Skip to main content

Human Retinal Organoids in Therapeutic Discovery: A Review of Applications

  • Chapter
  • First Online:
Human iPSC-derived Disease Models for Drug Discovery

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 281))

Abstract

Human embryonic stem cells (hESCs)- and induced pluripotent stem cells (hiPSCs)-derived retinal organoids (ROs) are three-dimensional laminar structures that recapitulate the developmental trajectory of the human retina. The ROs provide a fascinating tool for basic science research, eye disease modeling, treatment development, and biobanking for tissue/cell replacement. Here we review the previous studies that paved the way for RO technology, the two most widely accepted, standardized protocols to generate ROs, and the utilization of ROs in medical discovery. This review is conducted from the perspective of basic science research, transplantation for regenerative medicine, disease modeling, and therapeutic development for drug screening and gene therapy. ROs have opened avenues for new technologies such as assembloids, coculture with other organoids, vasculature or immune cells, microfluidic devices (organ-on-chip), extracellular vesicles for drug delivery, biomaterial engineering, advanced imaging techniques, and artificial intelligence (AI). Nevertheless, some shortcomings of ROs currently limit their translation for medical applications and pose a challenge for future research. Despite these limitations, ROs are a powerful tool for functional studies and therapeutic strategies for retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akerstrom B et al (2017) The role of mitochondria, oxidative stress, and the radical-binding protein A1M in cultured porcine retina. Curr Eye Res 42(6):948–961

    Article  PubMed  Google Scholar 

  • Amirpour N et al (2012) Differentiation of human embryonic stem cell-derived retinal progenitors into retinal cells by sonic hedgehog and/or retinal pigmented epithelium and transplantation into the subretinal space of sodium iodate-injected rabbits. Stem Cells Dev 21(1):42–53

    Article  CAS  PubMed  Google Scholar 

  • Arthur P et al (2022) Bioengineering human pluripotent stem cell-derived retinal organoids and optic vesicle-containing brain organoids for ocular diseases. Cell 11(21)

    Google Scholar 

  • Banin E et al (2006) Retinal incorporation and differentiation of neural precursors derived from human embryonic stem cells. Stem Cells 24(2):246–257

    Article  PubMed  Google Scholar 

  • Barber AC et al (2013) Repair of the degenerate retina by photoreceptor transplantation. Proc Natl Acad Sci U S A 110(1):354–359

    Article  CAS  PubMed  Google Scholar 

  • Berber P et al (2021) Retinal organoid differentiation methods determine organoid cellular composition. J Transl Genet Genom

    Google Scholar 

  • Bohrer LR et al (2019) Correction of NR2E3 associated enhanced S-cone syndrome patient-specific iPSCs using CRISPR-Cas9. Genes (Basel) 10(4)

    Google Scholar 

  • Brown NL et al (1998) Math5 encodes a murine basic helix-loop-helix transcription factor expressed during early stages of retinal neurogenesis. Development 125(23):4821–4833

    Article  CAS  PubMed  Google Scholar 

  • Cao UMN et al (2023) Microfluidic organ-on-a-chip: a guide to biomaterial choice and fabrication. Int J Mol Sci 24(4)

    Google Scholar 

  • Chen M et al (2010) Generation of retinal ganglion-like cells from reprogrammed mouse fibroblasts. Invest Ophthalmol Vis Sci 51(11):5970–5978

    Article  PubMed  Google Scholar 

  • Chen M et al (2019) Immune regulation in the aging retina. Prog Retin Eye Res 69:159–172

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2021) Human retinal progenitor cells derived small extracellular vesicles delay retinal degeneration: a paradigm for cell-free therapy. Front Pharmacol 12:748956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L et al (2022) Absence of Connexin 43 results in smaller retinas and arrested, depolarized retinal progenitor cells in human retinal organoids. Stem Cells 40(6):592–604

    Article  PubMed  Google Scholar 

  • Chichagova V et al (2020) Human iPSC differentiation to retinal organoids in response to IGF1 and BMP4 activation is line- and method-dependent. Stem Cells 38(2):195–201

    Article  CAS  PubMed  Google Scholar 

  • Chichagova V et al (2023) Incorporating microglia-like cells in human induced pluripotent stem cell-derived retinal organoids. J Cell Mol Med 27(3):435–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chirco KR et al (2021) Allele-specific gene editing to rescue dominant CRX-associated LCA7 phenotypes in a retinal organoid model. Stem Cell Rep 16(11):2690–2702

    Article  CAS  Google Scholar 

  • Cowan CS et al (2020) Cell types of the human retina and its organoids at single-cell resolution. Cell 182(6):1623–1640 e34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuevas E et al (2021) NRL(−/−) gene edited human embryonic stem cells generate rod-deficient retinal organoids enriched in S-cone-like photoreceptors. Stem Cells 39(4):414–428

    Article  CAS  PubMed  Google Scholar 

  • Daniszewski M et al (2022) Retinal ganglion cell-specific genetic regulation in primary open-angle glaucoma. Cell Genomics 2(6):100142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Polo A et al (1998) Prolonged delivery of brain-derived neurotrophic factor by adenovirus-infected Muller cells temporarily rescues injured retinal ganglion cells. Proc Natl Acad Sci U S A 95(7):3978–3983

    Article  PubMed  PubMed Central  Google Scholar 

  • DiStefano TJ et al (2021) Accelerated and improved differentiation of retinal organoids from pluripotent stem cells in rotating-wall vessel bioreactors. Stem Cell Rep 16(1):224

    Article  Google Scholar 

  • Duan X et al (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130(6):1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eiraku M et al (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56

    Article  CAS  PubMed  Google Scholar 

  • Eldred KC, Reh TA (2021) Human retinal model systems: strengths, weaknesses, and future directions. Dev Biol 480:114–122

    Article  CAS  PubMed  Google Scholar 

  • Fernando M et al (2022) Differentiation of brain and retinal organoids from confluent cultures of pluripotent stem cells connected by nerve-like axonal projections of optic origin. Stem Cell Rep 17(6):1476–1492

    Article  Google Scholar 

  • Fligor CM et al (2021) Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids. Stem Cell Rep 16(9):2228–2241

    Article  CAS  Google Scholar 

  • Fratta ID, Sigg EB, Maiorana K (1965) Teratogenic effects of thalidomide in rabbits, rats, hamsters, and mice. Toxicol Appl Pharmacol 7:268–286

    Article  CAS  PubMed  Google Scholar 

  • Gabriel E et al (2021) Human brain organoids assemble functionally integrated bilateral optic vesicles. Cell Stem Cell 28(10):1740–1757 e8

    Article  CAS  PubMed  Google Scholar 

  • Gagliardi G et al (2018) Characterization and transplantation of CD73-positive photoreceptors isolated from human iPSC-derived retinal organoids. Stem Cell Rep 11(3):665–680

    Article  CAS  Google Scholar 

  • Gao ML et al (2020) Patient-specific retinal organoids recapitulate disease features of late-onset retinitis pigmentosa. Front Cell Dev Biol 8:128

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasparini SJ et al (2022) Transplanted human cones incorporate into the retina and function in a murine cone degeneration model. J Clin Invest 132(12)

    Google Scholar 

  • Georgiou M et al (2020) Room temperature shipment does not affect the biological activity of pluripotent stem cell-derived retinal organoids. PloS One 15(6):e0233860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirose Y et al (2020) Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway. Proc Natl Acad Sci U S A 117(37):23106–23112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu ZL et al (2017) Neuroprotective effects of BDNF and GDNF in intravitreally transplanted mesenchymal stem cells after optic nerve crush in mice. Int J Ophthalmol 10(1):35–42

    PubMed  PubMed Central  Google Scholar 

  • Huang KC et al (2019) Morphological and molecular defects in human three-dimensional retinal organoid model of X-linked juvenile retinoschisis. Stem Cell Rep 13(5):906–923

    Article  CAS  Google Scholar 

  • Hynes SR, Lavik EB (2010) A tissue-engineered approach towards retinal repair: scaffolds for cell transplantation to the subretinal space. Graefes Arch Clin Exp Ophthalmol 248(6):763–778

    Article  PubMed  Google Scholar 

  • Isenmann S, Kretz A, Cellerino A (2003) Molecular determinants of retinal ganglion cell development, survival, and regeneration. Prog Retin Eye Res 22(4):483–543

    Article  CAS  PubMed  Google Scholar 

  • Jagatha B et al (2009) In vitro differentiation of retinal ganglion-like cells from embryonic stem cell derived neural progenitors. Biochem Biophys Res Commun 380(2):230–235

    Article  CAS  PubMed  Google Scholar 

  • Jahagirdar D et al (2022) Compartmentalized microfluidic device for in vitro co-culture of retinal cells. Biotechnol J 17(9):e2100530

    Article  PubMed  Google Scholar 

  • Jomary C, Jones SE (2008) Induction of functional photoreceptor phenotype by exogenous Crx expression in mouse retinal stem cells. Invest Ophthalmol Vis Sci 49(1):429–437

    Article  PubMed  Google Scholar 

  • Jomary C, Jones SE, Lotery AJ (2010) Generation of light-sensitive photoreceptor phenotypes by genetic modification of human adult ocular stem cells with Crx. Invest Ophthalmol Vis Sci 51(2):1181–1189

    Article  PubMed  Google Scholar 

  • Kalargyrou AA et al (2022) Extracellular vesicles in the retina – putative roles in physiology and disease. Front Mol Neurosci 15:1042469

    Article  CAS  PubMed  Google Scholar 

  • Kanber D et al (2022) RB1-negative retinal organoids display proliferation of cone photoreceptors and loss of retinal differentiation. Cancers (Basel) 14(9)

    Google Scholar 

  • Kandoi S et al (2023) Disease modeling and pharmacological rescue of autosomal dominant Retinitis Pigmentosa associated with RHO copy number variation. medRxiv. 2023.02.27.23286248

    Google Scholar 

  • Kashani AH et al (2021) One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration. Transl Vis Sci Technol 10(10):13

    Article  PubMed  PubMed Central  Google Scholar 

  • Kayama M et al (2010) Transfection with pax6 gene of mouse embryonic stem cells and subsequent cell cloning induced retinal neuron progenitors, including retinal ganglion cell-like cells, in vitro. Ophthalmic Res 43(2):79–91

    Article  CAS  PubMed  Google Scholar 

  • Kim DK et al (2013) EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles:2

    Google Scholar 

  • Kim S et al (2019) Generation, transcriptome profiling, and functional validation of cone-rich human retinal organoids. Proc Natl Acad Sci U S A 116(22):10824–10833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Koo BK, Knoblich JA (2020) Human organoids: model systems for human biology and medicine. Nat Rev Mol Cell Biol 21(10):571–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kondo J, Inoue M (2019) Application of cancer organoid model for drug screening and personalized therapy. Cell 8(5)

    Google Scholar 

  • Kruczek K et al (2017) Differentiation and transplantation of embryonic stem cell-derived cone photoreceptors into a mouse model of end-stage retinal degeneration. Stem Cell Rep 8(6):1659–1674

    Article  CAS  Google Scholar 

  • Kruczek K et al (2021) Gene therapy of dominant CRX-Leber congenital amaurosis using patient stem cell-derived retinal organoids. Stem Cell Rep 16(2):252–263

    Article  CAS  Google Scholar 

  • Kuwahara A et al (2015) Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat Commun 6:6286

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara A, Nakano T, Eiraku M (2017) Generation of a three-dimensional retinal tissue from self-organizing human ESC culture. Methods Mol Biol 1597:17–29

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara A, Wijnholds J, Luyten GPM (2022) CRB1 gene therapy coming of age: mechanistic insight and rAAV assays on mouse and human retinal organoid models. Faculty of Medicine, Leiden University Medical Center (LUMC), Leiden University

    Google Scholar 

  • Lamba DA et al (2006) Efficient generation of retinal progenitor cells from human embryonic stem cells. Proc Natl Acad Sci U S A 103(34):12769–12774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamba DA et al (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PloS One 5(1):e8763

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawrence M (2023) Human iPS cells for clinical applications and cellular products. Handb Exp Pharmacol

    Google Scholar 

  • Leaver SG et al (2006) AAV-mediated expression of CNTF promotes long-term survival and regeneration of adult rat retinal ganglion cells. Gene Ther 13(18):1328–1341

    Article  CAS  PubMed  Google Scholar 

  • Leong YC et al (2022) Molecular pathology of usher 1B patient-derived retinal organoids at single cell resolution. Stem Cell Rep 17(11):2421–2437

    Article  CAS  Google Scholar 

  • Leung A et al (2022) Investigation of PTC124-mediated translational readthrough in a retinal organoid model of AIPL1-associated Leber congenital amaurosis. Stem Cell Rep 17(10):2187–2202

    Article  CAS  Google Scholar 

  • Li G et al (2019) Generation and characterization of induced pluripotent stem cells and retinal organoids from a Leber's congenital amaurosis patient with novel RPE65 mutations. Front Mol Neurosci 12:212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin B et al (2020) Retina organoid transplants develop photoreceptors and improve visual function in RCS rats with RPE dysfunction. Invest Ophthalmol Vis Sci 61(11):34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu W et al (2000) All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127(15):3237–3247

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2021a) Surgical transplantation of human RPE stem cell-derived RPE monolayers into non-human primates with immunosuppression. Stem Cell Rep 16(2):237–251

    Article  CAS  Google Scholar 

  • Liu H, Hua ZQ, Jin ZB (2021b) Modeling human retinoblastoma using embryonic stem cell-derived retinal organoids. STAR Protoc 2(2):100444

    Article  PubMed  PubMed Central  Google Scholar 

  • Luo Z et al (2021) Biodegradable scaffolds facilitate epiretinal transplantation of hiPSC-derived retinal neurons in nonhuman primates. Acta Biomater 134:289–301

    Article  CAS  PubMed  Google Scholar 

  • Maeder ML et al (2019) Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10. Nat Med 25(2):229–233

    Article  CAS  PubMed  Google Scholar 

  • Mattapally S et al (2018) Human leukocyte antigen class I and II knockout human induced pluripotent stem cell-derived cells: universal donor for cell therapy. J Am Heart Assoc 7(23):e010239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClements ME et al (2022) Tropism of AAV vectors in photoreceptor-like cells of human iPSC-derived retinal organoids. Transl Vis Sci Technol 11(4):3

    Article  PubMed  PubMed Central  Google Scholar 

  • McGill MR et al (2012) Acetaminophen-induced liver injury in rats and mice: comparison of protein adducts, mitochondrial dysfunction, and oxidative stress in the mechanism of toxicity. Toxicol Appl Pharmacol 264(3):387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McLelland BT et al (2018) Transplanted hESC-derived retina organoid sheets differentiate, integrate, and improve visual function in retinal degenerate rats. Invest Ophthalmol Vis Sci 59(6):2586–2603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menuchin-Lasowski Y et al (2022) SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Rep 17(4):789–803

    Article  CAS  Google Scholar 

  • Meyer JS et al (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106(39):16698–16703

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JS et al (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29(8):1206–1218

    Article  CAS  PubMed  Google Scholar 

  • Mohar I et al (2014) Acetaminophen-induced liver damage in mice is associated with gender-specific adduction of peroxiredoxin-6. Redox Biol 2:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullin NK et al (2021) Patient derived stem cells for discovery and validation of novel pathogenic variants in inherited retinal disease. Prog Retin Eye Res 83:100918

    Article  CAS  PubMed  Google Scholar 

  • Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    Article  CAS  PubMed  Google Scholar 

  • Nakao N et al (2000) Promotion of survival and regeneration of nigral dopamine neurons in a rat model of Parkinson's disease after implantation of embryonal carcinoma-derived neurons genetically engineered to produce glial cell line-derived neurotrophic factor. J Neurosurg 92(4):659–670

    Article  CAS  PubMed  Google Scholar 

  • Neves J et al (2016) Immune modulation by MANF promotes tissue repair and regenerative success in the retina. Science 353(6294):aaf3646

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson A, Schumm SN, Beachy SH (2022) Understanding the role of the immune system in improving tissue regeneration: proceedings of a workshop. Washington

    Google Scholar 

  • Norrie JL et al (2021) Retinoblastoma from human stem cell-derived retinal organoids. Nat Commun 12(1):4535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oswald J et al (2021) Transplantation of miPSC/mESC-derived retinal ganglion cells into healthy and glaucomatous retinas. Mol Ther Methods Clin Dev 21:180–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovando-Roche P et al (2018) Use of bioreactors for culturing human retinal organoids improves photoreceptor yields. Stem Cell Res Ther 9(1):156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearson RA et al (2010) Targeted disruption of outer limiting membrane junctional proteins (Crb1 and ZO-1) increases integration of transplanted photoreceptor precursors into the adult wild-type and degenerating retina. Cell Transplant 19(4):487–503

    Article  CAS  PubMed  Google Scholar 

  • Petrus-Reurer S et al (2020) Generation of retinal pigment epithelial cells derived from human embryonic stem cells lacking human leukocyte antigen class I and II. Stem Cell Rep 14(4):648–662

    Article  CAS  Google Scholar 

  • Rabesandratana O et al (2020) Generation of a transplantable population of human iPSC-derived retinal ganglion cells. Front Cell Dev Biol 8:585675

    Article  PubMed  PubMed Central  Google Scholar 

  • Regent F et al (2022) Nicotinamide promotes formation of retinal organoids from human pluripotent stem cells via enhanced neural cell fate commitment. Front Cell Neurosci 16:878351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reh TA, Lamba D, Gust J (2010) Directing human embryonic stem cells to a retinal fate. Methods Mol Biol 636:139–153

    Article  CAS  PubMed  Google Scholar 

  • Reichel FFL et al (2021) An optimized treatment protocol for subretinal injections limits intravitreal vector distribution. Ophthalmol Sci 1(3):100050

    Article  PubMed  PubMed Central  Google Scholar 

  • Reichman S et al (2017) Generation of storable retinal organoids and retinal pigmented epithelium from adherent human iPS cells in Xeno-free and feeder-free conditions. Stem Cells 35(5):1176–1188

    Article  CAS  PubMed  Google Scholar 

  • Ren R et al (2012) Long-term rescue of rat retinal ganglion cells and visual function by AAV-mediated BDNF expression after acute elevation of intraocular pressure. Invest Ophthalmol Vis Sci 53(2):1003–1011

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro J et al (2021) Restoration of visual function in advanced disease after transplantation of purified human pluripotent stem cell-derived cone photoreceptors. Cell Rep 35(3):109022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ripolles-Garcia A et al (2022) Systemic immunosuppression promotes survival and integration of subretinally implanted human ESC-derived photoreceptor precursors in dogs. Stem Cell Rep 17(8):1824–1841

    Article  CAS  Google Scholar 

  • Rodrigues A et al (2022) Modeling PRPF31 retinitis pigmentosa using retinal pigment epithelium and organoids combined with gene augmentation rescue. NPJ Regen Med 7(1):39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozanska A et al (2022) pRB-depleted pluripotent stem cell retinal organoids recapitulate cell state transitions of retinoblastoma development and suggest an important role for pRB in retinal cell differentiation. Stem Cells Transl Med 11(4):415–433

    Article  PubMed  PubMed Central  Google Scholar 

  • Santos-Ferreira T et al (2016) Stem cell-derived photoreceptor transplants differentially integrate into mouse models of cone-rod dystrophy. Invest Ophthalmol Vis Sci 57(7):3509–3520

    Article  CAS  PubMed  Google Scholar 

  • Shirai H et al (2016) Transplantation of human embryonic stem cell-derived retinal tissue in two primate models of retinal degeneration. Proc Natl Acad Sci U S A 113(1):E81–E90

    Article  CAS  PubMed  Google Scholar 

  • Singh RK et al (2020) Development of a protocol for maintaining viability while shipping organoid-derived retinal tissue. J Tissue Eng Regen Med 14(2):388–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridhar A et al (2020) Single-cell transcriptomic comparison of human fetal retina, hPSC-derived retinal organoids, and long-term retinal cultures. Cell Rep 30(5):1644–1659 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern J, Temple S (2015) Retinal pigment epithelial cell proliferation. Exp Biol Med (Maywood) 240(8):1079–1086

    Article  CAS  PubMed  Google Scholar 

  • Su T et al (2022) Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 10:939774

    Article  PubMed  PubMed Central  Google Scholar 

  • Suh S et al (2021) Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing. Nat Biomed Eng 5(2):169–178

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T et al (2003) Effects of prolonged delivery of brain-derived neurotrophic factor on the fate of neural stem cells transplanted into the developing rat retina. Biochem Biophys Res Commun 309(4):843–847

    Article  CAS  PubMed  Google Scholar 

  • Suzuki N et al (2012) Establishment of retinal progenitor cell clones by transfection with Pax6 gene of mouse induced pluripotent stem (iPS) cells. Neurosci Lett 509(2):116–120

    Article  CAS  PubMed  Google Scholar 

  • Thomas BB et al (2021) Co-grafts of human embryonic stem cell derived retina organoids and retinal pigment epithelium for retinal reconstruction in Immunodeficient retinal degenerate Royal College of Surgeons Rats. Front Neurosci 15:752958

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas ED et al (2022) Cell-specific cis-regulatory elements and mechanisms of non-coding genetic disease in human retina and retinal organoids. Dev Cell 57(6):820–836. e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita M et al (2006) A comparison of neural differentiation and retinal transplantation with bone marrow-derived cells and retinal progenitor cells. Stem Cells 24(10):2270–2278

    Article  CAS  PubMed  Google Scholar 

  • Tucker BA et al (2011a) Transplantation of adult mouse iPS cell-derived photoreceptor precursors restores retinal structure and function in degenerative mice. PloS One 6(4):e18992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker BA et al (2011b) Exome sequencing and analysis of induced pluripotent stem cells identify the cilia-related gene male germ cell-associated kinase (MAK) as a cause of retinitis pigmentosa. Proc Natl Acad Sci U S A 108(34):E569–E576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tyson JA, Anderson SA (2014) GABAergic interneuron transplants to study development and treat disease. Trends Neurosci 37(3):169–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaajasaari H et al (2011) Toward the defined and xeno-free differentiation of functional human pluripotent stem cell-derived retinal pigment epithelial cells. Mol Vis 17:558–575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van Hoffelen SJ et al (2003) Incorporation of murine brain progenitor cells into the developing mammalian retina. Invest Ophthalmol Vis Sci 44(1):426–434

    Article  PubMed  Google Scholar 

  • VanderWall KB et al (2019) Astrocytes regulate the development and maturation of retinal ganglion cells derived from human pluripotent stem cells. Stem Cell Rep 12(2):201–212

    Article  CAS  Google Scholar 

  • VanderWall KB et al (2020) Retinal ganglion cells with a glaucoma OPTN(E50K) mutation exhibit neurodegenerative phenotypes when derived from three-dimensional retinal organoids. Stem Cell Rep 15(1):52–66

    Article  CAS  Google Scholar 

  • Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Volkner M et al (2022) HBEGF-TNF induce a complex outer retinal pathology with photoreceptor cell extrusion in human organoids. Nat Commun 13(1):6183

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L et al (2018) Retinal cell type DNA methylation and histone modifications predict reprogramming efficiency and retinogenesis in 3D organoid cultures. Cell Rep 22(10):2601–2614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang ST et al (2019) Transplantation of retinal progenitor cells from optic cup-like structures differentiated from human embryonic stem cells in vitro and in vivo generation of retinal ganglion-like cells. Stem Cells Dev 28(4):258–267

    Article  CAS  PubMed  Google Scholar 

  • West EL et al (2008) Pharmacological disruption of the outer limiting membrane leads to increased retinal integration of transplanted photoreceptor precursors. Exp Eye Res 86(4):601–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • West EL et al (2012) Manipulation of the recipient retinal environment by ectopic expression of neurotrophic growth factors can improve transplanted photoreceptor integration and survival. Cell Transplant 21(5):871–887

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2019) Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility. Cell Stem Cell 24(4):566–578 e7

    Article  CAS  PubMed  Google Scholar 

  • Yoshida S et al (2022) A clinical-grade HLA haplobank of human induced pluripotent stem cells matching approximately 40% of the Japanese population. Med

    Google Scholar 

  • Yue F et al (2010) Differentiation of primate ES cells into retinal cells induced by ES cell-derived pigmented cells. Biochem Biophys Res Commun 394(4):877–883

    Article  CAS  PubMed  Google Scholar 

  • Zarbin M, Sugino I, Townes-Anderson E (2019) Concise review: update on retinal pigment epithelium transplantation for age-related macular degeneration. Stem Cells Transl Med 8(5):466–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng Y et al (2021) The impact of particulate matter (PM2.5) on human retinal development in hESC-derived retinal organoids. Front Cell Dev Biol 9:607341

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong X et al (2014) Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat Commun 5:4047

    Article  CAS  PubMed  Google Scholar 

  • Zhou J et al (2021) Human retinal organoids release extracellular vesicles that regulate gene expression in target human retinal progenitor cells. Sci Rep 11(1):21128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu J et al (2017) Immunosuppression via loss of IL2rgamma enhances long-term functional integration of hESC-derived photoreceptors in the mouse retina. Cell Stem Cell 20(3):374–384 e5

    Article  CAS  PubMed  Google Scholar 

  • Zou T et al (2019) Organoid-derived C-Kit(+)/SSEA4(−) human retinal progenitor cells promote a protective retinal microenvironment during transplantation in rodents. Nat Commun 10(1):1205

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cheng, L., Kuehn, M.H. (2023). Human Retinal Organoids in Therapeutic Discovery: A Review of Applications. In: Kuehn, M.H., Zhu, W. (eds) Human iPSC-derived Disease Models for Drug Discovery. Handbook of Experimental Pharmacology, vol 281. Springer, Cham. https://doi.org/10.1007/164_2023_691

Download citation

Publish with us

Policies and ethics