Abstract
This chapter develops a unified model predicting the whole-body response to endotoxin. We simulate dynamics using differential equations examining the response to a lipopolysaccharide (LPS) injection. The model tracks pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10), concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol in the hypothalamic–pituitary–adrenal (HPA) axis. Daily hormonal variations are integrated into the model by including circadian oscillations when tracking CRH. Additionally, the model tracks heart rate, blood pressure, body temperature, and pain perception. Studied quantities function on timescales ranging from minutes to days. To understand how endotoxin impacts the body over this vast span of timescales, we examine the response to variations in LPS administration methods (single dose, repeated dose, and continuous dose) as well as the timing of the administration and the amount of endotoxin released into the system. We calibrate the model to literature data for a 2 ng/kg LPS bolus injection. Results show that LPS administration during early morning or late evening generates a more pronounced hormonal response. Most of the LPS effects are eliminated from the body 24 hours after administration, the main impact of inflammation remains in the system for 48 hours, and repeated dose simulations show that residual effects remain more than 10 days after the initial injection. We also show that if the LPS administration is recurrent or total dosage is increased, the system response is amplified, posing a greater risk of hypotension and pyrexia.
Keywords
- Inflammation
- Computational model
- Ordinary differential equations
- Lipopolysaccharide (LPS)
- Endotoxin response
- Systems model
- Time scales
- Dosing strategies
Mathematics Subject Classifications (MSC2020)
- Primary: 92-10, 92C30, 92C50
- Secondary: 92C42, 92B25
This is a preview of subscription content, access via your institution.
References
Albrecht, U. (2012). Timing to perfection: The biology of central and peripheral circadian clocks. Neuron, 74, 246–260. https://doi.org/10.1016/j.neuron.2012.04.006
Andersen, M., Vinther, F., & Ottesen, J. T. (2013). Mathematical modeling of the hypothalamic-pituitary-adrenal gland (HPA) axis, including hippocampal mechanisms. Mathematical Biosciences, 246, 122–138. https://doi.org/10.1016/j.mbs.2013.08.010
Aziz, A., Nishanian, P., Mitsuyasu, R., Detels, R., & Fahey, J. L. (1999). Variables that affect assays for plasma cytokines and soluble activation markers. Clinical and Vaccine Immunology, 6, 89–95. https://doi.org/10.1128/cdli.6.1.89-95.1999
Bahador, M., & Cross, A. S. (2007). Review: From therapy to experimental model: A hundred years of endotoxin administration to human subjects. Journal of Endotoxin Research, 13, 251–279. https://doi.org/10.1177/0968051907085986
Bangsgaard, E. O., & Ottesen, J. T. (2017). Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Mathematical Biosciences, 287, 24–35. https://doi.org/10.1016/j.mbs.2016.10.007
Bangsgaard, E. O., Hjorth, P. G., Olufsen, M. S., Mehlsen, J., & Ottesen, J. T. (2017). Integrated inflammatory stress (ITIS) model. The Bulletin of Mathematical Biology, 79, 1487–1509. https://doi.org/10.1007/s11538-017-0293-2
Beishuizen, A., & Thijs, L. G. (2013). Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of Endotoxin Research, 9, 3–24. https://doi.org/10.1179/096805103125001298
Benson, S., Kattoor, J., Wegner, A., Hammes, F., Reidick, D., Grigoleit, J. S., Engler, H., Oberbeck, R., Schedlowski, M., & Elsenbruch, S. (2012). Acute experimental endotoxemia induces visceral hypersensitivity and altered pain evaluation in healthy humans. Pain, 153, 794–799. https://doi.org/10.1016/j.pain.2011.12.001
Blunck, R., Scheel, O., Müller, M., Brandenburg, K., Seitzer, U., & Seydel, U. (2001). New insights into endotoxin-induced activation of macrophages: involvement of a K+ channel in transmembrane signaling. Journal of Immunology, 166, 1009–1015. https://doi.org/10.4049/jimmunol.166.2.1009
Brady, R., Frank-Ito, D. O., Tran, H. T., Janum, S., Møller, K., Brix, S., Ottesen, J. T., Mehlsen, J., & Olufsen, M. S. (2018). Personalized mathematical model of endotoxin-induced inflammatory responses in young men and associated changes in heart rate variability. Mathematical Modelling of Natural Phenomena, 13(5), 42. https://doi.org/10.1051/mmnp/2018031
Brooks, D., Barr, L. C., Wiscombe, S., McAuley, D. F., Simpson, A. J., & Rostron, A. J. (2020). Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. European Respiratory Journal, 56, 1901298. https://doi.org/10.1183/13993003.01298-2019
Byrne, A., & Reen, D. J. (2002). Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. Journal of Immunology, 168, 1968–1977. https://doi.org/0.4049/jimmunol.168.4.1968
Cao, W. W., & Morrison, S. (2003). Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Research, 980, 1–10. https://doi.org/10.1016/s0006-8993(03)02981-0
Carrara, M., Ferrario, M., Pinto, B. B., & Herpain, A. (2021). The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Annals of Intensive Care, 11(1), 80. https://doi.org/10.1186/s13613-021-00869-7
Chen, P.-Y., Qin, L., Li, G., Wang, Z., Dahlman, J. E., Malagon-Lopez, J., Gujja, S., Cilfone, N. A., Kauffman, K. J., Sun, L., Sun, H., Zhang, X., Aryal, B., Canfran-Duque, A., Liu, R., Kusters, P., Sehgal Jiao, Y., Anderson, D. G., Gulcher, J., Fernandez-Hernando, C., Lutgens, E., Schwartz, M. A., Pober, J. S., Chittenden, T. W., Tellides, G., & Simons, M. (2019). Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 1, 912–926. https://doi.org/10.1038/s42255-019-0102-3
Chesrown, S. E., Monnier, J., Visner, G., & Nick, H. S. (1994). Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-γ, TGF-β, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochemical and Biophysical Research Communications, 200, 126–134. https://doi.org/10.1006/bbrc.1994.1424
Chow, C. C., Clermont, G., Kumar, R., Lagoa, C., Tawadrous, Z., Gallo, D., Betten, B., Bartels, J., Constantine, G., Fink, M. P., Billiar, T. R., & Vodovotz, Y. (2005). The acute inflammatory response in diverse shock states. Shock, 24, 74–84. https://doi.org/10.1097/01.shk.0000168526.97716.f3
Ciesielska, A., Hromada-Judycka, A., Ziemlińska, E., & Kwiatkowska, K. (2019). Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS. Journal of Leukocyte Biology, 106, 1285–1301. https://doi.org/10.1002/JLB.2A0918-368RR
Clodi, M., Vila, G., Geyeregger, R., Riedl, M., Stulnig, T. M., Struck, J., Luger, T. A., & Luger, A. (2008). Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. American Journal of Physiology, 295, E686–E691. https://doi.org/10.1152/ajpendo.90263.2008
Colebank, M. J., Qureshi, M. U., Rajagopal, S., Krasuski, R. A., & Olufsen, M. S. (2021). A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. American Journal of Physiology, 321, H318–H338. https://doi.org/10.1152/ajpheart.00086.2021
Conti, B., Tabarean, I., Andrei, C., & Bartfai, T. (2004). Cytokines and fever. Frontiers in Bioscience, 9, 1433–1449. https://doi.org/10.1159/000237256
Copeland, S., Warren, H. S., Lowry, S. F., Calvano, S. E., & Remick, D. (2005). Acute inflammatory response to endotoxin in mice and humans. Clinical and Vaccine Immunology, 12, 60–67. https://doi.org/10.1128/CDLI.12.1.60-67.2005
Crandall, C. G., Zhang, R., & Levine, B. (2000). Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans. American Journal of Physiology, 279, H2486–H2492. https://doi.org/10.1152/ajpheart.2000.279.5.H2486
Crandall, C. G., & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5, 17–43. https://doi.org/10.1002/cphy.c140015
Day, J., Rubin, J., Vodovotz, Y., Chow, C. C., Reynolds, A. A., & Clermont, G. (2006). A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. Journal of Theoretical Biology, 242, 237–256. https://doi.org/10.1016/j.jtbi.2006.02.015.
Dillingh, M. R., van Poelgeest, E. P., Malone, K. E., Kemper, E. M., Stroes, E. S. G., Moerland, M., & Burggraaf, J. (2014). Characterization of inflammation and immune cell modulation induced by low-dose LPS administration to healthy volunteers. Journal of Inflammation, 11, 28. https://doi.org/10.1186/s12950-014-0028-1
Dinges, M. N., & Schlievert, P. M. (2001). Comparative analysis of lipopolysaccharide-induced tumor necrosis factor alpha activity in serum and lethality in mice and rabbits pretreated with the staphylococcal superantigen toxic shock syndrome toxin. Infection Immunity, 69, 7169–7172. https://doi.org/10.1128/IAI.69.11.7169-7172.2001
Dobreva, A., Brady-Nicholls, R., Larripa, K., Puelz, C., Mehlsen, J., & Olufsen, M. S. (2021). A physiological model of the inflammatory-thermal-pain-cardiovascular interactions during an endotoxin challenge. The Journal of Physiology, 599, 1459–1485. https://doi.org/10.1113/JP280883
Dyson, A., & Singer, M. (2009). Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Critical Care Medicine, 37(1 Suppl), S30–S37. https://doi.org/10.1097/CCM.0b013e3181922bd3
Foteinou, P. T., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2009). Modeling endotoxin-induced systemic inflammation using an indirect response approach. Mathematical Biosciences, 217, 27–42. https://doi.org/10.1016/j.mbs.2008.09.003
Foteinou, P. T., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2011). A physiological model for autonomic heart rate regulation in human endotoxemia. Shock, 35, 229–239. https://doi.org/10.1097/SHK.0b013e318200032b
Fullerton, J. N., Segre, E., De Maeyer, R. P., Maini, A. A., & Gilroy, D. W. (2016). Intravenous endotoxin challenge in healthy humans: an experimental platform to investigate and modulate systemic inflammation. Journal of Visualized Experiments, 111, e53913. https://doi.org/10.3791/53913
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25, 1822–1832. https://doi.org/10.1038/s41591-019-0675-0
Gellish, R. L., Goslin, B. R., Olson, R. E., McDonald, A., Russi, G. D., & Moudgil, V. K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Medicine & Science in Sports & Exercise, 39, 822–829. https://doi.org/10.1097/mss.0b013e31803349c6
Gudmand-Hoeyer, J., Timmermann, S., & Ottesen, J. T. (2014). Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations. Mathematical Biosciences, 257, 23–32. https://doi.org/10.1016/j.mbs.2014.07.013
Hamzic, N., Tang, Y., Eskilsson, A., Kugelberg, U., Ruud, J., Jönsson, J. I., Blomqvist, A., & Nilsberth, C. (2013). Interleukin-6 primarily produced by non-hematopoietic cells mediates the lipopolysaccharide-induced febrile response. Brain, Behavior, and Immunity, 33, 123–130. https://doi.org/10.1016/j.bbi.2013.06.006
Hansson, G. K., Anna-Karin, L., Robertson, A. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 1, 297–329. https://doi.org//10.1161/hc0902.104353
Hosseinichimeh, N., Rahmandad, H., & Wittenborn, A. K. (2015). Modeling the hypothalamus–pituitary–adrenal axis: A review and extension. Mathematical Biosciences, 268, 52–65. https://doi.org/0.1016/j.mbs.2015.08.004
Huebner, D. M., McGarrity, L. A., Perry, N. S., Spivey, L. A., & Smith, T. W. (2021). Cardiovascular and cortisol responses to experimentally-induced minority stress. Health Psychology, 40, 316–325. https://doi.org/10.1037/hea0001067
Huo, Y., Chu, Y., Guo, L., Liu, L., Xia, X., & Wang, T. (2017). Cortisol is associated with low frequency of interleukin 10-producing B cells in patients with atherosclerosis. Cell Biochemistry & Function, 35, 178–183. https://doi.org/10.1002/cbf.3262
Janum, S., Nielsen, S. T., Werner, M. U., Mehlsen, J., Kehlet, H., & Møller, K. (2016). Pain perception in healthy volunteers: effect of repeated exposure to experimental systemic inflammation. Innate Immunity, 22, 546–556. https://doi.org/10.1177/1753425916663638
Jin, J.-O., Han, X., & Yu, Q. (2014). Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. Journal of Autoimmunity, 40, 28–44. https://doi.org/10.1016/j.jaut.2012.07.009
Johnston, G. R., & Webster, N. R. (2009). Cytokines and the immunomodulatory function of the vagus nerve. British Journal of Anaesthesia, 102, 453–62. https://doi.org/10.1093/bja/aep037
Kadelka, S., Boribong, B. P., Li, L., & Ciupe, S. M. (2019). Modeling the bistable dynamics of the innate immune system. The Bulletin of Mathematical Biology, 81, 256–276. https://doi.org/10.1007/s11538-018-0527-y
Kapfer, E.-M., Stapor, P., & Hasenauer, J. (2019). Challenges in the calibration of large-scale ordinary differential equation models. IFAC-PapersOnLine, 52(26), 58–64. https://doi.org/10.1016/j.ifacol.2019.12.236
Karjalainen, J., & Viitasalo, M. (1986). Fever and cardiac rhythm. Archives of Internal Medicine, 146, 1169–1171. https://doi.org/10.1001/archinte.1986.00360180179026
Keller, A., & Mazucha, J. (2009). A circadian clock in macrophages controls inflammatory immune responses. PNAS, 106, 21407–21412. https://doi.org/10.1073/pnas.0906361106
Kiers, D., Koch, R. M., Hamers, L., Gerretsen, J., Thijs, E. J. M., Van Ede, L., Riksen, N. P., Kox, M., & Pickkers, P. (2017). Characterization of a model of systemic inflammation in humans in vivo elicited by continuous infusion of endotoxin. Scientific Reports, 7(Aug 2016), 1–10. https://doi.org/10.1038/srep40149
Kox, M., van Eijk, L. C., Zwaag, J., van den Wildenberg, A., Sweep, F. C. G. J., van der Hoeven, J. G., & Pickkers, P. (2014). Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. PNAS, 111, 7379–7384. https://doi.org/10.1073/pnas.1322174111
Krabbe, K. S., Bruunsgaard, H., Qvist, J., Hansen, C. M., Møller, K., Fonsmark, L., Madsen, P. L., Kronborg, G., Frandsen, U., Andersen, H., Skinhøj, P., & Pedersen, B. K. (2001). Hypotension during endotoxemia in aged humans. European Journal of Anaesthesiology, 18(9), 572–575. https://doi.org/10.1046/j.1365-2346.2001.00958.x
Kucharzik, T., Lügering, N., Pauels, H.-G., Domschke, W., & Stoll, R. (1998). IL-4, IL-10 and IL-13 down-regulate monocyte-chemoattracting protein-1 (MCP-1) production in activated intestinal epithelial cells. Clinical and Experimental Immunology, 111, 152–157. https://doi.org/10.1046/j.1365-2249.1998.00481.x
Kumar, R., Clermont, G., Vodovotz, Y., & Chow, C. C. (2004). The dynamics of acute inflammation. Journal of Theoretical Biology, 230, 145–155. https://doi.org/10.1016/j.jtbi.2004.04.044
Lai, N., Mills, K., & Chiu, I. (2017). Sensory neuron regulation of gastrointestinal inflammation and bacterial host defense. Journal of Internal Medicine, 282, 5–23. https://doi.org/10.1111/joim.12591
Lazarus, M., Yoshida, K., Coppari, R., Bass, C. E., Mochizuki, T., Lowell, B. B., & Saper, C. B. (2007). EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nature Neuroscience, 10, 1131–1133. https://doi.org/10.1038/nn1949
Lee, D. Y., Kim, E., & Choi, M. H. (2015). Technical and clinical aspects of cortisol a biochemical marker of chronic stress. BMM Reports, 48, 209–216. https://doi.org/10.5483/BMBREP.2015.48.4.275
Levine, A. B., Punihaole, D., & Levine, T. B. (2012). Characterization of the role of nitric oxide and its clinical applications. Cardiology, 122, 55–68. https://doi.org/10.1159/000338150
Lopez-Acevo, C. A., Arrendondo-Loza, E., Salinas-Carmona, M. C., Rendon, A., Martinez-Castilla, A. M., Vazquez-Marmolejo, A. V., Munoz-Maldonado, G., & Rosas-Taraco, A. G. (2021). Cortisol and perceived stress are associated with cytokines levels in patients infected with influenza B virus. Cytokine, 138, 155400. https://doi.org/10.1016/j.cyto.2020.155400
Lupis, S. B., Lerman, M., & Wolf, J. M. (2014). Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women. Psychoneuroendocrinology, 49, 84–95. https://doi.org/10.1016/j.psyneuen.2014.07.004
Lynn, M., Rossignol, D. P., Wheeler, J. L., Kao, R. J., Perdomo, C. A., Noveck, R., Vargas, R., D’Angelo, T., Gotzkowsky, S., & McMahon, F. G. (2003). Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. The Journal of Infectious Diseases, 187(4), 631–639. https://doi.org/10.1086/367990
Mafic, M., & Simon, S. R. (1991). Tumor necrosis factor release from lipopolysaccharide-stimulated human monocytes: Lipopolysaccharide tolerance in vitro. Cytokine, 3, 576–583. https://doi.org/10.1016/1043-4666(91)90484-u
Maixner, W., Gracely, R. H., Zuniga, J. R., Humphrey, C. B., & Bloodworth, G. R. (1990). Cardiovascular and sensory responses to forearm ischemia and dynamic hand exercise. American Journal of Physiology, 259, R1156–R1163. https://doi.org/10.1152/ajpregu.1990.259.6.R1156
Malek, H., Ebadzadeh, M. M., Safabakhsh, R., Razavi, A., & Zaringhalam, J. (2015). Dynamics of the HPA axis and inflammatory cytokines: Insights from mathematical modeling. Computers in Biology and Medicine, 67, 1–12. https://doi.org/10.1016/j.compbiomed.2015.09.018
McDaniel, M., Keller, J., White, S., & Baird, A. (2019). A whole-body mathematical model of sepsis progression and treatment designed in the BioGears physiology engine. Frontiers in Physiology, 10, 1321. https://doi.org/10.3389/fphys.2019.01321
McNeill, E., Crabtree, M. J., Sahgal, N., Patel, J., Chuaiphichai, S., Iqbal, A. J., Hale, A. B., Greaves, D. R., & Channon, K. M. (2015). Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 79, 206–216. https://doi.org/10.1016/j.freeradbiomed.2014.10.575
Messerer, D. A. C., Vidoni, L., Erber, M., Stratmann, A. E. P., Bauer, J. M., Braun, C. K., Hug, S., Adler, A., Ekdahl, K. N., Nilsson, B., Barth, E., Radermacher, P., & Huber-Lang, M. (2020) Animal-free human whole blood sepsis model to study changes in innate immunity. Frontiers in Immunology, 11, 571992. https://doi.org/10.3389/fimmu.2020.571992
Minucci, S. B., Heise, R. L., & Reynolds, A. M. (2020). Review of mathematical modeling of the inflammatory response in lung infections and injuries. Frontiers in Applied Mathematics and Statistics, 6, 36. https://doi.org/10.3389/fams.2020.00036
Murphy, K., Travers, P., & Walport, M. (2012). Janeway’s immunobiology (8th edn). Garland Science, New York, NY
Nakamura, K., Matsumura, K., Hübschle, T., Nakamura, Y., Hioki, H., Fujiyama, F., Boldogköi, Z., König, M., Thiel, H.-J., Gerstberger, R., Kobayashi, S., & Kaneko, T. (2004). Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermo-regulatory functions. The Journal of Neuroscience, 24, 5370–5380. https://doi.org/10.1523/JNEUROSCI.1219-04.2004
Nguyen, H. B., Rivers, E. P., Abrahamian, F. M., Moran, G. J., Abraham, E., Trzeciak, S., Huang, D. T., Osborn, T., Stevens, D., & Talan, D. A. (2006). Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Annals of Emergency Medicine, 48, 28–54. https://doi.org/10.1016/j.annemergmed.2006.02.015
NIGMS, National Institute of General Medical Sciences. (2020). Circadian Rhythms. https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx
Ottesen, J. T. (2011). The mathematical microscope – making the inaccessible accessible. In B. Booß-Bavnbek, B. Klösgen, J. Larsen, F. Pociot, & E. Renström (Eds.), BetaSys systems biology of regulated exocytosis in pancreatic β-cells. Systems Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6956-9_6
Ottesen, J. T. (2013). Etiology and diagnosis of major depression – a novel quantitative approach. Open Journal of Endocrine and Metabolic Diseases, 3, 120–127. https://doi.org/10.4236/ojemd.2013.32018
Oyetunji, T. A., Chang, D. C., Crompton, J. G., Greene, W. R., Efron, D. T., Haut, E. R., Cornwell, 3rd, E. E., & Haider, A. H. (2011). Redefining hypotension in the elderly: normotension is not reassuring. The Archives of Surgery, 146, 865–869. https://doi.org/10.1001/archsurg.2011.154
Pajkrt, D., van der Poll, T., Levi, M., Cutler, D. L., Affrime, M. B., van den Ende, A., ten Cate, J. W., & van Deventer, S. J. (1997). Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Blood, 89, 2701–2705. https://doi.org/10.1182/blood.V89.8.2701
Parker, R. S., Hogg, J. S., Roy, A., Kellum, J. A., Rimmele, T., Daun-Gruhn, S., Fedorchak, M. V., Valenti, I. E., Federspiel, W. J., Rubin, J., & Vodovotz, Y. (2016). Modeling and hemofiltration treatment of acute inflammation. Processes, 206(4), 38. https://doi.org/10.3390/pr4040038
Parker, S. J., & Watkins, P. E. (2001). Experimental models of Gram-negative sepsis. British Journal of Surgery, 88, 22–30. https://doi.org/10.1046/j.1365-2168.2001.01632.x
Patel, A. A., Zhang, Y., Fullerton, J. N., Boelen, L., Rongvaux, A., Maini, A. A., Bigley, V., Flavell, R. A., Gilroy, D. W., Asquith, B., Macallan, D., & Yona, S. (2017). The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. Journal of Experimental Medicine, 214, 1913–1923. https://doi.org/10.1084/jem.20170355
Pavlov, V. A., & Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nature Reviews Endocrinology, 8, 743–754. https://doi.org/10.1038/nrendo.2012.189
Pigozzo1, A. B., Macedo, G. C., dos Santos, R. W., & Lobosco, M. (2013). On the computational modeling of the innate immune system. BMC Bioinformatics, 14(Suppl 6), S7. https://doi.org/10.1186/1471-2105-14-S6-S7
Prendergast, B. J., Cable, E. J., Stevenson, T. J., Onishi, K. G., Zucker, I., & Kay, L. M. (2015). Circadian disruption alters the effects of lipopolysaccharide treatment on circadian and ultradian locomotor activity and body temperature rhythms of female Siberian hamsters. Journal of Biological Rhythms, 30, 543–556. https://doi.org/10.1177/0748730415609450
Randall, E. B., Billeschou, A., Brinth, L. S., Mehlsen, J., & Olufsen, M. S. (2019). A model-based analysis of autonomic nervous function in response to the Valsalva maneuver. Journal of Applied Physiology, 127, 1386–1402. https://doi.org/10.1152/japplphysiol.00015.2019
Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., & Ermentrout, B. G. (2006). A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. Journal of Theoretical Biology, 242, 220–236. https://doi.org/10.1016/j.jtbi.2006.02.016
Rittirsch, D., Hoesel, L. M., & Ward, P. A. (2007). The disconnect between animal models of sepsis and human sepsis. Journal of Leukocyte Biology, 81, 137–143. https://doi.org/10.1189/jlb.0806542
Rivìre, B., Epshteyn, Y., Swigon, D., & Vodovotz, Y. (2009). A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with toll-like receptor 4 demonstrates inherent preconditioning behavior. Mathematical Biosciences, 217, 19–26. https://doi.org/10.1016/j.mbs.2008.10.002
Saccò, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., Pioli, S., Magnano, A., Spagnoli, F., Giuri, P., Fiaccadori, E., & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension, 15, 600–605. https://doi.org/10.1111/jch.12145
Salim, T., Sershen, C., & May, E. (2016). Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One, 11, e0153289 https://doi.org/10.1371/journal.pone.0153289
Sayk, F., Vietheer, A., Schaaf, B., Wellhoener, P., Weitz, G., Lehnert, H., & Dodt, C. (2008). Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 295, R891–R898. https://doi.org/10.1152/ajpregu.90444.2008
Scheff, J. D., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2010). Modeling the influence of circadian rhythms on the acute inflammatory response. Journal of Theoretical Biology, 264, 1068–1076. https://doi.org/10.1016/j.jtbi.2010.03.026
Scheff, J. D., Mavroudis, P. D., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2011). Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiological Genomics, 43, 951–964. https://doi.org/10.1152/physiolgenomics.00040.2011
Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets – an updated view. Mediators of Inflammation, 2013, 165974. https://doi.org/10.1155/2013/165974
Schultz, M. J., & van der Poll, T. (2002). Animal and human models for sepsis. Annals of Medicine, 34, 573–581. https://doi.org/10.1080/078538902321117797
Schulz, A., Richterb, S., Ferreira de Sáb, D. S., Vögele, C., & Schächinger, H. (2020). Cortisol rapidly increases baroreflex sensitivity of heart rate control, but does not affect cardiac modulation of startle. Physiology & Behavior, 215, 112782. https://doi.org/10.1016/j.physbeh.2019.112792
Seyhan, A. (2019). Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Translational Medicine Communications, 4, 18. https://doi.org/10.1186/s41231-019-0050-7
Shi, Z., Wu, C. J., Ben-Arieh, D., & Simpson, S. Q. (2015). Mathematical model of innate and adaptive immunity of sepsis: A modeling and simulation study of infectious disease. BioMed Research International, 2015, 504259. https://doi.org/10.1155/2015/504259
Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M., & Klarlund Pedersen, B. (2003). Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. The FASEB Journal, 17, 884–886. https://doi.org/10.1096/fj.02-0670fje
Taudorf, S., Krabbe, K. S., Berg, R. M. G., Pedersen, B. K., & Møller, K. (2007). Human models of low-grade inflammation: Bolus versus continuous infusion of endotoxin. Clinical and Vaccine Immunology, 14, 250–255. https://doi.org/10.1128/CVI.00380-06
van der Bruggen, T., Nijenhuis, S., van Raaij, E., Verhoef, J., & van Asbeck2, B. S. (1999). Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infection and Immunity, 67, 3824–3829. https://doi.org/0.1128/IAI.67.8.3824-3829.1999
van der Worp, H. B., Howells, D. W., Sena, E. S., Porritt, M. J., Rewel, S., O’Collins, V., & Macleod, M. R. (2010). Can animal models of disease reliably inform human studies? PLoS Medicine, 7(3), e1000245. https://doi.org/10.1371/journal.pmed.1000245
van Lier, D., Geven, C., Leijte, G. P., & Pickkers, P. (2019). Experimental human endotoxemia as a model of systemic inflammation. Biochimie, 159, 99–106. https://doi.org/10.1016/j.biochi.2018.06.014
Verboogen, D. R. J., Revelo, N. H., ter Beest, M., & van den Bogaart, G. (2019). Interleukin-6 secretion is limited by self-signaling in endosomes. Journal of Molecular Cell Biology, 11, 144–157. https://doi.org/10.1093/jmcb/mjy038
Verma, V., Sheikh, Z., & Ahmed, A. S. (2015). Nociception and role of immune system in pain. Acta Neurologica Belgica, 115, 213–220. https://doi.org/10.1007/s13760-014-0411-y
Vodovotz, Y., & An, G. (2013). Complex systems and computational biology approaches to acute inflammation. Springer, NY, NY. https://doi.org/10.1007/978-3-030-56510-7
Walker, J. J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J. R., & Lightman, S. L. (2012). The origin of glucocorticoid hormone oscillations. PLoS Biology, 10, 69–82. https://doi.org/10.1371/journal.pbio.1001341
Wang, D.-W., Yin, Y.-M., & Yao, Y.-M. (2016). Vagal modulation of the inflammatory response in sepsis. International Reviews of Immunology, 35, 415–433. https://doi.org/10.3109/08830185.2015.1127369
Wang, W., Ji, J., & Dow, K. E. (2003). Corticotropin-releasing hormone induces proliferation and TNF-a release in cultured rat microglia via MAP kinase signalling pathways. Journal of Neurochemistry, 84, 189–195. https://doi.org/10.1046/j.1471-4159.2003.01544.x
Webster, J. I., & Sternberg, E. M. (2004). Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. Journal of Endocrinology, 181, 207–221. https://doi.org/10.1677/joe.0.1810207
Wegner, A., Elsenbruch, S., Maluck, J., Grigoleit, J. S., Engler, H., Jäger, M., Spreitzer, I., Schedlowski, M., & Benson, S. (2014). Inflammation-induced hyperalgesia: effects of timing, dosage, and negative affect on somatic pain sensitivity in human experimental endotoxemia. Brain, Behavior, and Immunity, 41, 46–54. https://doi.org/10.1016/j.bbi.2014.05.001
Williams, N. D., Brady, R., Gilmore, S., Gremaud, P., Tran, H. T., Ottesen, J. T., Mehlsen, J., & Olufsen, M. S. (2019). Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models. Journal of Mathematical Biology, 79, 987–1014. https://doi.org/10.1007/s00285-019-01386-9
Yamanaka, Y., Uchida, K., Akashi, M., Watanabe, Y., Yaguchi, A., Shimamoto, S., Shimoda, S., Yamada, H., Yamashita, M., & Kimura, H. (2019). Mathematical modeling of septic shock based on clinical data. Theoretical Biology and Medical Modelling, 16, 5. https://doi.org/10.1186/s12976-019-0101-9
Yamazaki, F., Sagawa, S., Torii, R., Endo, Y., & Shiraki, K. (1997). Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans. International Journal of Biometeorology, 40, 200–205. https://doi.org/10.1007/s004840050042
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
See Table 1.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Windoloski, K.A., Bangsgaard, E.O., Dobreva, A., Ottesen, J.T., Olufsen, M.S. (2023). A Unified Computational Model for the Human Response to Lipopolysaccharide-Induced Inflammation. In: Mathematics Online First Collections. Springer, Cham. https://doi.org/10.1007/16618_2022_39
Download citation
DOI: https://doi.org/10.1007/16618_2022_39
Published:
Publisher Name: Springer, Cham