Abstract
While NMR-based metabolomics is only about 20 years old, NMR has been a key part of metabolic and metabolism studies for >40 years. Historically, metabolic researchers used NMR because of its high level of reproducibility, superb instrument stability, facile sample preparation protocols, inherently quantitative character, non-destructive nature, and amenability to automation. In this chapter, we provide a short history of NMR-based metabolomics. We then provide a detailed description of some of the practical aspects of performing NMR-based metabolomics studies including sample preparation, pulse sequence selection, and spectral acquisition and processing. The two different approaches to metabolomics data analysis, targeted vs. untargeted, are briefly outlined. We also describe several software packages to help users process NMR spectra obtained via these two different approaches. We then give several examples of useful or interesting applications of NMR-based metabolomics, ranging from applications to drug toxicology, to identifying inborn errors of metabolism to analyzing the contents of biofluids from dairy cattle. Throughout this chapter, we will highlight the strengths and limitations of NMR-based metabolomics. Additionally, we will conclude with descriptions of recent advances in NMR hardware, methodology, and software and speculate about where NMR-based metabolomics is going in the next 5–10 years.
Keywords
- Applications
- Experimental methods
- NMR spectroscopy
- Targeted metabolomics
- Untargeted metabolomics
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Akoka S, Barantin L, Trierweiler M (1999) Concentration measurement by proton NMR using the ERETIC method. Anal Chem 71(13):2554–2557. https://doi.org/10.1021/ac981422i
Ala-Korpela M et al (2007) The inherent accuracy of 1H NMR spectroscopy to quantify plasma lipoproteins is subclass dependent. Atherosclerosis 190(2):352–358. https://doi.org/10.1016/j.atherosclerosis.2006.04.020
Ardenkjaer-Larsen JH et al (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci 100(18):10158–10163. https://doi.org/10.1073/pnas.1733835100
Bales JR, Higham DP et al (1984a) Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem 30(3):426–432
Bales JR, Sadler PJ et al (1984b) Urinary excretion of acetaminophen and its metabolites as studied by proton NMR spectroscopy. Clin Chem 30(10):1631–1636
Barton RH et al (2008) High-throughput 1H NMR-based metabolic analysis of human serum and urine for large-scale epidemiological studies: validation study. Int J Epidemiol 37(Suppl 1):i31–i40. https://doi.org/10.1093/ije/dym284
Bassini A, Cameron LC (2014) Sportomics: building a new concept in metabolic studies and exercise science. Biochem Biophys Res Commun 445(4):708–716. https://doi.org/10.1016/j.bbrc.2013.12.137
Bathe OF et al (2011) Feasibility of identifying pancreatic cancer based on serum metabolomics. Cancer Epidemiol Biomarkers Prev 20(1):140–147. https://doi.org/10.1158/1055-9965.EPI-10-0712
Beckonert O et al (2007) Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat Protoc 2(11):2692–2703. https://doi.org/10.1038/nprot.2007.376
Bernini P et al (2011) Standard operating procedures for pre-analytical handling of blood and urine for metabolomic studies and biobanks. J Biomol NMR 49(3):231–243. https://doi.org/10.1007/S10858-011-9489-1
Binczyk F, Tarnawski R, Polanska J (2015) Strategies for optimizing the phase correction algorithms in nuclear magnetic resonance spectroscopy. Biomed Eng Online 14(2):S5. https://doi.org/10.1186/1475-925X-14-S2-S5
Bingol K, Brüschweiler R (2014) Multidimensional approaches to NMR-based metabolomics. Anal Chem 86(1):47–57. https://doi.org/10.1021/ac403520j
Bingol K et al (2014) Customized metabolomics database for the analysis of NMR 1H-1H TOCSY and 13C-1H HSQC-TOCSY spectra of complex mixtures. Anal Chem 86(11):5494–5501. https://doi.org/10.1021/ac500979g
Bingol K et al (2015) Unified and isomer-specific NMR metabolomics database for the accurate analysis of 13 C – 1 H HSQC spectra. ACS Chem Biol 10(2):452–459. https://doi.org/10.1021/cb5006382
Bingol K et al (2016) Comprehensive metabolite identification strategy using multiple two-dimensional NMR spectra of a complex mixture implemented in the COLMARm web server. Anal Chem 88(24):12411–12418. https://doi.org/10.1021/acs.analchem.6b03724
Blankenberg FG et al (1997) Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy. Blood 89(10):3778–3786
Blasco H et al (2010) 1H-NMR-based metabolomic profiling of CSF in early amyotrophic lateral sclerosis. PLoS One 5(10):e13223. https://doi.org/10.1371/journal.pone.0013223
Bloembergen N, Purcell EM, Pound RV (1948) Relaxation effects in nuclear magnetic resonance absorption. Phys Rev 73(7):679–712. https://doi.org/10.1103/PhysRev.73.679
Blümich B, Singh K (2018) Desktop NMR and its applications from materials science to organic chemistry. Angew Chem Int Ed 57(24):6996–7010. https://doi.org/10.1002/anie.201707084
Bock JL (1982) Analysis of serum by high-field proton nuclear magnetic resonance. Clin Chem 28(9):1873–1877
Boiteau R et al (2018) Structure elucidation of unknown metabolites in metabolomics by combined NMR and MS/MS prediction. Metabolites 8(1):8. https://doi.org/10.3390/METABO8010008
Borges R et al (2021) Quantum chemistry calculations for cetabolomics. Chem Rev 121(10):5633–5670. https://doi.org/10.1021/ACS.CHEMREV.0C00901
Bouatra S et al (2013) The human urine metabolome. PLoS One 8(9):e73076. https://doi.org/10.1371/journal.pone.0073076
Brown SA (2016) Circadian metabolism: from mechanisms to metabolomics and medicine. Trends Endocrinol Metab 27(6):415–426. https://doi.org/10.1016/j.tem.2016.03.015
Bruker Corporation-Bruker (2013) Bruker announces AVANCE™-IVDr as a standardized NMR platform for clinical screening and in vitro diagnostics (IVD) discovery and validation. https://ir.bruker.com/press-releases/press-release-details/2013/Bruker-Announces-AVANCE-IVDr-as-a-Standardized-NMR-Platform-for-Clinical-Screening-and-In-Vitro-Diagnostics-IVD-Discovery-and-Validation/default.aspx. Accessed 21 Sept 2021
Cañueto D et al (2018) rDolphin: a GUI R package for proficient automatic profiling of 1D 1 H-NMR spectra of study datasets. Metabolomics 14(3):24. https://doi.org/10.1007/s11306-018-1319-y
Cao M et al (2012) NMR-based metabolomic analysis of human bladder cancer. Anal Sci 28(5):451–456. https://doi.org/10.2116/analsci.28.451
Capitani D, Sobolev AP, Mannina L (2017) Nuclear magnetic resonance – metabolomics. In: Georgiou CA, Danezis GP (eds) Food authentication: management, analysis and regulation. Wiley, Chichester, pp 177–197. https://doi.org/10.1002/9781118810224.ch6
Carrola J et al (2011) Metabolic signatures of lung cancer in biofluids: NMR-based metabonomics of urine. J Proteome Res 10(1):221–230. https://doi.org/10.1021/pr100899x
Chan ECY et al (2009) Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J Proteome Res 8(1):352–361. https://doi.org/10.1021/pr8006232
Chapinal N et al (2012) The association of serum metabolites in the transition period with milk production and early-lactation reproductive performance. J Dairy Sci 95(3):1301–1309. https://doi.org/10.3168/jds.2011-4724
Chen L et al (2002) An efficient algorithm for automatic phase correction of NMR spectra based on entropy minimization. J Magn Reson 158(1–2):164–168. https://doi.org/10.1016/S1090-7807(02)00069-1
Clendinen CS et al (2014) 13C NMR metabolomics: applications at natural abundance. Anal Chem 86(18):9242–9250. https://doi.org/10.1021/ac502346h
Clendinen CS et al (2015) An overview of methods using (13)C for improved compound identification in metabolomics and natural products. Front Plant Sci 6:611. https://doi.org/10.3389/fpls.2015.00611
Cloarec O et al (2005) Statistical total correlation spectroscopy: an exploratory approach for latent biomarker identification from metabolic 1 H NMR data sets. Anal Chem 77(5):1282–1289. https://doi.org/10.1021/ac048630x
Cobas C (2020) NMR signal processing, prediction, and structure verification with machine learning techniques. Magn Reson Chem 58(6):512–519. https://doi.org/10.1002/mrc.4989
Cohen SM, Ogawa S, Shulman RG (1979) 13C NMR studies of gluconeogenesis in rat liver cells: utilization of labeled glycerol by cells from euthyroid and hyperthyroid rats. Proc Natl Acad Sci U S A 76(4):1603–1609. https://doi.org/10.1073/pnas.76.4.1603
Dame ZT et al (2015) The human saliva metabolome. Metabolomics 11(6):1864–1883. https://doi.org/10.1007/s11306-015-0840-5
de Brouwer H (2009) Evaluation of algorithms for automated phase correction of NMR spectra. J Magn Reson 201(2):230–238. https://doi.org/10.1016/j.jmr.2009.09.017
Dey A et al (2020) Hyperpolarized NMR metabolomics at natural 13C abundance. Anal Chem 92(22):14867–14871. https://doi.org/10.1021/acs.analchem.0c03510
Ebbels TMD, De Iorio M, Stephens DA (2019) Statistical methods in metabolomics. In: Balding D, Moltke I, Marioni J (eds) Handbook of statistical genomics. Wiley, pp 949–975. https://doi.org/10.1002/9781119487845.ch34
Eisner R et al (2013) A machine-learned predictor of colonic polyps based on urinary metabolomics. Biomed Res Int 2013:1–11. https://doi.org/10.1155/2013/303982
Embade N et al (2019) NMR-based newborn urine screening for optimized detection of inherited errors of metabolism. Sci Rep 9(1):13067. https://doi.org/10.1038/s41598-019-49685-x
Emwas A-H et al (2015) Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics 11(4):872–894. https://doi.org/10.1007/S11306-014-0746-7
Emwas A-H et al (2018) Recommended strategies for spectral processing and post-processing of 1D 1H-NMR data of biofluids with a particular focus on urine. Metabolomics 14(3):31. https://doi.org/10.1007/s11306-018-1321-4
Fan TW-M, Lane AN (2011a) Erratum to: NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 49:325. https://doi.org/10.1007/s10858-011-9503-7
Fan TWM, Lane AN (2011b) NMR-based stable isotope resolved metabolomics in systems biochemistry. J Biomol NMR 49(3–4):267–280. https://doi.org/10.1007/s10858-011-9484-6
Fan TWM, Lane AN (2016) Applications of NMR spectroscopy to systems biochemistry. Prog Nucl Magn Reson Spectrosc 92–93:18–53. https://doi.org/10.1016/j.pnmrs.2016.01.005
Farshidfar F et al (2012) Serum metabolomic profile as a means to distinguish stage of colorectal cancer. Genome Med 4(5):42. https://doi.org/10.1186/gm341
Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol Biol 48(1–2):155–171. https://doi.org/10.1023/A:1013713905833
Fiehn O et al (2007) The metabolomics standards initiative (MSI). Metabolomics 3(3):175–178. https://doi.org/10.1007/S11306-007-0070-6
Fong MY, McDunn J, Kakar SS (2011) Identification of metabolites in the normal ovary and their transformation in primary and metastatic ovarian cancer. PLoS One 6(5):e19963. https://doi.org/10.1371/journal.pone.0019963
Foroozandeh M, Jeannerat D (2010) Deciphered chemical shifts in aliased spectra recorded with two slightly different narrow windows or differential chemical shift evolution. ChemPhysChem 11(12):2503–2505. https://doi.org/10.1002/cphc.201000421
Foroutan A et al (2019) Chemical composition of commercial cow’s milk. J Agric Food Chem 67(17):4897–4914. https://doi.org/10.1021/acs.jafc.9b00204
Foroutan A et al (2020) The bovine metabolome. Metabolites 10(6):233. https://doi.org/10.3390/metabo10060233
Fossel ET, Carr JM, McDonagh J (1986) Detection of malignant tumors. Water-suppressed proton nuclear magnetic resonance spectroscopy of plasma. N Engl J Med 315(22):1369–1376. https://doi.org/10.1056/NEJM198611273152201
Garcia-Perez I et al (2020) Identifying unknown metabolites using NMR-based metabolic profiling techniques. Nat Protoc 15(8):2538–2567. https://doi.org/10.1038/s41596-020-0343-3
Gartland KP et al (1990) Pattern recognition analysis of high resolution 1H NMR spectra of urine. A nonlinear mapping approach to the classification of toxicological data. NMR Biomed 3(4):166–172. https://doi.org/10.1002/nbm.1940030404
Ghini V et al (2019) NMR for sample quality assessment in metabolomics. N Biotechnol 52:25–34. https://doi.org/10.1016/J.NBT.2019.04.004
Giraudeau P, Frydman L (2014) Ultrafast 2D NMR: an emerging tool in analytical spectroscopy. Annu Rev Anal Chem 7(1):129–161. https://doi.org/10.1146/annurev-anchem-071213-020208
Goldansaz SA et al (2017) Livestock metabolomics and the livestock metabolome: a systematic review. PLoS One 12(5):e0177675. https://doi.org/10.1371/journal.pone.0177675
Golotvin S, Williams A (2000) Improved baseline recognition and modeling of FT NMR spectra. J Magn Reson 146(1):122–125. https://doi.org/10.1006/jmre.2000.2121
Gowda GAN et al (2010) Quantitative analysis of blood plasma metabolites using isotope enhanced NMR methods. Anal Chem 82(21):8983–8990. https://doi.org/10.1021/ac101938w
Griffiths RD, Edwards RH (1987) Magnetic resonance spectroscopy in the recognition of metabolic disease. J Inherit Metab Dis 10(Suppl 1):147–158
Hailemariam D et al (2014) Identification of predictive biomarkers of disease state in transition dairy cows. J Dairy Sci 97(5):2680–2693. https://doi.org/10.3168/jds.2013-6803
Halamek J, Vondra V, Kasal M (1994) The elimination of baseline distortions induced by audio filters. J Magn Reson Ser 110(2):194–197. https://doi.org/10.1006/jmra.1994.1204
Hanahan D, Weinberg R (2000) The hallmarks of cancer. Cell 100(1):57–70. https://doi.org/10.1016/S0092-8674(00)81683-9
Hansen DF (2019) Using deep neural networks to reconstruct non-uniformly sampled NMR spectra. J Biomol NMR 73(10–11):577–585. https://doi.org/10.1007/s10858-019-00265-1
Hansen AL et al (2021) 2D NMR-based metabolomics with HSQC/TOCSY NOAH supersequences. Anal Chem 93(15):6112–6119. https://doi.org/10.1021/acs.analchem.0c05205
Hao J et al (2014) Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nat Protoc 9(6):1416–1427. https://doi.org/10.1038/nprot.2014.090
Harris RK et al (2002) NMR nomenclature: nuclear spin properties and conventions for chemical shifts. IUPAC recommendations 2001. Solid State Nucl Magn Reson 22(4):458–483. https://doi.org/10.1006/snmr.2002.0063
Heuer A, Haeberlen U (1989) A new method for suppressing baseline distortions in FT NMR. J Magn Reson (1969) 85(1):79–94. https://doi.org/10.1016/0022-2364(89)90322-3
Holmes E, Wilson ID, Nicholson JK (2008) Metabolic phenotyping in health and disease. Cell 134(5):714–717. https://doi.org/10.1016/j.cell.2008.08.026
Hu K, Westler WM, Markley JL (2011) Simultaneous quantification and identification of individual chemicals in metabolite mixtures by two-dimensional extrapolated time-zero 1H-13C HSQC (HSQC 0). J Am Chem Soc 133(6):1662–1665. https://doi.org/10.1021/ja1095304
Iles RA et al (1984) Rapid screening of metabolic diseases by proton NMR. Lancet 2(8413):1221–1222. https://doi.org/10.1016/S0140-6736(84)92783-1
Izquierdo-Garcia JL et al (2020) Discovery and validation of an NMR-based metabolomic profile in urine as TB biomarker. Sci Rep 10(1):22317. https://doi.org/10.1038/s41598-020-78999-4
Jeyarajah EJ, Cromwell WC, Otvos JD (2006) Lipoprotein particle analysis by nuclear magnetic resonance spectroscopy. Clin Lab Med 26(4):847–870. https://doi.org/10.1016/j.cll.2006.07.006
Kaddurah-Daouk R (2006) Metabolic profiling of patients with schizophrenia. PLoS Med 3(8):e363. https://doi.org/10.1371/journal.pmed.0030363
Karamanos TK et al (2015) Mechanisms of amyloid formation revealed by solution NMR. Prog Nucl Magn Reson Spectrosc 88–89:86–104. https://doi.org/10.1016/j.pnmrs.2015.05.002
Karu N et al (2018) A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. Anal Chim Acta 1030:1–24. https://doi.org/10.1016/j.aca.2018.05.031
Kazimierczuk K et al (2010) Random sampling in multidimensional NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 57(4):420–434. https://doi.org/10.1016/j.pnmrs.2010.07.002
Keshari KR et al (2010) Hyperpolarized (13)C spectroscopy and an NMR-compatible bioreactor system for the investigation of real-time cellular metabolism. Magn Reson Med 63(2):322–329. https://doi.org/10.1002/mrm.22225
Kim S et al (2016) Food metabolomics: from farm to human. Curr Opin Biotechnol 37:16–23. https://doi.org/10.1016/j.copbio.2015.09.004
Kim E et al (2019) Urine-NMR metabolomics for screening of advanced colorectal adenoma and early stage colorectal cancer. Sci Rep 9(1):4786. https://doi.org/10.1038/s41598-019-41216-y
Kork F et al (2012) A biomarker for severity of Alzheimer’s disease: 1H-NMR resonances in cerebrospinal fluid correlate with performance in mini-mental-state-exam. Biomarkers 17(1):36–42. https://doi.org/10.3109/1354750X.2011.635806
Kostidis S, Mikros E (2015) NMR studies of inborn errors of metabolism. In: eMagRes. Wiley, Chichester, pp 57–68. https://doi.org/10.1002/9780470034590.emrstm1400
Kupče Ē, Claridge TDW (2017) NOAH: NMR supersequences for small molecule analysis and structure elucidation. Angew Chem Int Ed 56(39):11779–11783. https://doi.org/10.1002/anie.201705506
Lane AN et al (2011) Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. OMICS 15(3):173–182. https://doi.org/10.1089/omi.2010.0088
Le Guennec A, Giraudeau P, Caldarelli S (2014) Evaluation of fast 2D NMR for metabolomics. Anal Chem 86(12):5946–5954. https://doi.org/10.1021/ac500966e
Leggett A et al (2019) Identification of unknown metabolomics mixture compounds by combining NMR, MS, and cheminformatics. Methods Enzymol 615:407–422. https://doi.org/10.1016/BS.MIE.2018.09.003
Levy PA (2010) An overview of newborn screening. J Dev Behav Pediatr 31(7):622–631. https://doi.org/10.1097/DBP.0b013e3181eedf01
Lewis IA et al (2007) Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra. Anal Chem 79(24):9385–9390. https://doi.org/10.1021/ac071583z
Lewis IA, Schommer SC, Markley JL (2009) rNMR: open source software for identifying and quantifying metabolites in NMR spectra. Magn Reson Chem 47(Suppl 1):S123. https://doi.org/10.1002/mrc.2526
Lin CY et al (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3(1):55–67. https://doi.org/10.1007/s11306-006-0043-1
Lindon JC et al (2005) The consortium for metabonomic toxicology (COMET): aims, activities and achievements. Pharmacogenomics 6(7):691–699. https://doi.org/10.2217/14622416.6.7.691
Lindon JC, Holmes E, Nicholson JK (2007) Metabonomics in pharmaceutical R & D. FEBS J 274(5):1140–1151. https://doi.org/10.1111/j.1742-4658.2007.05673.x
Lopez JM, Cabrera R, Maruenda H (2019) Ultra-clean pure shift 1 H-NMR applied to metabolomics profiling. Sci Rep 9(1):6900. https://doi.org/10.1038/s41598-019-43374-5
Luchinat E et al (2021) Protein in-cell NMR spectroscopy at 1.2 GHz. J Biomol 75(2–3):97–107. https://doi.org/10.1007/s10858-021-00358-w
Ludwig C, Viant M (2010) Two-dimensional J-resolved NMR spectroscopy: review of a key methodology in the metabolomics toolbox. Phytochem Anal 21(1):22–32. https://doi.org/10.1002/PCA.1186
Lumata L et al (2015) Hyperpolarized 13C magnetic resonance and its use in metabolic assessment of cultured cells and perfused organs. Methods Enzymol 561:73–106. https://doi.org/10.1016/bs.mie.2015.04.006
Lutz N, Sweedler J, Wevers R (eds) (2013) Methodologies for metabolomics: experimental strategies and techniques. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511996634
Madsen R, Lundstedt T, Trygg J (2010) Chemometrics in metabolomics – a review in human disease diagnosis. Anal Chim Acta 659(1–2):23–33. https://doi.org/10.1016/j.aca.2009.11.042
Mak CM et al (2013) Inborn errors of metabolism and expanded newborn screening: review and update. Crit Rev Clin Lab Sci 50(6):142–162. https://doi.org/10.3109/10408363.2013.847896
Marliani AF et al (2007) Quantitative proton magnetic resonance spectroscopy of the human cervical spinal cord at 3 tesla. Magn Reson Med 57(1):160–163. https://doi.org/10.1002/mrm.21113
Martens L et al (2011) mzML – a community standard form mass spectrometry data. Mol Cell Proteomics 10(1):R110.000133. https://doi.org/10.1074/mcp.R110.000133
Martineau E, Giraudeau P (2019) Fast quantitative 2D NMR for untargeted and targeted metabolomics. Methods Mol Biol 2037:365–383. https://doi.org/10.1007/978-1-4939-9690-2_20
Martineau E et al (2011) Fast and precise quantitative analysis of metabolic mixtures by 2D 1H INADEQUATE NMR. J Pharm Biomed Anal 54(1):252–257. https://doi.org/10.1016/j.jpba.2010.07.046
Martineau E et al (2013) Fast quantitative 1H-13C two-dimensional NMR with very high precision. Anal Chem 85(9):4777–4783. https://doi.org/10.1021/ac4005309
Martineau E, Dumez JN, Giraudeau P (2020) Fast quantitative 2D NMR for metabolomics and lipidomics: a tutorial. Magn Reson Chem 58(5):390–403. https://doi.org/10.1002/mrc.4899
Martínez-Arranz I et al (2015) Enhancing metabolomics research through data mining. J Proteomics 127(Pt B):275–288. https://doi.org/10.1016/j.jprot.2015.01.019
Massou S et al (2007) NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry 68(16–18):2330–2340. https://doi.org/10.1016/j.phytochem.2007.03.011
Mazzei P, Piccolo A (2017) HRMAS NMR spectroscopy applications in agriculture. Chem Biol Technol Agric 4(1):11. https://doi.org/10.1186/S40538-017-0093-9
McAlpine J et al (2019) The value of universally available raw NMR data for transparency, reproducibility, and integrity in natural product research. Nat Prod Rep 36(1):35–107. https://doi.org/10.1039/C7NP00064B
McKay RT (2009) Chapter 2 recent advances in solvent suppression for solution NMR: a practical reference. In: Annual reports on NMR spectroscopy. Elsevier, pp 33–76. https://doi.org/10.1016/S0066-4103(08)00402-X
Mckay RT (2011) How the 1D-NOESY suppresses solvent signal in metabonomics NMR spectroscopy: an examination of the pulse sequence components and evolution. Concepts Magn Reson A 38(5):197–220. https://doi.org/10.1002/cmr.a.20223
McNamara JR, Warnick GR, Cooper GR (2006) A brief history of lipid and lipoprotein measurements and their contribution to clinical chemistry. Clin Chim Acta 369(2):158–167. https://doi.org/10.1016/j.cca.2006.02.041
Melzer N, Wittenburg D, Repsilber D (2013) Integrating milk metabolite profile information for the prediction of traditional milk traits based on SNP information for Holstein cows. PLoS One 8(8):e70256. https://doi.org/10.1371/journal.pone.0070256
Mercier P et al (2011) Towards automatic metabolomic profiling of high-resolution one-dimensional proton NMR spectra. J Biomol NMR 49(3–4):307–323. https://doi.org/10.1007/s10858-011-9480-x
Midgley I, Hawkins DR (1978) The use of 13C-nmr spectroscopy for the detection and identification of metabolites of carbon- 13 labelled amitriptyline. J Pharm Pharmacol 30(9):547–553. https://doi.org/10.1111/j.2042-7158.1978.tb13321.x
Monakhova YB et al (2014) Validation studies for multicomponent quantitative NMR analysis: the example of apple fruit juice. Accred Qual Assur 19(1):17–29. https://doi.org/10.1007/s00769-013-1026-3
Motta A, Paris D, Melck D (2010) Monitoring real-time metabolism of living cells by fast two-dimensional NMR spectroscopy. Anal Chem 82(6):2405–2411. https://doi.org/10.1021/ac9026934
Moutzouri P et al (2017) Ultraclean pure shift NMR. Chem Commun (Camb) 53(73):10188–10191. https://doi.org/10.1039/c7cc04423b
Nagana Gowda GA, Raftery D (2014) Quantitating metabolites in protein precipitated serum using NMR spectroscopy. Anal Chem 86(11):5433–5440. https://doi.org/10.1021/ac5005103
Nagana Gowda GA, Gowda YN, Raftery D (2015) Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal Chem 87(1):706–715. https://doi.org/10.1021/ac503651e
Namer IJ et al (2011) Metabolomic characterization of ovarian epithelial carcinomas by HRMAS-NMR spectroscopy. J Oncol 2011:174019. https://doi.org/10.1155/2011/174019
Nicholson JK, Wilson ID (2003) Opinion: understanding “global” systems biology: metabonomics and the continuum of metabolism. Nat Rev Drug Discov 2(8):668–676. https://doi.org/10.1038/nrd1157
Nicholson JK et al (1984a) Monitoring metabolic disease by proton NMR of urine. Lancet 2(8405):751–752. https://doi.org/10.1016/S0140-6736(84)92656-4
Nicholson JK et al (1984b) Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J 217(2):365–375. https://doi.org/10.1042/bj2170365
Nicholson JK et al (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1(2):153–161. https://doi.org/10.1038/nrd728
Oliver S et al (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol 16(9):373–378. https://doi.org/10.1016/S0167-7799(98)01214-1
Otvos JD, Jeyarajah EJ, Bennett DW (1991) Quantification of plasma lipoproteins by proton nuclear magnetic resonance spectroscopy. Clin Chem 37(3):377–386
Palmnas MSA, Vogel HJ (2013) The future of NMR metabolomics in cancer therapy: towards personalizing treatment and developing targeted drugs? Metabolites 3(2):373–396. https://doi.org/10.3390/metabo3020373
Paruzzo F, Bruderer S, Janjar Y, Bjoern Heitmann B, Bolliger C (2020) Automatic signal region detection in 1H NMR spectra using deep learning [White paper]. Switzerland
Pathan M et al (2011) “Multi-scan single shot” quantitative 2D NMR: a valuable alternative to fast conventional quantitative 2D NMR. Analyst 136(15):3157–3163. https://doi.org/10.1039/c1an15278e
Percival BC et al (2019) Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care diagnostics of metabolic conditions: validation, protocols and computational models. High-Throughput 8(1):2. https://doi.org/10.3390/ht8010002
Percival B et al (2020) Chapter 1: univariate and multivariate statistical approaches to the analysis and interpretation of NMR-based metabolomics datasets of increasing complexity. In: Computational techniques for analytical chemistry and bioanalysis. Royal Society of Chemistry, pp 1–40. https://doi.org/10.1039/9781788015882-00001
Peterson DJ, Loening NM (2007) QQ-HSQC: a quick, quantitative heteronuclear correlation experiment for NMR spectroscopy. Magn Reson Chem 45(11):937–941. https://doi.org/10.1002/mrc.2073
Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679. https://doi.org/10.1002/mrm.1910300604
Provencher SW (2001) Automatic quantitation of localized in vivo 1H spectra with LCModel. NMR Biomed 14(4):260–264. https://doi.org/10.1002/nbm.698
Psychogios N et al (2011) The human serum metabolome. PLoS One 6(2):e16957. https://doi.org/10.1371/journal.pone.0016957
Ramaswamy V et al (2013) Development of a 13C-optimized 1.5-mm high temperature superconducting NMR probe. J Magn Reson 235:58–65. https://doi.org/10.1016/j.jmr.2013.07.012
Ramaswamy V et al (2016) Development of a 1H-13C dual-optimized NMR probe based on double-tuned high temperature superconducting resonators. IEEE Trans Appl Supercond 26(3):1–5. https://doi.org/10.1109/TASC.2016.2522302
Ravanbakhsh S et al (2015) Accurate, fully-automated NMR spectral profiling for metabolomics. PLoS One 10(5):1–15. https://doi.org/10.1371/journal.pone.0124219
Röhnisch HE et al (2018) AQuA: an automated quantification algorithm for high-throughput NMR-based metabolomics and its application in human plasma. Anal Chem 90(3):2095–2102. https://doi.org/10.1021/acs.analchem.7b04324
Rothman DL et al (2003) In vivo NMR studies of the glutamate neurotransmitter flux and neuroenergetics: implications for brain function. Annu Rev Physiol 65(1):401–427. https://doi.org/10.1146/annurev.physiol.65.092101.142131
Saborano R et al (2019) A framework for tracer-based metabolism in mammalian cells by NMR. Sci Rep 9(1):2520. https://doi.org/10.1038/s41598-018-37525-3
Saccenti E et al (2014) Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics 10(3):361–374. https://doi.org/10.1007/s11306-013-0598-6
Saleem F et al (2013) The bovine ruminal fluid metabolome. Metabolomics 9(2):360–378. https://doi.org/10.1007/s11306-012-0458-9
Salek R et al (2015) COordination of standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11(6):1587–1597. https://doi.org/10.1007/S11306-015-0810-Y
Savorani F, Tomasi G, Engelsen SB (2010) Icoshift: a versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202(2):190–202. https://doi.org/10.1016/j.jmr.2009.11.012
Schober D et al (2018) NmrML: a community supported open data standard for the description, storage, and exchange of NMR data. Anal Chem 90(1):649–656. https://doi.org/10.1021/acs.analchem.7b02795
Schwalbe H (2017) Editorial: new 1.2 GHz NMR spectrometers- new horizons? Angew Chem Int Ed 56(35):10252–10253. https://doi.org/10.1002/anie.201705936
Sellick CA et al (2009) Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Anal Chem 81(1):174–183. https://doi.org/10.1021/ac8016899
Serrai H et al (1998) Quantification of plasma lipoprotein fractions by wavelet transform time-domain data processing of the proton nuclear magnetic resonance methylene spectral region. NMR Biomed 11(6):273–280. https://doi.org/10.1002/(SICI)1099-1492(199810)11:6<273::AID-NBM523>3.0.CO;2-J
Sette M, Lange H, Crestini C (2013) Quantitative HSQC analyses of lignin: a practical comparison. Comput Struct Biotechnol J 6(7):e201303016. https://doi.org/10.5936/csbj.201303016
Seyfried T, Shelton L (2010) Cancer as a metabolic disease. Nutr Metab 7(1):1–22. https://doi.org/10.1186/1743-7075-7-7
Shrot Y, Frydman L (2009) Spatial/spectral encoding of the spin interactions in ultrafast multidimensional NMR. J Chem Phys 131(22):224516. https://doi.org/10.1063/1.3266422
Simister RJ et al (2003) A proton magnetic resonance spectroscopy study of metabolites in the occipital lobes in epilepsy. Epilepsia 44(4):550–558. https://doi.org/10.1046/j.1528-1157.2003.19102.x
Simpson MJ, Bearden DW (2013) Environmental metabolomics: NMR techniques. In: Harris RK, Wasylishen RL (eds) eMagRes. Wiley, pp 549–560. https://doi.org/10.1002/9780470034590.emrstm1352
Smolinska A et al (2012) NMR and pattern recognition methods in metabolomics: from data acquisition to biomarker discovery: a review. Anal Chim Acta 750:82–97. https://doi.org/10.1016/j.aca.2012.05.049
Sobolev AP et al (2019) Use of NMR applications to tackle future food fraud issues. Trends Food Sci Technol 91:347–353. https://doi.org/10.1016/j.tifs.2019.07.035
Soininen P et al (2015) Quantitative serum nuclear magnetic resonance metabolomics in cardiovascular epidemiology and genetics. Circ Cardiovasc Genet 8(1):192–206. https://doi.org/10.1161/CIRCGENETICS.114.000216
Sokolenko S et al (2013) Understanding the variability of compound quantification from targeted profiling metabolomics of 1D-1H-NMR spectra in synthetic mixtures and urine with additional insights on choice of pulse sequences and robotic sampling. Metabolomics 9(4):887–903. https://doi.org/10.1007/s11306-013-0503-3
Spicer R, Salek R, Steinbeck C (2017) A decade after the metabolomics standards initiative it’s time for a revision. Sci Data 4(1):170138. https://doi.org/10.1038/sdata.2017.138
Spraul M et al (2015) Wine analysis to check quality and authenticity by fully-automated 1 H-NMR. BIO Web Conf 5(23):02022. https://doi.org/10.1051/bioconf/20150502022
Steimers E et al (2020) Application of a new method for simultaneous phase and baseline correction of NMR signals (SINC). Magn Reson Chem 58(3):260–270. https://doi.org/10.1002/mrc.4964
Sumner LW et al (2015) Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat Prod Rep 32(2):212–229. https://doi.org/10.1039/C4NP00072B
Sundekilde UK et al (2014) Association between the bovine milk metabolome and rennet-induced coagulation properties of milk. J Dairy Sci 97(10):6076–6084. https://doi.org/10.3168/jds.2014-8304
Takis PG et al (2017) Deconvoluting interrelationships between concentrations and chemical shifts in urine provides a powerful analysis tool. Nat Commun 8(1):1662. https://doi.org/10.1038/s41467-017-01587-0
Tal A, Frydman L (2010) Single-scan multidimensional magnetic resonance. Prog Nucl Magn Reson Spectrosc 57(3):241–292. https://doi.org/10.1016/j.pnmrs.2010.04.001
Tardivel P et al (2017) ASICS: an automatic method for identification and quantification of metabolites in complex 1D 1H NMR spectra. Metabolomics 13(10):109. https://doi.org/10.1007/s11306-017-1244-5
Tasic L et al (2017) Metabolomics and lipidomics analyses by1H nuclear magnetic resonance of schizophrenia patient serum reveal potential peripheral biomarkers for diagnosis. Schizophr Res 185:182–189. https://doi.org/10.1016/j.schres.2016.12.024
Tayyari F et al (2013) 15N-Cholamine – a smart isotope tag for combining NMR- and MS-based metabolite profiling. Anal Chem 85(18):8715–8721. https://doi.org/10.1021/ac401712a
Teahan O et al (2011) Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol 43(7):1002–1009. https://doi.org/10.1016/j.biocel.2010.07.003
Teng Q et al (2009) A direct cell quenching method for cell-culture based metabolomics. Metabolomics 5(2):199–208. https://doi.org/10.1007/s11306-008-0137-z
Theis T et al (2016) Direct and cost-efficient hyperpolarization of long-lived nuclear spin states on universal 15N2-diazirine molecular tags. Sci Adv 2(3):e1501438. https://doi.org/10.1126/sciadv.1501438
Tilgner M et al (2019) High-resolution magic angle spinning (HRMAS) NMR methods in metabolomics. Methods Mol Biol 2037:49–67. https://doi.org/10.1007/978-1-4939-9690-2_4
Truong ML et al (2015) 15N hyperpolarization by reversible exchange using SABRE-SHEATH. J Phys Chem 119(16):8786–8797. https://doi.org/10.1021/acs.jpcc.5b01799
Verhoeven A, Giera M, Mayboroda OA (2018) KIMBLE: a versatile visual NMR metabolomics workbench in KNIME. Anal Chim Acta 1044:66–76. https://doi.org/10.1016/j.aca.2018.07.070
Viant MR (2008) Recent developments in environmental metabolomics. Mol Biosyst 4(10):980–986. https://doi.org/10.1039/b805354e
Vuckovic D (2012) Current trends and challenges in sample preparation for global metabolomics using liquid chromatography-mass spectrometry. Anal Bioanal Chem 403(6):1523–1548. https://doi.org/10.1007/s00216-012-6039-y
Wang T et al (2009) Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis. BMC Bioinformatics 10(1):83. https://doi.org/10.1186/1471-2105-10-83
Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314. https://doi.org/10.1126/SCIENCE.123.3191.309
Watanabe R et al (2016) Quantitative nuclear magnetic resonance spectroscopy based on PULCON methodology: application to quantification of invaluable marine toxin, okadaic acid. Toxins 8(10):294. https://doi.org/10.3390/toxins8100294
Weber F et al (2012) 31P and 13C solid-state NMR spectroscopy to study collagen synthesis and biomineralization in polymer-based bone implants. NMR Biomed 25(3):464–475. https://doi.org/10.1002/nbm.1649
Weiner MW et al (1989) Clinical magnetic resonance spectroscopy of brain, heart, liver, kidney, and cancer. A quantitative approach. NMR Biomed 2(5–6):290–297. https://doi.org/10.1002/nbm.1940020519
Weljie AM et al (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78(13):4430–4442. https://doi.org/10.1021/ac060209g
Weljie AM et al (2011) 1H NMR metabolomics identification of markers of hypoxia-induced metabolic shifts in a breast cancer model system. J Biomol NMR 49(3–4):185–193. https://doi.org/10.1007/s10858-011-9486-4
Williams TH et al (1979) Novel application of proton nuclear magnetic resonance spectroscopy in the identification of 2’-chloronordiazepam metabolites in the dog. J Med Chem 22(4):436–440. https://doi.org/10.1021/jm00190a016
Williams TD et al (2009) Hepatic transcriptomic and metabolomic responses in the stickleback (Gasterosteus aculeatus) exposed to environmentally relevant concentrations of dibenzanthracene. Environ Sci Technol 43(16):6341–6348. https://doi.org/10.1021/es9008689
Wilson DM, Burlingame AL (1974) Deuterium and carbon-13 tracer studies of ethanol metabolism in the rat by 2H, 1H-decoupled 13C nuclear magnetic resonance. Biochem Biophys Res Commun 56(3):828–835. https://doi.org/10.1016/0006-291X(74)90680-9
Wishart DS (2005) Metabolomics: the principles and potential applications to transplantation. Am J Transplant 5(12):2814–2820. https://doi.org/10.1111/j.1600-6143.2005.01119.x
Wishart DS (2008a) Applications of metabolomics in drug discovery and development. Drugs R D 9(5):307–322. https://doi.org/10.2165/00126839-200809050-00002
Wishart DS (2008b) Metabolomics: applications to food science and nutrition research. Trends Food Sci Technol 19(9):482–493. https://doi.org/10.1016/j.tifs.2008.03.003
Wishart DS (2015) Is cancer a genetic disease or a metabolic disease? EBioMedicine 2(6):478–479. https://doi.org/10.1016/j.ebiom.2015.05.022
Wishart D (2016) Emerging applications of metabolomics in drug discovery and precision medicine. Nat Rev Drug Discov 15(7):473–484. https://doi.org/10.1038/nrd.2016.32
Wishart DS et al (1995) 1H, 13C and 15N chemical shift referencing in biomolecular NMR. J Biomol NMR 6(2):135–140. https://doi.org/10.1007/BF00211777
Wishart DS et al (2001) Magnetic resonance diagnostics: a new technology for high-throughput clinical diagnostics. Clin Chem 47(10):1918–1921
Wishart DS et al (2007) HMDB: the human metabolome database. Nucleic Acids Res 35(Suppl 1):D521–D526. https://doi.org/10.1093/nar/gkl923
Wishart DS et al (2008) The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci 871(2):164–173. https://doi.org/10.1016/j.jchromb.2008.05.001
Wishart DS et al (2018) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46(D1):D608–D617. https://doi.org/10.1093/nar/gkx1089
Wolak J et al (2012) Noninvasive fluxomics in mammals by nuclear magnetic resonance spectroscopy. In: Fan TW-M, Lane A, Higashi R (eds) The handbook of metabolomics. Methods in pharmacology and toxicology. Humana Press, Totowa, pp 321–392. https://doi.org/10.1007/978-1-61779-618-0_11
Worley B, Powers R (2014) MVAPACK: a complete data handling package for NMR metabolomics. ACS Chem Biol 9(5):1138–1144. https://doi.org/10.1021/cb4008937
Wu J et al (2016) NMR analysis of the CSF and plasma metabolome of rigorously matched amyotrophic lateral sclerosis, Parkinson’s disease and control subjects. Metabolomics 12(6):101. https://doi.org/10.1007/s11306-016-1041-6
Wu K et al (2021) Improvement in signal-to-noise ratio of liquid-state NMR spectroscopy via a deep neural network DN-Unet. Anal Chem 93(3):1377–1382. https://doi.org/10.1021/acs.analchem.0c03087
Würtz P et al (2017) Quantitative serum nuclear magnetic resonance metabolomics in large-scale epidemiology: a primer on -Omic technologies. Am J Epidemiol 186(9):1084–1096. https://doi.org/10.1093/aje/kwx016
Xi Y, Rocke DM (2008) Baseline correction for NMR spectroscopic metabolomics data analysis. BMC Bioinform 9(1):324. https://doi.org/10.1186/1471-2105-9-324
Xia J et al (2009) MetaboAnalyst: a web server for metabolomic data analysis and interpretation. Nucleic Acids Res 37(Web Server issue):W652–W660. https://doi.org/10.1093/nar/gkp356
Yamaguchi S et al (1984) Rapid screening of metabolic disease by proton NMR urinalysis. Lancet 2(8397):284
Ye T et al (2009) Chemoselective 15N tag for sensitive and high-resolution nuclear magnetic resonance profiling of the carboxyl-containing metabolome. Anal Chem 81(12):4882–4888. https://doi.org/10.1021/ac900539y
Yoshikawa K, Matsushita K, Ohsaka A (1982) 1H-NMR spectroscopy in aqueous mediums. Examination of experimental conditions with human urine as a model sample. Physiol Chem Phys 14(4):385–389
Zhang B et al (2016) Nanoparticle-assisted removal of protein in human serum for metabolomics studies. Anal Chem 88(1):1003–1007. https://doi.org/10.1021/acs.analchem.5b03889
Zheng C et al (2011) Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 27(12):1637–1644. https://doi.org/10.1093/bioinformatics/btr118
Zorin V, Bernstein MA, Cobas C (2017) A robust, general automatic phase correction algorithm for high-resolution NMR data. Magn Reson Chem 55(8):738–746. https://doi.org/10.1002/mrc.4586
Acknowledgments
The authors wish to thank Genome Alberta (a division of Genome Canada), The Canadian Institutes of Health Research (CIHR), Western Economic Diversification (WED), and Alberta Innovates Health Solutions (AIHS) for financial support.
Glossary
- Baseline correction:
-
A spectral processing technique that yields a more pleasant looking NMR spectrum where signal-free regions appear as completely flat lines with zero intensity
- BEST:
-
Band-Selective Excitation Transient
- Chemometrics:
-
A branch of information science that uses mathematical and statistical methods to identify patterns and extract information from large data sets collected on analytical instruments, such as UV, IR, and NMR spectrometers
- CPMG:
-
Carr-Purcell-Meiboom-Gill
- CPMG experiment:
-
A pulse that can filter out the signals arising from large molecules, such as proteins or lipoproteins, from the spectrum (without the need for ultrafiltration or solvent extraction)
- COSY:
-
COrrelated SpectroscopY
- DSS:
-
4,4-dimethyl-4-silapentane-1-sulfonic acid, a chemical shift reference compound
- ERETIC:
-
Electronic REference To access In vivo Concentrations, an electronic reference signal
- HSQC:
-
Heteronuclear Single Quantum Coherence Spectroscopy
- IEM:
-
Inborn error of metabolism. They are rare genetic disorders characterized by significant changes (several-fold increase or absence) in the concentration of specific metabolites that result from disturbances in normal metabolism
- INADEQUATE:
-
Incredible Natural Abundance DoublE QUAntum Transfer Experiment
- IUPAC:
-
The International Union of Pure and Applied Chemistry
- IUBMB:
-
The International Union of Biochemistry and Molecular Biology
- Metabolomics:
-
A branch of analytical chemistry that comprehensively characterizes the molecules in various biofluids and tissues
- Metabolites:
-
The chemical constituents of the metabolome
- Metabolome:
-
The complete collection of all chemicals or metabolites found within cells, biofluids, organs, or organisms
- Metnoesy experiment:
-
A simple 1D NOESY pulse sequence that provides solvent suppression before the experiment and during the mixing time without the use of gradients
- NOESY:
-
Nuclear Overhauser Effect Spectroscopy
- Phasing:
-
An NMR spectral adjustment process that is designed to maximize the absorptive character of NMR peaks over all regions of an NMR spectrum
- Relaxation delay:
-
The sum of the acquisition time and acquisition delay prior to the next scan
- SABRE-SHEATH:
-
Signal Amplification by Reversible Exchange in SHield Enables Alignment Transfer to Heteronuclei
- SOFAST:
-
Band-Selective Optimized Flip Angle Short Transient
- STOCSY:
-
Statistical total correlation spectroscopy
- T1:
-
Longitudinal relaxation time
- T2:
-
Transverse relaxation time
- Targeted metabolomics:
-
A metabolomics technique that uses spectral deconvolution software to identify and quantify fluid-specific or targeted metabolites in individual spectra
- TSP:
-
Trimethylsilylpropanoic acid, a chemical shift reference compound
- Untargeted metabolomics:
-
A metabolomics technique that uses spectral alignment, spectral binning, and multivariate statistical analysis to identify spectral features of interest
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Wishart, D.S., Rout, M., Lee, B.L., Berjanskii, M., LeVatte, M., Lipfert, M. (2022). Practical Aspects of NMR-Based Metabolomics. In: Ghini, V., Stringer, K.A., Luchinat, C. (eds) Metabolomics and Its Impact on Health and Diseases. Handbook of Experimental Pharmacology, vol 277. Springer, Cham. https://doi.org/10.1007/164_2022_613
Download citation
DOI: https://doi.org/10.1007/164_2022_613
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-26858-8
Online ISBN: 978-3-031-26859-5
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)