Skip to main content

The Role of Tumoroids in Cancer Research

  • Chapter
  • First Online:
Cancer Research: An Interdisciplinary Approach

Part of the book series: Interdisciplinary Cancer Research ((ICR,volume 1))

Abstract

The optimal tumor model improves cancer diagnosis, prognosis, and therapeutics studies. In tumor modeling, it is crucial to mimic the tumor microenvironment (TME) that includes cellular heterogenicity and tumor cell communications. Traditional 2D cancer cell culture and early 3D culture had many deficiencies in imitating the genotype and phenotype of TME. However, newly developed 3D tumor organoids or tumoroids accurately recapitulate the tumor TME and its cellular components. The present chapter highlights the recent advances in tumoroid cultivation and its application in cancer research. Tumoroids have been used to study different aspects of cancer biology, such as mutational signatures of tumors and cancer-stromal cell interactions in tumorigenesis and cancer progression. They are also employed to generating living biobanks of tumors and performing drug screens and pharmacogenetic studies. Moreover, the contribution of advanced techniques such as genetic manipulation and cutting-edge analysis tools makes the tumoroid model a perfect platform for addressing the gaps in personalized medicine and drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amaral AJR, Pasparakis G (2019) Cell membrane engineering with synthetic materials: applications in cell spheroids, cellular glues and microtissue formation. Acta Biomater 90:21–36

    CAS  PubMed  Google Scholar 

  • Ando Y, Siegler EL, Ta HP, Cinay GE, Zhou H, Gorrell KA, Au H, Jarvis BM, Wang P, Shen K (2019) Evaluating CAR-T Cell therapy in a hypoxic 3D tumor model. Adv Healthc Mater 8:e1900001

    PubMed  PubMed Central  Google Scholar 

  • Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ (1989) Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:223–235

    CAS  PubMed  Google Scholar 

  • Bordanaba-Florit G, Madarieta I, Olalde B, Falcón-Perez JM, Royo F (2021) 3D cell cultures as prospective models to study extracellular vesicles in cancer. Cancers (Basel) 13

    Google Scholar 

  • Bregeon D, Doetsch PW (2011) Transcriptional mutagenesis: causes and involvement in tumour development. Nat Rev Cancer 11:218–227

    CAS  PubMed  PubMed Central  Google Scholar 

  • Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM, Bradshaw CR, Allen GE, Arnes-Benito R, Sidorova O, Gaspersz MP, Georgakopoulos N, Koo BK, Dietmann S, Davies SE, Praseedom RK, Lieshout R, Jnm IJ, Wigmore SJ, Saeb-Parsy K, Garnett MJ, Van Der Laan LJ, Huch M (2017) Human primary liver cancer-derived organoid cultures for disease modeling and drug screening. Nat Med 23:1424–1435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buenafe AC, Dorrell C, Reddy AP, Klimek J, Marks DL (2022) Proteomic analysis distinguishes extracellular vesicles produced by cancerous versus healthy pancreatic organoids. Sci Rep 12:3556

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T, Mathijsen L, Ammerlaan C, Van Ineveld RL, Derakhshan S, De Haan S, Dolman E, Lijnzaad P, Custers L, Begthel H, Kerstens HHD, Visser LL, Rookmaaker M, Verhaar M, Tytgat GAM, Kemmeren P, De Krijger RR, Al-Saadi R, Pritchard-Jones K, Kool M, Rios AC, Van Den Heuvel-Eibrink MM, Molenaar JJ, Van Boxtel R, Holstege FCP, Clevers H, Drost J (2020) An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat Commun 11:1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cattaneo CM, Dijkstra KK, Fanchi LF, Kelderman S, Kaing S, Van Rooij N, Van Den Brink S, Schumacher TN, Voest EE (2020) Tumor organoid-T-cell coculture systems. Nat Protoc 15:15–39

    CAS  PubMed  Google Scholar 

  • Chakrabarti J, Koh V, So JBY, Yong WP, Zavros Y (2021) A preclinical human-derived autologous gastric cancer organoid/immune cell co-culture model to predict the efficacy of targeted therapies. J Vis Exp

    Google Scholar 

  • Clevers HC (2019) Organoids: avatars for personalized medicine. Keio J Med 68:95

    PubMed  Google Scholar 

  • Clinton J, Mcwilliams-Koeppen P (2019) Initiation, expansion, and cryopreservation of human primary tissue-derived normal and diseased organoids in embedded three-dimensional culture. Curr Protoc Cell Biol 82:e66

    CAS  PubMed  Google Scholar 

  • Conteduca V, Ku SY, Puca L, Slade M, Fernandez L, Hess J, Bareja R, Vlachostergios PJ, Sigouros M, Mosquera JM, Sboner A, Nanus DM, Elemento O, Dittamore R, Tagawa ST, Beltran H (2020) SLFN11 expression in advanced prostate cancer and response to platinum-based chemotherapy. Mol Cancer Ther 19:1157–1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costa EC, Moreira AF, De Melo-Diogo D, Gaspar VM, Carvalho MP, Correia IJ (2016) 3D tumor spheroids: an overview on the tools and techniques used for their analysis. Biotechnol Adv 34:1427–1441

    PubMed  Google Scholar 

  • Dekkers JF, Whittle JR, Vaillant F, Chen HR, Dawson C, Liu K, Geurts MH, Herold MJ, Clevers H, Lindeman GJ, Visvader JE (2020) Modeling breast cancer using CRISPR-Cas9-mediated engineering of human breast organoids. J Natl Cancer Inst 112:540–544

    PubMed  Google Scholar 

  • Del Bufalo F, Manzo T, Hoyos V, Yagyu S, Caruana I, Jacot J, Benavides O, Rosen D, Brenner MK (2016) 3D modeling of human cancer: a PEG-fibrin hydrogel system to study the role of tumor microenvironment and recapitulate the in vivo effect of oncolytic adenovirus. Biomaterials 84:76–85

    PubMed  Google Scholar 

  • Del Piccolo N, Shirure VS, Bi Y, Goedegebuure SP, Gholami S, Hughes CCW, Fields RC, George SC (2021) Tumor-on-chip modeling of organ-specific cancer and metastasis. Adv Drug Deliv Rev 175:113798

    PubMed  Google Scholar 

  • Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, Van De Haar J, Fanchi LF, Slagter M, Van Der Velden DL, Kaing S, Kelderman S, Van Rooij N, Van Leerdam ME, Depla A, Smit EF, Hartemink KJ, De Groot R, Wolkers MC, Sachs N, Snaebjornsson P, Monkhorst K, Haanen J, Clevers H, Schumacher TN, Voest EE (2018) Generation of tumor-reactive t cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174:1586–1598.e12

    Google Scholar 

  • Driehuis E, Clevers H (2017) CRISPR/Cas 9 genome editing and its applications in organoids. Am J Physiol Gastrointest Liver Physiol 312:G257–G265

    PubMed  Google Scholar 

  • Driehuis E, Gracanin A, Vries RGJ, Clevers H, Boj SF (2020a) Establishment of pancreatic organoids from normal tissue and tumors. STAR Protoc 1:100192

    PubMed  PubMed Central  Google Scholar 

  • Driehuis E, Kretzschmar K, Clevers H (2020b) Establishment of patient-derived cancer organoids for drug-screening applications. Nat Protoc 15:3380–3409

    CAS  PubMed  Google Scholar 

  • Drost J, Karthaus WR, Gao D, Driehuis E, Sawyers CL, Chen Y, Clevers H (2016) Organoid culture systems for prostate epithelial and cancer tissue. Nat Protoc 11:347–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drost J, Van Boxtel R, Blokzijl F, Mizutani T, Sasaki N, Sasselli V, De Ligt J, Behjati S, Grolleman JE, Van Wezel T, Nik-Zainal S, Kuiper RP, Cuppen E, Clevers H (2017) Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358:234–238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S, Matsumura M, Wataya T, Nishiyama A, Muguruma K, Sasai Y (2008) Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:519–532

    CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:51–56

    CAS  PubMed  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18:246–254

    PubMed  Google Scholar 

  • Foo MA, You M, Chan SL, Sethi G, Bonney GK, Yong W-P, Chow EK-H, Fong ELS, Wang L, Goh B-C (2022) Clinical translation of patient-derived tumour organoids-bottlenecks and strategies. Biomark Res 10:1–18

    Google Scholar 

  • Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, Kawasaki K, Uraoka T, Watanabe T, Kanai T, Sato T (2016) A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell 18:827–838

    CAS  PubMed  Google Scholar 

  • Garza Treviño EN, González PD, Valencia Salgado CI, Martinez Garza A (2019) Effects of pericytes and colon cancer stem cells in the tumor microenvironment. Cancer Cell Int 19:173

    PubMed  PubMed Central  Google Scholar 

  • Grandori C, Kemp CJ (2018) Personalized cancer models for target discovery and precision medicine. Trends Cancer 4:634–642

    PubMed  PubMed Central  Google Scholar 

  • Guo S, Deng C-X (2018) Effect of stromal cells in tumor microenvironment on metastasis initiation. Int J Biol Sci 14:2083–2093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hai J, Zhang H, Zhou J, Wu Z, Chen T, Papadopoulos E, Dowling CM, Pyon V, Pan Y, Liu JB, Bronson RT, Silver H, Lizotte PH, Deng J, Campbell JD, Sholl LM, Ng C, Tsao MS, Thakurdin C, Bass AJ, Wong KK (2020) Generation of genetically engineered mouse lung organoid models for squamous cell lung cancers allows for the study of combinatorial immunotherapy. Clin Cancer Res 26:3431–3442

    CAS  PubMed  PubMed Central  Google Scholar 

  • Handa T, Kuroha M, Nagai H, Shimoyama Y, Naito T, Moroi R, Kanazawa Y, Shiga H, Kakuta Y, Kinouchi Y, Masamune A (2021) Liquid biopsy for colorectal adenoma: is the exosomal mirna derived from organoid a potential diagnostic biomarker? Clin Transl Gastroenterol 12:e00356

    PubMed  PubMed Central  Google Scholar 

  • Heitink L, Whittle JR, Vaillant F, Capaldo BD, Dekkers JF, Dawson CA, Milevskiy MJG, Surgenor E, Tsai M, Chen HR, Christie M, Chen Y, Smyth GK, Herold MJ, Strasser A, Lindeman GJ, Visvader JE (2022) In vivo genome-editing screen identifies tumor suppressor genes that cooperate with Trp53 loss during mammary tumorigenesis. Mol Oncol 16:1119–1131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hidalgo M, Amant F, Biankin AV, Budinská E, Byrne AT, Caldas C, Clarke RB, De Jong S, Jonkers J, Mælandsmo GM, Roman-roman S, Seoane J, Trusolino L, Villanueva A (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hirt CK, Booij TH, Grob L, Simmler P, Toussaint NC, Keller D, Taube D, Ludwig V, Goryachkin A, Pauli C, Lenggenhager D, Stekhoven DJ, Stirnimann CU, Endhardt K, Ringnalda F, Villiger L, Siebenhuner A, Karkampouna S, De Menna M, Beshay J, Klett H, Kruithof-De Julio M, Schuler J, Schwank G (2022) Drug screening and genome editing in human pancreatic cancer organoids identifies drug-gene interactions and candidates for off-label treatment. Cell Genom 2:100095

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Zhang L, Li Y, Ma X, Dai W, Gao X, Rao X, Fu G, Wang R, Pan M, Guo Q, Xu X, Zhou Y, Gao J, Zhang Z, Cai S, Peng J, Hua G (2020) Organoid modelling identifies that DACH1 functions as a tumour promoter in colorectal cancer by modulating BMP signalling. EBioMedicine 56:102800

    PubMed  PubMed Central  Google Scholar 

  • Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:1886–1890

    CAS  PubMed  Google Scholar 

  • Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T, Okamoto K (2017) Tumor-derived spheroids: relevance to cancer stem cells and clinical applications. Cancer Sci 108:283–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jacob F, Ming GL, Song H (2020a) Generation and biobanking of patient-derived glioblastoma organoids and their application in CAR T cell testing. Nat Protoc 15:4000–4033

    CAS  PubMed  Google Scholar 

  • Jacob F, Salinas RD, Zhang DY, Nguyen PTT, Schnoll JG, Wong SZH, Thokala R, Sheikh S, Saxena D, Prokop S, Liu DA, Qian X, Petrov D, Lucas T, Chen HI, Dorsey JF, Christian KM, Binder ZA, Nasrallah M, Brem S, O’Rourke DM, Ming GL, Song H (2020b) A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180:188–204.e22

    CAS  PubMed  Google Scholar 

  • Kaushik G, Ponnusamy MP, Batra SK (2018) Concise review: current status of three-dimensional organoids as preclinical models. Stem Cells 36:1329–1340

    PubMed  Google Scholar 

  • Kawasaki K, Toshimitsu K, Matano M, Fujita M, Fujii M, Togasaki K, Ebisudani T, Shimokawa M, Takano A, Takahashi S, Ohta Y, Nanki K, Igarashi R, Ishimaru K, Ishida H, Sukawa Y, Sugimoto S, Saito Y, Maejima K, Sasagawa S, Lee H, Kim HG, Ha K, Hamamoto J, Fukunaga K, Maekawa A, Tanabe M, Ishihara S, Hamamoto Y, Yasuda H, Sekine S, Kudo A, Kitagawa Y, Kanai T, Nakagawa H, Sato T (2020) An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping. Cell 183:1420–1435.e21

    Google Scholar 

  • Ke X, Yan R, Sun Z, Cheng Y, Meltzer A, Lu N, Shu X, Wang Z, Huang B, Liu X, Wang Z, Song JH, Ng CK, Ibrahim S, Abraham JM, Shin EJ, He S, Meltzer SJ (2017) Esophageal adenocarcinoma-derived extracellular vesicle Micrornas induce a neoplastic phenotype in gastric organoids. Neoplasia 19:941–949

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen A, Carmi I, Oszvald Á, Lőrincz P, Petővári G, Tölgyes T, Dede K, Bursics A, Buzás EI, Wiener Z (2021) IFITM1 expression determines extracellular vesicle uptake in colorectal cancer. Cell Mol Life Sci 78:7009–7024

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelemen A, Carmi I, Seress I, Lőrincz P, Tölgyes T, Dede K, Bursics A, Buzás EI, Wiener Z (2022) CD44 expression intensity marks colorectal cancer cell subpopulations with different extracellular vesicle release capacity. Int J Mol Sci 23

    Google Scholar 

  • Koga T, Chen CC, Furnari FB (2020) Genome engineering evolves brain tumor modeling. Neurol Med Chir (Tokyo) 60:329–336

    PubMed  Google Scholar 

  • Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36

    CAS  PubMed  Google Scholar 

  • Kong J, Lee H, Kim D, Han SK, Ha D, Shin K, Kim S (2020) Network-based machine learning in colorectal and bladder organoid models predicts anti-cancer drug efficacy in patients. Nat Commun 11:5485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koval A, Pieme CA, Queiroz EF, Ragusa S, Ahmed K, Blagodatski A, Wolfender JL, Petrova TV, Katanaev VL (2018) Tannins from Syzygium guineense suppress Wnt signaling and proliferation of Wnt-dependent tumors through a direct effect on secreted Wnts. Cancer Lett 435:110–120

    CAS  PubMed  Google Scholar 

  • Kumari R, Ouyang X, Wang J, Xu X, Zheng M, An X, Li QX (2021) Preclinical pharmacology modeling of chimeric antigen receptor T therapies. Curr Opin Pharmacol 61:49–61

    CAS  PubMed  Google Scholar 

  • Li H, Liu H, Chen K (2022) Living biobank-based cancer organoids: prospects and challenges in cancer research. Cancer Biol Med 19:965–982

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Cheng Y, Abraham JM, Wang Z, Wang Z, Ke X, Yan R, Shin EJ, Ngamruengphong S, Khashab MA, Zhang G, Mcnamara G, Ewald AJ, Lin D, Liu Z, Meltzer SJ (2018) Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids. Cancer Lett 436:109–118

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Yu L, Li Z, Li W, Huang W (2021) Patient-derived organoid (PDO) platforms to facilitate clinical decision making. J Transl Med 19:1–9

    Google Scholar 

  • Liu Y, Gan Y, Aierken N, Chen W, Zhang S, Ouyang J, Zeng L, Tang D (2022) Combining organoid models with next-generation sequencing to reveal tumor heterogeneity and predict therapeutic response in breast cancer. J Oncol 2022:9390912

    PubMed  PubMed Central  Google Scholar 

  • Lo YH, Kolahi KS, Du Y, Chang CY, Krokhotin A, Nair A, Sobba WD, Karlsson K, Jones SJ, Longacre TA, Mah AT, Tercan B, Sockell A, Xu H, Seoane JA, Chen J, Shmulevich I, Weissman JS, Curtis C, Califano A, Fu H, Crabtree GR, Kuo CJ (2021) A CRISPR/Cas9-engineered ARID1A-deficient human gastric cancer organoid model reveals essential and nonessential modes of oncogenic transformation. Cancer Discov 11:1562–1581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matano M, Date S, Shimokawa M, Takano A, Fujii M, Ohta Y, Watanabe T, Kanai T, Sato T (2015) Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat Med 21:256–262

    CAS  PubMed  Google Scholar 

  • Mazio C, Casale C, Imparato G, Urciuolo F, Netti PA (2018) Recapitulating spatiotemporal tumor heterogeneity in vitro through engineered breast cancer microtissues. Acta Biomater 73:236–249

    PubMed  Google Scholar 

  • Modi U, Makwana P, Vasita R (2021) Molecular insights of metastasis and cancer progression derived using 3D cancer spheroid co-culture in vitro platform. Crit Rev Oncol Hematol 168:103511

    PubMed  Google Scholar 

  • Mollica PA, Booth-Creech EN, Reid JA, Zamponi M, Sullivan SM, Palmer XL, Sachs PC, Bruno RD (2019) 3D bioprinted mammary organoids and tumoroids in human mammary derived ECM hydrogels. Acta Biomater 95:201–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mullenders J, De Jongh E, Brousali A, Roosen M, Blom JPA, Begthel H, Korving J, Jonges T, Kranenburg O, Meijer R, Clevers HC (2019) Mouse and human urothelial cancer organoids: a tool for bladder cancer research. Proc Natl Acad Sci USA 116:4567–4574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mundel P (2017) Podocytes and the quest for precision medicines for kidney diseases. Pflugers Arch 469:1029–1037

    CAS  PubMed  Google Scholar 

  • Nagai H, Kuroha M, Handa T, Karasawa H, Ohnuma S, Naito T, Moroi R, Kanazawa Y, Shiga H, Hamada S, Kakuta Y, Naitoh T, Kinouchi Y, Shimosegawa T, Masamune A (2021) Comprehensive analysis of microRNA profiles in organoids derived from human colorectal adenoma and cancer. Digestion 102:860–869

    CAS  PubMed  Google Scholar 

  • Nallanthighal S, Heiserman JP, Cheon D-J (2019) The role of the extracellular matrix in cancer stemness. Front Cell Dev Biol 7

    Google Scholar 

  • Namba Y, Sogawa C, Okusha Y, Kawai H, Itagaki M, Ono K, Murakami J, Aoyama E, Ohyama K, Asaumi JI, Takigawa M, Okamoto K, Calderwood SK, Kozaki KI, Eguchi T (2018) Depletion of lipid efflux pump ABCG1 triggers the intracellular accumulation of extracellular vesicles and reduces aggregation and tumorigenesis of metastatic cancer cells. Front Oncol 8:376

    PubMed  PubMed Central  Google Scholar 

  • Nanki K, Toshimitsu K, Takano A, Fujii M, Shimokawa M, Ohta Y, Matano M, Seino T, Nishikori S, Ishikawa K, Kawasaki K, Togasaki K, Takahashi S, Sukawa Y, Ishida H, Sugimoto S, Kawakubo H, Kim J, Kitagawa Y, Sekine S, Koo BK, Kanai T, Sato T (2018) Divergent routes toward Wnt and R-spondin niche independency during human gastric carcinogenesis. Cell 174:856–869.e17

    Google Scholar 

  • Nath S, Devi GR (2016) Three-dimensional culture systems in cancer research: focus on tumor spheroid model. Pharmacol Ther 163:94–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuciforo S, Fofana I, Matter MS, Blumer T, Calabrese D, Boldanova T, Piscuoglio S, Wieland S, Ringnalda F, Schwank G, Terracciano LM, Ng CKY, Heim MH (2018) Organoid models of human liver cancers derived from tumor needle biopsies. Cell Rep 24:1363–1376

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R, Clevers H (2017) Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999

    CAS  PubMed  Google Scholar 

  • Palechor-Ceron N, Krawczyk E, Dakic A, Simic V, Yuan H, Blancato J, Wang W, Hubbard F, Zheng YL, Dan H, Strome S, Cullen K, Davidson B, Deeken JF, Choudhury S, Ahn PH, Agarwal S, Zhou X, Schlegel R, Furth PA, Pan CX, Liu X (2019) Conditional reprogramming for patient-derived cancer models and next-generation living biobanks. Cells 8

    Google Scholar 

  • Palikuqi B, Nguyen DT, Li G, Schreiner R, Pellegata AF, Liu Y, Redmond D, Geng F, Lin Y, Gómez-Salinero JM, Yokoyama M, Zumbo P, Zhang T, Kunar B, Witherspoon M, Han T, Tedeschi AM, Scottoni F, Lipkin SM, Dow L, Elemento O, Xiang JZ, Shido K, Spence JR, Zhou QJ, Schwartz RE, De Coppi P, Rabbany SY, Rafii S (2020) Adaptable haemodynamic endothelial cells for organogenesis and tumorigenesis. Nature 585:426–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pamarthy S, Sabaawy HE (2021) Patient derived organoids in prostate cancer: improving therapeutic efficacy in precision medicine. Mol Cancer 20:125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pappas KJ, Choi D, Sawyers CL, Karthaus WR (2019) Prostate organoid cultures as tools to translate genotypes and mutational profiles to pharmacological responses. J Vis Exp

    Google Scholar 

  • Pauli C, Hopkins BD, Prandi D, Shaw R, Fedrizzi T, Sboner A, Sailer V, Augello M, Puca L, Rosati R, Mcnary TJ, Churakova Y, Cheung C, Triscott J, Pisapia D, Rao R, Mosquera JM, Robinson B, Faltas BM, Emerling BE, Gadi VK, Bernard B, Elemento O, Beltran H, Demichelis F, Kemp CJ, Grandori C, Cantley LC, Rubin MA (2017) Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7:462–477

    PubMed  PubMed Central  Google Scholar 

  • Petersen OW, Rønnov-Jessen L, Howlett AR, Bissell MJ (1992) Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. Proc Natl Acad Sci USA 89:9064–9068

    CAS  PubMed  PubMed Central  Google Scholar 

  • Poghosyan S, Frenkel N, Lentzas A, Laoukili J, Rinkes IB, Kranenburg O, Hagendoorn J (2022) Loss of neuropilin-2 in murine mesenchymal-like colon cancer organoids causes mesenchymal-to-epithelial transition and an acquired dependency on insulin-receptor signaling and autophagy. Cancers (Basel) 14

    Google Scholar 

  • Praharaj PP, Bhutia SK, Nagrath S, Bitting RL, Deep G (2018) Circulating tumor cell-derived organoids: current challenges and promises in medical research and precision medicine. Biochim Biophys Acta Rev Cancer 1869:117–127

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren X, Rong Z, Liu X, Gao J, Xu X, Zi Y, Mu Y, Guan Y, Cao Z, Zhang Y, Zeng Z, Fan Q, Wang X, Pei Q, Wang X, Xin H, Li Z, Nie Y, Qiu Z, Li N, Sun L, Deng Y (2022) The protein kinase activity of NME7 activates Wnt/β-catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res 82:60–74

    CAS  PubMed  Google Scholar 

  • Saito Y, Muramatsu T, Kanai Y, Ojima H, Sukeda A, Hiraoka N, Arai E, Sugiyama Y, Matsuzaki J, Uchida R, Yoshikawa N, Furukawa R, Saito H (2019) Establishment of patient-derived organoids and drug screening for biliary tract carcinoma. Cell Rep 27:1265–1276.e4

    Google Scholar 

  • Salaud C, Alvarez-Arenas A, Geraldo F, Belmonte-Beitia J, Calvo GF, Gratas C, Pecqueur C, Garnier D, Perez-Garcia V, Vallette FM, Oliver L (2020) Mitochondria transfer from tumor-activated stromal cells (TASC) to primary Glioblastoma cells. Biochem Biophys Res Commun 533:139–147

    CAS  PubMed  Google Scholar 

  • Salgueiro L, Kummer S, Sonntag-Buck V, Weiß A, Schneider MA, Kräusslich HG, Sotillo R (2022) Generation of human lung organoid cultures from healthy and tumor tissue to study infectious diseases. J Virol 96:e0009822

    PubMed  Google Scholar 

  • Saltsman JA, Hammond WJ, Narayan NJC, Requena D, Gehart H, Lalazar G, Laquaglia MP, Clevers H, Simon S (2020) A human organoid model of aggressive hepatoblastoma for disease modeling and drug testing. Cancers (Basel) 12

    Google Scholar 

  • Sasai Y (2013) Cytosystems dynamics in self-organization of tissue architecture. Nature 493:318–326

    CAS  PubMed  Google Scholar 

  • Sato T, Vries RG, Snippert HJ, Van De Wetering M, Barker N, Stange DE, Van ESJH, Abo A, Kujala P, Peters PJ, Clevers H (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:262–265

    CAS  PubMed  Google Scholar 

  • Schnalzger TE, De Groot MH, Zhang C, Mosa MH, Michels BE, Röder J, Darvishi T, Wels WS, Farin HF (2019) 3D model for CAR-mediated cytotoxicity using patient-derived colorectal cancer organoids. EMBO J 38

    Google Scholar 

  • Schöneberg J, Dambournet D, Liu TL, Forster R, Hockemeyer D, Betzig E, Drubin DG (2018) 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell-derived intestinal organoids. Mol Biol Cell 29:2959–2968

    PubMed  PubMed Central  Google Scholar 

  • Seidlitz T, Koo BK, Stange DE (2021) Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ 28:68–83

    PubMed  Google Scholar 

  • Seino T, Kawasaki S, Shimokawa M, Tamagawa H, Toshimitsu K, Fujii M, Ohta Y, Matano M, Nanki K, Kawasaki K, Takahashi S, Sugimoto S, Iwasaki E, Takagi J, Itoi T, Kitago M, Kitagawa Y, Kanai T, Sato T (2018) Human pancreatic tumor organoids reveal loss of stem cell niche factor dependence during disease progression. Cell Stem Cell 22:454–467.e6

    Google Scholar 

  • Stalnecker CA, Grover KR, Edwards AC, Coleman MF, Yang R, Deliberty JM, Papke B, Goodwin CM, Pierobon M, Petricoin EF, Gautam P, Wennerberg K, Cox AD, Der CJ, Hursting SD, Bryant KL (2022) Concurrent inhibition of IGF1R and ERK increases pancreatic cancer sensitivity to autophagy inhibitors. Cancer Res 82:586–598

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhart Z, Pavlovic Z, Chandrashekhar M, Hart T, Wang X, Zhang X, Robitaille M, Brown KR, Jaksani S, Overmeer R, Boj SF, Adams J, Pan J, Clevers H, Sidhu S, Moffat J, Angers S (2017) Genome-wide CRISPR screens reveal a Wnt-FZD5 signaling circuit as a druggable vulnerability of RNF43-mutant pancreatic tumors. Nat Med 23:60–68

    Google Scholar 

  • Stratton MR, Campbell PJ, Futreal PA (2009) The cancer genome. Nature 458:719–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su N, Jiang LY, Wang X, Gao P-L, Zhou J, Wang C-Y, Luo Y (2019) Membrane-binding adhesive particulates enhance the viability and paracrine function of mesenchymal cells for cell-based therapy. Biomacromolecules 20:1007–1017

    CAS  PubMed  Google Scholar 

  • Sugimura N, Li Q, Chu ESH, Lau HCH, Fong W, Liu W, Liang C, Nakatsu G, Su ACY, Coker OO, Wu WKK, Chan FKL, Yu J (2021) Lactobacillus gallinarum modulates the gut microbiota and produces anti-cancer metabolites to protect against colorectal tumourigenesis. Gut

    Google Scholar 

  • Szvicsek Z, Oszvald Á, Szabó L, Sándor GO, Kelemen A, Soós A, Pálóczi K, Harsányi L, Tölgyes T, Dede K, Bursics A, Buzás EI, Zeöld A, Wiener Z (2019) Extracellular vesicle release from intestinal organoids is modulated by Apc mutation and other colorectal cancer progression factors. Cell Mol Life Sci 76:2463–2476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Taha EA, Sogawa C, Okusha Y, Kawai H, Oo MW, Elseoudi A, Lu Y, Nagatsuka H, Kubota S, Satoh A, Okamoto K, Eguchi T (2020) Knockout of MMP3 weakens solid tumor organoids and cancer extracellular vesicles. Cancers (Basel) 12

    Google Scholar 

  • Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    CAS  PubMed  Google Scholar 

  • Takeda H, Kataoka S, Nakayama M, Ali MAE, Oshima H, Yamamoto D, Park JW, Takegami Y, An T, Jenkins NA, Copeland NG, Oshima M (2019) CRISPR-Cas9-mediated gene knockout in intestinal tumor organoids provides functional validation for colorectal cancer driver genes. Proc Natl Acad Sci USA 116:15635–15644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tayler IM, Stowers RS (2021) Engineering hydrogels for personalized disease modeling and regenerative medicine. Acta Biomater 132:4–22

    CAS  PubMed  Google Scholar 

  • Tomasetti C, Vogelstein B (2015) Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347:78–81

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uddin MN, Wang X (2021) The landscape of long non-coding RNAs in tumor stroma. Life Sci 264:118725

    CAS  PubMed  Google Scholar 

  • Ukai S, Honma R, Sakamoto N, Yamamoto Y, Pham QT, Harada K, Takashima T, Taniyama D, Asai R, Fukada K, Naka K, Tanabe K, Ohdan H, Yasui W (2020) Molecular biological analysis of 5-FU-resistant gastric cancer organoids; KHDRBS3 contributes to the attainment of features of cancer stem cell. Oncogene 39:7265–7278

    PubMed  Google Scholar 

  • Vaes RDW, Van Dijk DPJ, Welbers TTJ, Blok MJ, Aberle MR, Heij L, Boj SF, Olde Damink SWM, Rensen SS (2020) Generation and initial characterization of novel tumour organoid models to study human pancreatic cancer-induced cachexia. J Cachexia Sarcopenia Muscle 11:1509–1524

    PubMed  PubMed Central  Google Scholar 

  • Veninga V, Voest EE (2021) Tumor organoids: opportunities and challenges to guide precision medicine. Cancer Cell 39:1190–1201

    CAS  PubMed  Google Scholar 

  • Votanopoulos KI, Mazzocchi A, Sivakumar H, Forsythe S, Aleman J, Levine EA, Skardal A (2019) Appendiceal cancer patient-specific tumor organoid model for predicting chemotherapy efficacy prior to initiation of treatment: a feasibility study. Ann Surg Oncol 26:139–147

    PubMed  Google Scholar 

  • Wakamatsu T, Ogawa H, Yoshida K, Matsuoka Y, Shizuma K, Imura Y, Tamiya H, Nakai S, Yagi T, Nagata S, Yui Y, Sasagawa S, Takenaka S (2022) Establishment of organoids from human epithelioid sarcoma with the air-liquid interface organoid cultures. Front Oncol 12:893592

    PubMed  PubMed Central  Google Scholar 

  • Weeber F, Ooft SN, Dijkstra KK, Voest EE (2017) Tumor organoids as a pre-clinical cancer model for drug discovery. Cell Chem Biol 24:1092–1100

    CAS  PubMed  Google Scholar 

  • Wörsdörfer P, Dalda N, Kern A, Kruger S, Wagner N, Kwok CK, Henke E, Ergun S (2019) Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells. Sci Rep 9:15663

    PubMed  PubMed Central  Google Scholar 

  • Wörsdörfer P, Rockel A, Alt Y, Kern A, Ergun S (2020) Generation of vascularized neural organoids by co-culturing with mesodermal progenitor cells. STAR Protoc 1:100041

    PubMed  PubMed Central  Google Scholar 

  • Xia T, Du W-L, Chen X-Y, Zhang Y-N (2021) Organoid models of the tumor microenvironment and their applications. J Cell Mol Med 25:5829–5841

    PubMed  PubMed Central  Google Scholar 

  • Xian L, Zhao P, Chen X, Wei Z, Ji H, Zhao J, Liu W, Li Z, Liu D, Han X, Qian Y, Dong H, Zhou X, Fan J, Zhu X, Yin J, Tan X, Jiang D, Yu H, Cao G (2022) Heterogeneity, inherent and acquired drug resistance in patient-derived organoid models of primary liver cancer. Cell Oncol (Dordr)

    Google Scholar 

  • Xiao W, Pahlavanneshan M, Eun CY, Zhang X, Dekalb C, Mahgoub B, Knaneh-Monem H, Shah S, Sohrabi A, Seidlits SK, Hill R (2022) Matrix stiffness mediates pancreatic cancer chemoresistance through induction of exosome hypersecretion in a cancer associated fibroblasts-tumor organoid biomimetic model. Matrix Biol Plus 14:100111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Lyu X, Yi M, Zhao W, Song Y, Wu K (2018) Organoid technology and applications in cancer research. J Hematol Oncol 11:116

    PubMed  PubMed Central  Google Scholar 

  • Yamanaka S (2007) Strategies and new developments in the generation of patient-specific pluripotent stem cells. Cell Stem Cell 1:39–49

    CAS  PubMed  Google Scholar 

  • Yan HHN, Siu HC, Law S, Ho SL, Yue SSK, Tsui WY, Chan D, Chan AS, Ma S, Lam KO, Bartfeld S, Man AHY, Lee BCH, Chan ASY, Wong JWH, Cheng PSW, Chan AKW, Zhang J, Shi J, Fan X, Kwong DLW, Mak TW, Yuen ST, Clevers H, Leung SY (2018) A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23:882–897.e11

    Google Scholar 

  • Yan HHN, Siu HC, Ho SL, Yue SSK, Gao Y, Tsui WY, Chan D, Chan AS, Wong JWH, Man AHY, Lee BCH, Chan ASY, Chan AKW, Hui HS, Cheung AKL, Law WL, Lo OSH, Yuen ST, Clevers H, Leung SY (2020) Organoid cultures of early-onset colorectal cancers reveal distinct and rare genetic profiles. Gut 69:2165–2179

    CAS  PubMed  Google Scholar 

  • Yang C, Xia BR, Jin WL, Lou G (2019) Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 19:341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y, Xu X, Yang L, Zhu J, Wan J, Shen L, Xia F, Fu G, Deng Y, Pan M, Guo Q, Gao X, Li Y, Rao X, Zhou Y, Liang L, Wang Y, Zhang J, Zhang H, Li G, Zhang L, Peng J, Cai S, Hu C, Gao J, Clevers H, Zhang Z, Hua G (2020) Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26:17–26.e6

    CAS  PubMed  Google Scholar 

  • Yeo D, Giardina C, Saxena P, Rasko JEJ (2022) The next wave of cellular immunotherapies in pancreatic cancer. Mol Ther Oncolytics 24:561–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JH, Ma S (2022) Organoids as research models for hepatocellular carcinoma. Exp Cell Res 411:112987

    CAS  PubMed  Google Scholar 

  • Yu L, Li Z, Mei H, Li W, Chen D, Liu L, Zhang Z, Sun Y, Song F, Chen W, Huang W (2021) Patient-derived organoids of bladder cancer recapitulate antigen expression profiles and serve as a personal evaluation model for CAR-T cells in vitro. Clin Transl Immunol 10:e1248

    CAS  Google Scholar 

  • Yuki K, Cheng N, Nakano M, Kuo CJ (2020) Organoid models of tumor immunology. Trends Immunol 41:652–664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeöld A, Sándor GO, Kiss A, Soós A, Tölgyes T, Bursics A, Szűcs Á, Harsányi L, Kittel Á, Gezsi A, Buzás EI, Wiener Z (2021) Shared extracellular vesicle miRNA profiles of matched ductal pancreatic adenocarcinoma organoids and blood plasma samples show the power of organoid technology. Cell Mol Life Sci 78:3005–3020

    PubMed  Google Scholar 

  • Zhang S, Iyer S, Ran H, Dolgalev I, Gu S, Wei W, Foster CJR, Loomis CA, Olvera N, Dao F, Levine DA, Weinberg RA, Neel BG (2021) Genetically defined, syngeneic organoid platform for developing combination therapies for ovarian cancer. Cancer Discov 11:362–383

    CAS  PubMed  Google Scholar 

  • Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W, Yi Y, Zhang Q, Wu Y (2020) Cancer-associated adipocytes: emerging supporters in breast cancer. J Exp Clin Cancer Res 39:156

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng C, Schneider JW, Hsieh J (2020) Role of RB1 in human embryonic stem cell-derived retinal organoids. Dev Biol 462:197–207

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang J, Tan J, Wu C, Zhang J, Liu T, Fan C, Li J, Zhang Y (2020) Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy. Nucleic Acids Res 48:8870–8882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zumwalde NA, Haag JD, Sharma D, Mirrielees JA, Wilke LG, Gould MN, Gumperz JE (2016) Analysis of immune cells from human mammary ductal epithelial organoids reveals Vδ2+ T cells that efficiently target breast carcinoma cells in the presence of bisphosphonate. Cancer Prev Res (Phila) 9:305–316

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yousefpour Marzbali, M., Rezaei, N. (2023). The Role of Tumoroids in Cancer Research. In: Rezaei, N. (eds) Cancer Research: An Interdisciplinary Approach. Interdisciplinary Cancer Research, vol 1. Springer, Cham. https://doi.org/10.1007/16833_2022_112

Download citation

Publish with us

Policies and ethics