Oncol 35:1343–1352

    CAS  PubMed  Google Scholar 

  • Shindo Y, Nozaki T, Saito R, Tomita M (2013) Computational analysis of associations between alternative splicing and histone modifications. FEBS Lett 587:516–521

    CAS  PubMed  Google Scholar 

  • Smith MM (1991) Histone structure and function. Curr Opin Cell Biol 3:429–437

    CAS  PubMed  Google Scholar 

  • Song CX, Szulwach KE, Fu Y, Dai Q, Yi C, Li X, Li Y, Chen CH, Zhang W, Jian X, Wang J, Zhang L, Looney TJ, Zhang B, Godley LA, Hicks LM, Lahn BT, Jin P, He C (2011) Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29:68–72

    CAS  PubMed  Google Scholar 

  • Spencer CA, Groudine M (1990) Transcription elongation and eukaryotic gene regulation. Oncogene 5:777–785

    CAS  PubMed  Google Scholar 

  • Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    CAS  PubMed  Google Scholar 

  • Su R, Dong L, Li C, Nachtergaele S, Wunderlich M, Qing Y, Deng X, Wang Y, Weng X, Hu C, Yu M, Skibbe J, Dai Q, Zou D, Wu T, Yu K, Weng H, Huang H, Ferchen K, Qin X, Zhang B, Qi J, Sasaki AT, Plas DR, Bradner JE, Wei M, Marcucci G, Jiang X, Mulloy JC, Jin J, He C, Chen J (2018) R-2HG exhibits anti-tumor activity by targeting FTO/m(6)A/MYC/CEBPA signaling. Cell 172:90–105.e123

    Google Scholar 

  • Svensen N, Jaffrey SR (2016) Fluorescent RNA aptamers as a tool to study RNA-modifying enzymes. Cell Chem Biol 23:415–425

    PubMed  PubMed Central  Google Scholar 

  • Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18:18–30

    CAS  PubMed  Google Scholar 

  • Wade SL, Langer LF, Ward JM, Archer TK (2015) MiRNA-mediated regulation of the SWI/SNF chromatin remodeling complex controls pluripotency and endodermal differentiation in human ESCs. Stem Cells 33:2925–2935

    CAS  PubMed  Google Scholar 

  • Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C (2015) N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161:1388–1399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Lu JH, Wu QN, Jin Y, Wang DS, Chen YX, Liu J, Luo XJ, Meng Q, Pu HY, Wang YN, Hu PS, Liu ZX, Zeng ZL, Zhao Q, Deng R, Zhu XF, Ju HQ, Xu RH (2019) LncRNA LINRIS stabilizes IGF2BP2 and promotes the aerobic glycolysis in colorectal cancer. Mol Cancer 18:174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei JW, Huang K, Yang C, Kang CS (2017) Non-coding RNAs as regulators in epigenetics (Review). Oncol Rep 37:3–9

    PubMed  Google Scholar 

  • Weick EM, Miska EA (2014) piRNAs: from biogenesis to function. Development 141:3458–3471

    CAS  PubMed  Google Scholar 

  • Wood H (2018) FDA approves patisiran to treat hereditary transthyretin amyloidosis. Nat Rev Neurol 14:570

    PubMed  Google Scholar 

  • Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, Sun HY, Li A, Ping XL, Lai WY, Wang X, Ma HL, Huang CM, Yang Y, Huang N, Jiang GB, Wang HL, Zhou Q, Wang XJ, Zhao YL, Yang YG (2016) Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell 61:507–519

    CAS  PubMed  Google Scholar 

  • Yan F, Al-Kali A, Zhang Z, Liu J, Pang J, Zhao N, He C, Litzow MR, Liu S (2018) A dynamic N(6)-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res 28:1062–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, Pilka ES, Aspris D, Leggate D, Hendrick AG, Webster NA, Andrews B, Fosbeary R, Guest P, Irigoyen N, Eleftheriou M, Gozdecka M, Dias JML, Bannister AJ, Vick B, Jeremias I, Vassiliou GS, Rausch O, Tzelepis K, Kouzarides T (2021) Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature 593:597–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CY, Kuo HC (2019) The emerging roles and functions of circular RNAs and their generation. J Biomed Sci 26:29

    PubMed  PubMed Central  Google Scholar 

  • Yu AM, Choi YH, Tu MJ (2020) RNA drugs and RNA targets for small molecules: principles, progress, and challenges. Pharmacol Rev 72:862–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zaccara S, Ries RJ, Jaffrey SR (2019) Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol 20:608–624

    CAS  PubMed  Google Scholar 

  • Zeng C, Huang W, Li Y, Weng H (2020) Roles of METTL3 in cancer: mechanisms and therapeutic targeting. J Hematol Oncol 13:117

    PubMed  PubMed Central  Google Scholar 

  • Zhang W, Xu J (2017) DNA methyltransferases and their roles in tumorigenesis. Biomark Res 5:1

    PubMed  PubMed Central  Google Scholar 

  • Zheng JT, Lin CX, Fang ZY, Li HD (2020) Intron retention as a mode for RNA-seq data analysis. Front Genet 11:586

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou KI, Shi H, Lyu R, Wylder AC, Matuszek Ż, Pan JN, He C, Parisien M, Pan T (2019) Regulation of co-transcriptional pre-mRNA splicing by m(6)A through the low-complexity protein hnRNPG. Mol Cell 76:70–81.e79

    Google Scholar 

  • Zhou Y, Han C, Wang E, Lorch AH, Serafin V, Cho BK, Gutierrez Diaz BT, Calvo J, Fang C, Khodadadi-Jamayran A, Tabaglio T, Marier C, Kuchmiy A, Sun L, Yacu G, Filip SK, Jin Q, Takahashi YH, Amici DR, Rendleman EJ, Rawat R, Bresolin S, Paganin M, Zhang C, Li H, Kandela I, Politanska Y, Abdala-Valencia H, Mendillo ML, Zhu P, Palhais B, Van Vlierberghe P, Taghon T, Aifantis I, Goo YA, Guccione E, Heguy A, Tsirigos A, Wee KB, Mishra RK, Pflumio F, Accordi B, Basso G, Ntziachristos P (2020) Posttranslational regulation of the exon skipping machinery controls aberrant splicing in leukemia. Cancer Discov 10:1388–1409

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment and Funding

This work was supported by FISR2019_00374 MeDyCa-B84G19000200008; Campania Regional Government FASE 2: IDEAL (CUP B63D18000560007); MISE: Nabucco Project; and VALERE: Vanvitelli per la Ricerca Program: EPInhibitDRUGre (CUP B66J20000680005). N.D.G. was supported by PON Ricerca e Innovazione 2014–2020 Linea 1, AIM (AIM1859703).

Authors’ Contributions

The work reported in the paper has been performed by the authors, unless clearly specified in the text.

Project administration, Supervision and Writing: L.A. and C.D. Conceptualization and Writing: N.D.G, C.D, G.B, I.L, G.S Review and Editing N.D.G., L.A. and C.D. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lucia Altucci or Carmela Dell’Aversana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bove, G., Lettiero, I., Sgueglia, G., Del Gaudio, N., Altucci, L., Dell’Aversana, C. (2023). Epi-Drugs Targeting RNA Dynamics in Cancer. In: Rezaei, N. (eds) Cancer Research: An Interdisciplinary Approach. Interdisciplinary Cancer Research, vol 1. Springer, Cham. https://doi.org/10.1007/16833_2022_113

Download citation

Publish with us

Policies and ethics