Skip to main content

A Unified Computational Model for the Human Response to Lipopolysaccharide-Induced Inflammation

  • Chapter
  • First Online:
Multiplicity of Time Scales in Complex Systems

Abstract

This chapter develops a unified model predicting the whole-body response to endotoxin. We simulate dynamics using differential equations examining the response to a lipopolysaccharide (LPS) injection. The model tracks pro- and anti-inflammatory cytokines (TNF-α, IL-6, IL-10), concentrations of corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), and cortisol in the hypothalamic–pituitary–adrenal (HPA) axis. Daily hormonal variations are integrated into the model by including circadian oscillations when tracking CRH. Additionally, the model tracks heart rate, blood pressure, body temperature, and pain perception. Studied quantities function on timescales ranging from minutes to days. To understand how endotoxin impacts the body over this vast span of timescales, we examine the response to variations in LPS administration methods (single dose, repeated dose, and continuous dose) as well as the timing of the administration and the amount of endotoxin released into the system. We calibrate the model to literature data for a 2 ng/kg LPS bolus injection. Results show that LPS administration during early morning or late evening generates a more pronounced hormonal response. Most of the LPS effects are eliminated from the body 24 hours after administration, the main impact of inflammation remains in the system for 48 hours, and repeated dose simulations show that residual effects remain more than 10 days after the initial injection. We also show that if the LPS administration is recurrent or total dosage is increased, the system response is amplified, posing a greater risk of hypotension and pyrexia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht, U. (2012). Timing to perfection: The biology of central and peripheral circadian clocks. Neuron, 74, 246–260. https://doi.org/10.1016/j.neuron.2012.04.006

    Google Scholar 

  • Andersen, M., Vinther, F., & Ottesen, J. T. (2013). Mathematical modeling of the hypothalamic-pituitary-adrenal gland (HPA) axis, including hippocampal mechanisms. Mathematical Biosciences, 246, 122–138. https://doi.org/10.1016/j.mbs.2013.08.010

    MathSciNet  Google Scholar 

  • Aziz, A., Nishanian, P., Mitsuyasu, R., Detels, R., & Fahey, J. L. (1999). Variables that affect assays for plasma cytokines and soluble activation markers. Clinical and Vaccine Immunology, 6, 89–95. https://doi.org/10.1128/cdli.6.1.89-95.1999

    Google Scholar 

  • Bahador, M., & Cross, A. S. (2007). Review: From therapy to experimental model: A hundred years of endotoxin administration to human subjects. Journal of Endotoxin Research, 13, 251–279. https://doi.org/10.1177/0968051907085986

    Google Scholar 

  • Bangsgaard, E. O., & Ottesen, J. T. (2017). Patient specific modeling of the HPA axis related to clinical diagnosis of depression. Mathematical Biosciences, 287, 24–35. https://doi.org/10.1016/j.mbs.2016.10.007

    MathSciNet  Google Scholar 

  • Bangsgaard, E. O., Hjorth, P. G., Olufsen, M. S., Mehlsen, J., & Ottesen, J. T. (2017). Integrated inflammatory stress (ITIS) model. The Bulletin of Mathematical Biology, 79, 1487–1509. https://doi.org/10.1007/s11538-017-0293-2

    MathSciNet  Google Scholar 

  • Beishuizen, A., & Thijs, L. G. (2013). Endotoxin and the hypothalamo-pituitary-adrenal (HPA) axis. Journal of Endotoxin Research, 9, 3–24. https://doi.org/10.1179/096805103125001298

    Google Scholar 

  • Benson, S., Kattoor, J., Wegner, A., Hammes, F., Reidick, D., Grigoleit, J. S., Engler, H., Oberbeck, R., Schedlowski, M., & Elsenbruch, S. (2012). Acute experimental endotoxemia induces visceral hypersensitivity and altered pain evaluation in healthy humans. Pain, 153, 794–799. https://doi.org/10.1016/j.pain.2011.12.001

    Google Scholar 

  • Blunck, R., Scheel, O., Müller, M., Brandenburg, K., Seitzer, U., & Seydel, U. (2001). New insights into endotoxin-induced activation of macrophages: involvement of a K+  channel in transmembrane signaling. Journal of Immunology, 166, 1009–1015. https://doi.org/10.4049/jimmunol.166.2.1009

  • Brady, R., Frank-Ito, D. O., Tran, H. T., Janum, S., Møller, K., Brix, S., Ottesen, J. T., Mehlsen, J., & Olufsen, M. S. (2018). Personalized mathematical model of endotoxin-induced inflammatory responses in young men and associated changes in heart rate variability. Mathematical Modelling of Natural Phenomena, 13(5), 42. https://doi.org/10.1051/mmnp/2018031

  • Brooks, D., Barr, L. C., Wiscombe, S., McAuley, D. F., Simpson, A. J., & Rostron, A. J. (2020). Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. European Respiratory Journal, 56, 1901298. https://doi.org/10.1183/13993003.01298-2019

    Google Scholar 

  • Byrne, A., & Reen, D. J. (2002). Lipopolysaccharide induces rapid production of IL-10 by monocytes in the presence of apoptotic neutrophils. Journal of Immunology, 168, 1968–1977. https://doi.org/0.4049/jimmunol.168.4.1968

    Google Scholar 

  • Cao, W. W., & Morrison, S. (2003). Disinhibition of rostral raphe pallidus neurons increases cardiac sympathetic nerve activity and heart rate. Brain Research, 980, 1–10. https://doi.org/10.1016/s0006-8993(03)02981-0

  • Carrara, M., Ferrario, M., Pinto, B. B., & Herpain, A. (2021). The autonomic nervous system in septic shock and its role as a future therapeutic target: a narrative review. Annals of Intensive Care, 11(1), 80. https://doi.org/10.1186/s13613-021-00869-7

    Google Scholar 

  • Chen, P.-Y., Qin, L., Li, G., Wang, Z., Dahlman, J. E., Malagon-Lopez, J., Gujja, S., Cilfone, N. A., Kauffman, K. J., Sun, L., Sun, H., Zhang, X., Aryal, B., Canfran-Duque, A., Liu, R., Kusters, P., Sehgal Jiao, Y., Anderson, D. G., Gulcher, J., Fernandez-Hernando, C., Lutgens, E., Schwartz, M. A., Pober, J. S., Chittenden, T. W., Tellides, G., & Simons, M. (2019). Endothelial TGF-β signalling drives vascular inflammation and atherosclerosis. Nature Metabolism, 1, 912–926. https://doi.org/10.1038/s42255-019-0102-3

    Google Scholar 

  • Chesrown, S. E., Monnier, J., Visner, G., & Nick, H. S. (1994). Regulation of inducible nitric oxide synthase mRNA levels by LPS, INF-γ, TGF-β, and IL-10 in murine macrophage cell lines and rat peritoneal macrophages. Biochemical and Biophysical Research Communications, 200, 126–134. https://doi.org/10.1006/bbrc.1994.1424

    Google Scholar 

  • Chow, C. C., Clermont, G., Kumar, R., Lagoa, C., Tawadrous, Z., Gallo, D., Betten, B., Bartels, J., Constantine, G., Fink, M. P., Billiar, T. R., & Vodovotz, Y. (2005). The acute inflammatory response in diverse shock states. Shock, 24, 74–84. https://doi.org/10.1097/01.shk.0000168526.97716.f3

    Google Scholar 

  • Ciesielska, A., Hromada-Judycka, A., Ziemlińska, E., & Kwiatkowska, K. (2019). Lysophosphatidic acid up-regulates IL-10 production to inhibit TNF-α synthesis in Mϕs stimulated with LPS. Journal of Leukocyte Biology, 106, 1285–1301. https://doi.org/10.1002/JLB.2A0918-368RR

    Google Scholar 

  • Clodi, M., Vila, G., Geyeregger, R., Riedl, M., Stulnig, T. M., Struck, J., Luger, T. A., & Luger, A. (2008). Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. American Journal of Physiology, 295, E686–E691. https://doi.org/10.1152/ajpendo.90263.2008

    Google Scholar 

  • Colebank, M. J., Qureshi, M. U., Rajagopal, S., Krasuski, R. A., & Olufsen, M. S. (2021). A multiscale model of vascular function in chronic thromboembolic pulmonary hypertension. American Journal of Physiology, 321, H318–H338. https://doi.org/10.1152/ajpheart.00086.2021

    Google Scholar 

  • Conti, B., Tabarean, I., Andrei, C., & Bartfai, T. (2004). Cytokines and fever. Frontiers in Bioscience, 9, 1433–1449. https://doi.org/10.1159/000237256

    Google Scholar 

  • Copeland, S., Warren, H. S., Lowry, S. F., Calvano, S. E., & Remick, D. (2005). Acute inflammatory response to endotoxin in mice and humans. Clinical and Vaccine Immunology, 12, 60–67. https://doi.org/10.1128/CDLI.12.1.60-67.2005

    Google Scholar 

  • Crandall, C. G., Zhang, R., & Levine, B. (2000). Effects of whole body heating on dynamic baroreflex regulation of heart rate in humans. American Journal of Physiology, 279, H2486–H2492. https://doi.org/10.1152/ajpheart.2000.279.5.H2486

    Google Scholar 

  • Crandall, C. G., & Wilson, T. E. (2015). Human cardiovascular responses to passive heat stress. Comprehensive Physiology, 5, 17–43. https://doi.org/10.1002/cphy.c140015

    Google Scholar 

  • Day, J., Rubin, J., Vodovotz, Y., Chow, C. C., Reynolds, A. A., & Clermont, G. (2006). A reduced mathematical model of the acute inflammatory response II. Capturing scenarios of repeated endotoxin administration. Journal of Theoretical Biology, 242, 237–256. https://doi.org/10.1016/j.jtbi.2006.02.015.

    MathSciNet  Google Scholar 

  • Dillingh, M. R., van Poelgeest, E. P., Malone, K. E., Kemper, E. M., Stroes, E. S. G., Moerland, M., & Burggraaf, J. (2014). Characterization of inflammation and immune cell modulation induced by low-dose LPS administration to healthy volunteers. Journal of Inflammation, 11, 28. https://doi.org/10.1186/s12950-014-0028-1

    Google Scholar 

  • Dinges, M. N., & Schlievert, P. M. (2001). Comparative analysis of lipopolysaccharide-induced tumor necrosis factor alpha activity in serum and lethality in mice and rabbits pretreated with the staphylococcal superantigen toxic shock syndrome toxin. Infection Immunity, 69, 7169–7172. https://doi.org/10.1128/IAI.69.11.7169-7172.2001

    Google Scholar 

  • Dobreva, A., Brady-Nicholls, R., Larripa, K., Puelz, C., Mehlsen, J., & Olufsen, M. S. (2021). A physiological model of the inflammatory-thermal-pain-cardiovascular interactions during an endotoxin challenge. The Journal of Physiology, 599, 1459–1485. https://doi.org/10.1113/JP280883

    Google Scholar 

  • Dyson, A., & Singer, M. (2009). Animal models of sepsis: why does preclinical efficacy fail to translate to the clinical setting? Critical Care Medicine, 37(1 Suppl), S30–S37. https://doi.org/10.1097/CCM.0b013e3181922bd3

    Google Scholar 

  • Foteinou, P. T., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2009). Modeling endotoxin-induced systemic inflammation using an indirect response approach. Mathematical Biosciences, 217, 27–42. https://doi.org/10.1016/j.mbs.2008.09.003

    MathSciNet  Google Scholar 

  • Foteinou, P. T., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2011). A physiological model for autonomic heart rate regulation in human endotoxemia. Shock, 35, 229–239. https://doi.org/10.1097/SHK.0b013e318200032b

    Google Scholar 

  • Fullerton, J. N., Segre, E., De Maeyer, R. P., Maini, A. A., & Gilroy, D. W. (2016). Intravenous endotoxin challenge in healthy humans: an experimental platform to investigate and modulate systemic inflammation. Journal of Visualized Experiments, 111, e53913. https://doi.org/10.3791/53913

    Google Scholar 

  • Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine, 25, 1822–1832. https://doi.org/10.1038/s41591-019-0675-0

    Google Scholar 

  • Gellish, R. L., Goslin, B. R., Olson, R. E., McDonald, A., Russi, G. D., & Moudgil, V. K. (2007). Longitudinal modeling of the relationship between age and maximal heart rate. Medicine & Science in Sports & Exercise, 39, 822–829. https://doi.org/10.1097/mss.0b013e31803349c6

    Google Scholar 

  • Gudmand-Hoeyer, J., Timmermann, S., & Ottesen, J. T. (2014). Patient-specific modeling of the neuroendocrine HPA-axis and its relation to depression: Ultradian and circadian oscillations. Mathematical Biosciences, 257, 23–32. https://doi.org/10.1016/j.mbs.2014.07.013

    MathSciNet  Google Scholar 

  • Hamzic, N., Tang, Y., Eskilsson, A., Kugelberg, U., Ruud, J., Jönsson, J. I., Blomqvist, A., & Nilsberth, C. (2013). Interleukin-6 primarily produced by non-hematopoietic cells mediates the lipopolysaccharide-induced febrile response. Brain, Behavior, and Immunity, 33, 123–130. https://doi.org/10.1016/j.bbi.2013.06.006

    Google Scholar 

  • Hansson, G. K., Anna-Karin, L., Robertson, A. L., & Söderberg-Nauclér, C. (2006). Inflammation and atherosclerosis. Annual Review of Pathology: Mechanisms of Disease, 1, 297–329. https://doi.org//10.1161/hc0902.104353

    Google Scholar 

  • Hosseinichimeh, N., Rahmandad, H., & Wittenborn, A. K. (2015). Modeling the hypothalamus–pituitary–adrenal axis: A review and extension. Mathematical Biosciences, 268, 52–65. https://doi.org/0.1016/j.mbs.2015.08.004

    MathSciNet  Google Scholar 

  • Huebner, D. M., McGarrity, L. A., Perry, N. S., Spivey, L. A., & Smith, T. W. (2021). Cardiovascular and cortisol responses to experimentally-induced minority stress. Health Psychology, 40, 316–325. https://doi.org/10.1037/hea0001067

    Google Scholar 

  • Huo, Y., Chu, Y., Guo, L., Liu, L., Xia, X., & Wang, T. (2017). Cortisol is associated with low frequency of interleukin 10-producing B cells in patients with atherosclerosis. Cell Biochemistry & Function, 35, 178–183. https://doi.org/10.1002/cbf.3262

    Google Scholar 

  • Janum, S., Nielsen, S. T., Werner, M. U., Mehlsen, J., Kehlet, H., & Møller, K. (2016). Pain perception in healthy volunteers: effect of repeated exposure to experimental systemic inflammation. Innate Immunity, 22, 546–556. https://doi.org/10.1177/1753425916663638

    Google Scholar 

  • Jin, J.-O., Han, X., & Yu, Q. (2014). Interleukin-6 induces the generation of IL-10-producing Tr1 cells and suppresses autoimmune tissue inflammation. Journal of Autoimmunity, 40, 28–44. https://doi.org/10.1016/j.jaut.2012.07.009

    Google Scholar 

  • Johnston, G. R., & Webster, N. R. (2009). Cytokines and the immunomodulatory function of the vagus nerve. British Journal of Anaesthesia, 102, 453–62. https://doi.org/10.1093/bja/aep037

    Google Scholar 

  • Kadelka, S., Boribong, B. P., Li, L., & Ciupe, S. M. (2019). Modeling the bistable dynamics of the innate immune system. The Bulletin of Mathematical Biology, 81, 256–276. https://doi.org/10.1007/s11538-018-0527-y

    MathSciNet  Google Scholar 

  • Kapfer, E.-M., Stapor, P., & Hasenauer, J. (2019). Challenges in the calibration of large-scale ordinary differential equation models. IFAC-PapersOnLine, 52(26), 58–64. https://doi.org/10.1016/j.ifacol.2019.12.236

    MathSciNet  Google Scholar 

  • Karjalainen, J., & Viitasalo, M. (1986). Fever and cardiac rhythm. Archives of Internal Medicine, 146, 1169–1171. https://doi.org/10.1001/archinte.1986.00360180179026

    Google Scholar 

  • Keller, A., & Mazucha, J. (2009). A circadian clock in macrophages controls inflammatory immune responses. PNAS, 106, 21407–21412. https://doi.org/10.1073/pnas.0906361106

    Google Scholar 

  • Kiers, D., Koch, R. M., Hamers, L., Gerretsen, J., Thijs, E. J. M., Van Ede, L., Riksen, N. P., Kox, M., & Pickkers, P. (2017). Characterization of a model of systemic inflammation in humans in vivo elicited by continuous infusion of endotoxin. Scientific Reports, 7(Aug 2016), 1–10. https://doi.org/10.1038/srep40149

    Google Scholar 

  • Kox, M., van Eijk, L. C., Zwaag, J., van den Wildenberg, A., Sweep, F. C. G. J., van der Hoeven, J. G., & Pickkers, P. (2014). Voluntary activation of the sympathetic nervous system and attenuation of the innate immune response in humans. PNAS, 111, 7379–7384. https://doi.org/10.1073/pnas.1322174111

    Google Scholar 

  • Krabbe, K. S., Bruunsgaard, H., Qvist, J., Hansen, C. M., Møller, K., Fonsmark, L., Madsen, P. L., Kronborg, G., Frandsen, U., Andersen, H., Skinhøj, P., & Pedersen, B. K. (2001). Hypotension during endotoxemia in aged humans. European Journal of Anaesthesiology, 18(9), 572–575. https://doi.org/10.1046/j.1365-2346.2001.00958.x

    Google Scholar 

  • Kucharzik, T., Lügering, N., Pauels, H.-G., Domschke, W., & Stoll, R. (1998). IL-4, IL-10 and IL-13 down-regulate monocyte-chemoattracting protein-1 (MCP-1) production in activated intestinal epithelial cells. Clinical and Experimental Immunology, 111, 152–157. https://doi.org/10.1046/j.1365-2249.1998.00481.x

    Google Scholar 

  • Kumar, R., Clermont, G., Vodovotz, Y., & Chow, C. C. (2004). The dynamics of acute inflammation. Journal of Theoretical Biology, 230, 145–155. https://doi.org/10.1016/j.jtbi.2004.04.044

    MathSciNet  Google Scholar 

  • Lai, N., Mills, K., & Chiu, I. (2017). Sensory neuron regulation of gastrointestinal inflammation and bacterial host defense. Journal of Internal Medicine, 282, 5–23. https://doi.org/10.1111/joim.12591

    Google Scholar 

  • Lazarus, M., Yoshida, K., Coppari, R., Bass, C. E., Mochizuki, T., Lowell, B. B., & Saper, C. B. (2007). EP3 prostaglandin receptors in the median preoptic nucleus are critical for fever responses. Nature Neuroscience, 10, 1131–1133. https://doi.org/10.1038/nn1949

    Google Scholar 

  • Lee, D. Y., Kim, E., & Choi, M. H. (2015). Technical and clinical aspects of cortisol a biochemical marker of chronic stress. BMM Reports, 48, 209–216. https://doi.org/10.5483/BMBREP.2015.48.4.275

    Google Scholar 

  • Levine, A. B., Punihaole, D., & Levine, T. B. (2012). Characterization of the role of nitric oxide and its clinical applications. Cardiology, 122, 55–68. https://doi.org/10.1159/000338150

    Google Scholar 

  • Lopez-Acevo, C. A., Arrendondo-Loza, E., Salinas-Carmona, M. C., Rendon, A., Martinez-Castilla, A. M., Vazquez-Marmolejo, A. V., Munoz-Maldonado, G., & Rosas-Taraco, A. G. (2021). Cortisol and perceived stress are associated with cytokines levels in patients infected with influenza B virus. Cytokine, 138, 155400. https://doi.org/10.1016/j.cyto.2020.155400

    Google Scholar 

  • Lupis, S. B., Lerman, M., & Wolf, J. M. (2014). Anger responses to psychosocial stress predict heart rate and cortisol stress responses in men but not women. Psychoneuroendocrinology, 49, 84–95. https://doi.org/10.1016/j.psyneuen.2014.07.004

    Google Scholar 

  • Lynn, M., Rossignol, D. P., Wheeler, J. L., Kao, R. J., Perdomo, C. A., Noveck, R., Vargas, R., D’Angelo, T., Gotzkowsky, S., & McMahon, F. G. (2003). Blocking of responses to endotoxin by E5564 in healthy volunteers with experimental endotoxemia. The Journal of Infectious Diseases, 187(4), 631–639. https://doi.org/10.1086/367990

    Google Scholar 

  • Mafic, M., & Simon, S. R. (1991). Tumor necrosis factor release from lipopolysaccharide-stimulated human monocytes: Lipopolysaccharide tolerance in vitro. Cytokine, 3, 576–583. https://doi.org/10.1016/1043-4666(91)90484-u

    Google Scholar 

  • Maixner, W., Gracely, R. H., Zuniga, J. R., Humphrey, C. B., & Bloodworth, G. R. (1990). Cardiovascular and sensory responses to forearm ischemia and dynamic hand exercise. American Journal of Physiology, 259, R1156–R1163. https://doi.org/10.1152/ajpregu.1990.259.6.R1156

    Google Scholar 

  • Malek, H., Ebadzadeh, M. M., Safabakhsh, R., Razavi, A., & Zaringhalam, J. (2015). Dynamics of the HPA axis and inflammatory cytokines: Insights from mathematical modeling. Computers in Biology and Medicine, 67, 1–12. https://doi.org/10.1016/j.compbiomed.2015.09.018

    Google Scholar 

  • McDaniel, M., Keller, J., White, S., & Baird, A. (2019). A whole-body mathematical model of sepsis progression and treatment designed in the BioGears physiology engine. Frontiers in Physiology, 10, 1321. https://doi.org/10.3389/fphys.2019.01321

    Google Scholar 

  • McNeill, E., Crabtree, M. J., Sahgal, N., Patel, J., Chuaiphichai, S., Iqbal, A. J., Hale, A. B., Greaves, D. R., & Channon, K. M. (2015). Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radical Biology and Medicine, 79, 206–216. https://doi.org/10.1016/j.freeradbiomed.2014.10.575

    Google Scholar 

  • Messerer, D. A. C., Vidoni, L., Erber, M., Stratmann, A. E. P., Bauer, J. M., Braun, C. K., Hug, S., Adler, A., Ekdahl, K. N., Nilsson, B., Barth, E., Radermacher, P., & Huber-Lang, M. (2020) Animal-free human whole blood sepsis model to study changes in innate immunity. Frontiers in Immunology, 11, 571992. https://doi.org/10.3389/fimmu.2020.571992

    Google Scholar 

  • Minucci, S. B., Heise, R. L., & Reynolds, A. M. (2020). Review of mathematical modeling of the inflammatory response in lung infections and injuries. Frontiers in Applied Mathematics and Statistics, 6, 36. https://doi.org/10.3389/fams.2020.00036

    Google Scholar 

  • Murphy, K., Travers, P., & Walport, M. (2012). Janeway’s immunobiology (8th edn). Garland Science, New York, NY

    Google Scholar 

  • Nakamura, K., Matsumura, K., Hübschle, T., Nakamura, Y., Hioki, H., Fujiyama, F., Boldogköi, Z., König, M., Thiel, H.-J., Gerstberger, R., Kobayashi, S., & Kaneko, T. (2004). Identification of sympathetic premotor neurons in medullary raphe regions mediating fever and other thermo-regulatory functions. The Journal of Neuroscience, 24, 5370–5380. https://doi.org/10.1523/JNEUROSCI.1219-04.2004

    Google Scholar 

  • Nguyen, H. B., Rivers, E. P., Abrahamian, F. M., Moran, G. J., Abraham, E., Trzeciak, S., Huang, D. T., Osborn, T., Stevens, D., & Talan, D. A. (2006). Severe sepsis and septic shock: review of the literature and emergency department management guidelines. Annals of Emergency Medicine, 48, 28–54. https://doi.org/10.1016/j.annemergmed.2006.02.015

    Google Scholar 

  • NIGMS, National Institute of General Medical Sciences. (2020). Circadian Rhythms. https://www.nigms.nih.gov/education/fact-sheets/Pages/circadian-rhythms.aspx

  • Ottesen, J. T. (2011). The mathematical microscope – making the inaccessible accessible. In B. Booß-Bavnbek, B. Klösgen, J. Larsen, F. Pociot, & E. Renström (Eds.), BetaSys systems biology of regulated exocytosis in pancreatic β-cells. Systems Biology, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6956-9_6

  • Ottesen, J. T. (2013). Etiology and diagnosis of major depression – a novel quantitative approach. Open Journal of Endocrine and Metabolic Diseases, 3, 120–127. https://doi.org/10.4236/ojemd.2013.32018

  • Oyetunji, T. A., Chang, D. C., Crompton, J. G., Greene, W. R., Efron, D. T., Haut, E. R., Cornwell, 3rd, E. E., & Haider, A. H. (2011). Redefining hypotension in the elderly: normotension is not reassuring. The Archives of Surgery, 146, 865–869. https://doi.org/10.1001/archsurg.2011.154

    Google Scholar 

  • Pajkrt, D., van der Poll, T., Levi, M., Cutler, D. L., Affrime, M. B., van den Ende, A., ten Cate, J. W., & van Deventer, S. J. (1997). Interleukin-10 inhibits activation of coagulation and fibrinolysis during human endotoxemia. Blood, 89, 2701–2705. https://doi.org/10.1182/blood.V89.8.2701

    Google Scholar 

  • Parker, R. S., Hogg, J. S., Roy, A., Kellum, J. A., Rimmele, T., Daun-Gruhn, S., Fedorchak, M. V., Valenti, I. E., Federspiel, W. J., Rubin, J., & Vodovotz, Y. (2016). Modeling and hemofiltration treatment of acute inflammation. Processes, 206(4), 38. https://doi.org/10.3390/pr4040038

    Google Scholar 

  • Parker, S. J., & Watkins, P. E. (2001). Experimental models of Gram-negative sepsis. British Journal of Surgery, 88, 22–30. https://doi.org/10.1046/j.1365-2168.2001.01632.x

    Google Scholar 

  • Patel, A. A., Zhang, Y., Fullerton, J. N., Boelen, L., Rongvaux, A., Maini, A. A., Bigley, V., Flavell, R. A., Gilroy, D. W., Asquith, B., Macallan, D., & Yona, S. (2017). The fate and lifespan of human monocyte subsets in steady state and systemic inflammation. Journal of Experimental Medicine, 214, 1913–1923. https://doi.org/10.1084/jem.20170355

  • Pavlov, V. A., & Tracey, K. J. (2012). The vagus nerve and the inflammatory reflex–linking immunity and metabolism. Nature Reviews Endocrinology, 8, 743–754. https://doi.org/10.1038/nrendo.2012.189

    Google Scholar 

  • Pigozzo1, A. B., Macedo, G. C., dos Santos, R. W., & Lobosco, M. (2013). On the computational modeling of the innate immune system. BMC Bioinformatics, 14(Suppl 6), S7. https://doi.org/10.1186/1471-2105-14-S6-S7

  • Prendergast, B. J., Cable, E. J., Stevenson, T. J., Onishi, K. G., Zucker, I., & Kay, L. M. (2015). Circadian disruption alters the effects of lipopolysaccharide treatment on circadian and ultradian locomotor activity and body temperature rhythms of female Siberian hamsters. Journal of Biological Rhythms, 30, 543–556. https://doi.org/10.1177/0748730415609450

    Google Scholar 

  • Randall, E. B., Billeschou, A., Brinth, L. S., Mehlsen, J., & Olufsen, M. S. (2019). A model-based analysis of autonomic nervous function in response to the Valsalva maneuver. Journal of Applied Physiology, 127, 1386–1402. https://doi.org/10.1152/japplphysiol.00015.2019

    Google Scholar 

  • Reynolds, A., Rubin, J., Clermont, G., Day, J., Vodovotz, Y., & Ermentrout, B. G. (2006). A reduced mathematical model of the acute inflammatory response: I. Derivation of model and analysis of anti-inflammation. Journal of Theoretical Biology, 242, 220–236. https://doi.org/10.1016/j.jtbi.2006.02.016

    MathSciNet  Google Scholar 

  • Rittirsch, D., Hoesel, L. M., & Ward, P. A. (2007). The disconnect between animal models of sepsis and human sepsis. Journal of Leukocyte Biology, 81, 137–143. https://doi.org/10.1189/jlb.0806542

    Google Scholar 

  • Rivìre, B., Epshteyn, Y., Swigon, D., & Vodovotz, Y. (2009). A simple mathematical model of signaling resulting from the binding of lipopolysaccharide with toll-like receptor 4 demonstrates inherent preconditioning behavior. Mathematical Biosciences, 217, 19–26. https://doi.org/10.1016/j.mbs.2008.10.002

    MathSciNet  Google Scholar 

  • Saccò, M., Meschi, M., Regolisti, G., Detrenis, S., Bianchi, L., Bertorelli, M., Pioli, S., Magnano, A., Spagnoli, F., Giuri, P., Fiaccadori, E., & Caiazza, A. (2013). The relationship between blood pressure and pain. Journal of Clinical Hypertension, 15, 600–605. https://doi.org/10.1111/jch.12145

    Google Scholar 

  • Salim, T., Sershen, C., & May, E. (2016). Investigating the role of TNF-α and IFN-γ activation on the dynamics of iNOS gene expression in LPS stimulated macrophages. PLoS One, 11, e0153289 https://doi.org/10.1371/journal.pone.0153289

    Google Scholar 

  • Sayk, F., Vietheer, A., Schaaf, B., Wellhoener, P., Weitz, G., Lehnert, H., & Dodt, C. (2008). Endotoxemia causes central downregulation of sympathetic vasomotor tone in healthy humans. American Journal of Physiology—Regulatory, Integrative and Comparative Physiology, 295, R891–R898. https://doi.org/10.1152/ajpregu.90444.2008

    Google Scholar 

  • Scheff, J. D., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2010). Modeling the influence of circadian rhythms on the acute inflammatory response. Journal of Theoretical Biology, 264, 1068–1076. https://doi.org/10.1016/j.jtbi.2010.03.026

    MathSciNet  Google Scholar 

  • Scheff, J. D., Mavroudis, P. D., Calvano, S. E., Lowry, S. F., & Androulakis, I. P. (2011). Modeling autonomic regulation of cardiac function and heart rate variability in human endotoxemia. Physiological Genomics, 43, 951–964. https://doi.org/10.1152/physiolgenomics.00040.2011

    Google Scholar 

  • Schulte, W., Bernhagen, J., & Bucala, R. (2013). Cytokines in sepsis: potent immunoregulators and potential therapeutic targets – an updated view. Mediators of Inflammation, 2013, 165974. https://doi.org/10.1155/2013/165974

    Google Scholar 

  • Schultz, M. J., & van der Poll, T. (2002). Animal and human models for sepsis. Annals of Medicine, 34, 573–581. https://doi.org/10.1080/078538902321117797

    Google Scholar 

  • Schulz, A., Richterb, S., Ferreira de Sáb, D. S., Vögele, C., & Schächinger, H. (2020). Cortisol rapidly increases baroreflex sensitivity of heart rate control, but does not affect cardiac modulation of startle. Physiology & Behavior, 215, 112782. https://doi.org/10.1016/j.physbeh.2019.112792

  • Seyhan, A. (2019). Lost in translation: the valley of death across preclinical and clinical divide – identification of problems and overcoming obstacles. Translational Medicine Communications, 4, 18. https://doi.org/10.1186/s41231-019-0050-7

    Google Scholar 

  • Shi, Z., Wu, C. J., Ben-Arieh, D., & Simpson, S. Q. (2015). Mathematical model of innate and adaptive immunity of sepsis: A modeling and simulation study of infectious disease. BioMed Research International, 2015, 504259. https://doi.org/10.1155/2015/504259

    Google Scholar 

  • Starkie, R., Ostrowski, S. R., Jauffred, S., Febbraio, M., & Klarlund Pedersen, B. (2003). Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. The FASEB Journal, 17, 884–886. https://doi.org/10.1096/fj.02-0670fje

    Google Scholar 

  • Taudorf, S., Krabbe, K. S., Berg, R. M. G., Pedersen, B. K., & Møller, K. (2007). Human models of low-grade inflammation: Bolus versus continuous infusion of endotoxin. Clinical and Vaccine Immunology, 14, 250–255. https://doi.org/10.1128/CVI.00380-06

    Google Scholar 

  • van der Bruggen, T., Nijenhuis, S., van Raaij, E., Verhoef, J., & van Asbeck2, B. S. (1999). Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the Raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infection and Immunity, 67, 3824–3829. https://doi.org/0.1128/IAI.67.8.3824-3829.1999

  • van der Worp, H. B., Howells, D. W., Sena, E. S., Porritt, M. J., Rewel, S., O’Collins, V., & Macleod, M. R. (2010). Can animal models of disease reliably inform human studies? PLoS Medicine, 7(3), e1000245. https://doi.org/10.1371/journal.pmed.1000245

  • van Lier, D., Geven, C., Leijte, G. P., & Pickkers, P. (2019). Experimental human endotoxemia as a model of systemic inflammation. Biochimie, 159, 99–106. https://doi.org/10.1016/j.biochi.2018.06.014

    Google Scholar 

  • Verboogen, D. R. J., Revelo, N. H., ter Beest, M., & van den Bogaart, G. (2019). Interleukin-6 secretion is limited by self-signaling in endosomes. Journal of Molecular Cell Biology, 11, 144–157. https://doi.org/10.1093/jmcb/mjy038

  • Verma, V., Sheikh, Z., & Ahmed, A. S. (2015). Nociception and role of immune system in pain. Acta Neurologica Belgica, 115, 213–220. https://doi.org/10.1007/s13760-014-0411-y

    Google Scholar 

  • Vodovotz, Y., & An, G. (2013). Complex systems and computational biology approaches to acute inflammation. Springer, NY, NY. https://doi.org/10.1007/978-3-030-56510-7

  • Walker, J. J., Spiga, F., Waite, E., Zhao, Z., Kershaw, Y., Terry, J. R., & Lightman, S. L. (2012). The origin of glucocorticoid hormone oscillations. PLoS Biology, 10, 69–82. https://doi.org/10.1371/journal.pbio.1001341

  • Wang, D.-W., Yin, Y.-M., & Yao, Y.-M. (2016). Vagal modulation of the inflammatory response in sepsis. International Reviews of Immunology, 35, 415–433. https://doi.org/10.3109/08830185.2015.1127369

    Google Scholar 

  • Wang, W., Ji, J., & Dow, K. E. (2003). Corticotropin-releasing hormone induces proliferation and TNF-a release in cultured rat microglia via MAP kinase signalling pathways. Journal of Neurochemistry, 84, 189–195. https://doi.org/10.1046/j.1471-4159.2003.01544.x

    Google Scholar 

  • Webster, J. I., & Sternberg, E. M. (2004). Role of the hypothalamic-pituitary-adrenal axis, glucocorticoids and glucocorticoid receptors in toxic sequelae of exposure to bacterial and viral products. Journal of Endocrinology, 181, 207–221. https://doi.org/10.1677/joe.0.1810207

    Google Scholar 

  • Wegner, A., Elsenbruch, S., Maluck, J., Grigoleit, J. S., Engler, H., Jäger, M., Spreitzer, I., Schedlowski, M., & Benson, S. (2014). Inflammation-induced hyperalgesia: effects of timing, dosage, and negative affect on somatic pain sensitivity in human experimental endotoxemia. Brain, Behavior, and Immunity, 41, 46–54. https://doi.org/10.1016/j.bbi.2014.05.001

    Google Scholar 

  • Williams, N. D., Brady, R., Gilmore, S., Gremaud, P., Tran, H. T., Ottesen, J. T., Mehlsen, J., & Olufsen, M. S. (2019). Cardiovascular dynamics during head-up tilt assessed via pulsatile and non-pulsatile models. Journal of Mathematical Biology, 79, 987–1014. https://doi.org/10.1007/s00285-019-01386-9

    MathSciNet  Google Scholar 

  • Yamanaka, Y., Uchida, K., Akashi, M., Watanabe, Y., Yaguchi, A., Shimamoto, S., Shimoda, S., Yamada, H., Yamashita, M., & Kimura, H. (2019). Mathematical modeling of septic shock based on clinical data. Theoretical Biology and Medical Modelling, 16, 5. https://doi.org/10.1186/s12976-019-0101-9

    Google Scholar 

  • Yamazaki, F., Sagawa, S., Torii, R., Endo, Y., & Shiraki, K. (1997). Effects of acute hyperthermia on the carotid baroreflex control of heart rate in humans. International Journal of Biometeorology, 40, 200–205. https://doi.org/10.1007/s004840050042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette S. Olufsen .

Editor information

Editors and Affiliations

Appendix

Appendix

See Table 1.

Table 1 Model parameters and initial conditions. Parameters with reference ∼ were scaled from their values reported in Bangsgaard et al. [2017] and Dobreva et al. [2021] to match the appropriate variable concentration in the model, parameters with a * indicate that the parameter was manually adjusted, and parameters with ∼* were both scaled and manually adjusted
Table 1 (continued)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Windoloski, K.A., Bangsgaard, E.O., Dobreva, A., Ottesen, J.T., Olufsen, M.S. (2023). A Unified Computational Model for the Human Response to Lipopolysaccharide-Induced Inflammation. In: Booß-Bavnbek, B., Hesselbjerg Christensen, J., Richardson, K., Vallès Codina, O. (eds) Multiplicity of Time Scales in Complex Systems. Mathematics Online First Collections. Springer, Cham. https://doi.org/10.1007/16618_2022_39

Download citation

Publish with us

Policies and ethics