Skip to main content

Cellular and Molecular Mechanisms of Fat Taste Perception

  • Chapter
  • First Online:
The Pharmacology of Taste

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 275))

Abstract

During the last couples of years, a number of studies have increasingly accumulated on the gustatory perception of dietary fatty acids in rodent models and human beings in health and disease. There is still a debate to coin a specific term for the gustatory perception of dietary fatty acids either as the sixth basic taste quality or as an alimentary taste. Indeed, the psycho-physical cues of orosensory detection of dietary lipids are not as distinctly perceived as other taste qualities like sweet or bitter. The cellular and molecular pharmacological mechanisms, triggered by the binding of dietary long-chain fatty acids (LCFAs) to tongue taste bud lipid receptors like CD36 and GPR120, involve Ca2+ signaling as other five basic taste qualities. We have not only elucidated the role of Ca2+ signaling but also identified different components of the second messenger cascade like STIM1 and MAP kinases, implicated in fat taste perception. We have also demonstrated the implication of Calhm1 voltage-gated channels and store-operated Ca2+ (SOC) channels like Orai1, Orai1/3, and TRPC3 in gustatory perception of dietary fatty acids. We have not only employed siRNA technology in vitro and ex vivo on tissues but also used animal models of genetic invalidation of STIM1, ERK1, Orai1, Calhm1 genes to explore their implications in fat taste signal transduction. Moreover, our laboratory has also demonstrated the importance of LCFAs detection dysfunction in obesity in animal models and human beings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CaM:

Calmodulin

CIF:

Ca2+ influx factor

DAG:

Diacylglycerol

IP3:

Inositol-tris-phosphate

LCFAs:

Long-chain fatty acids

PIP2:

Phosphatidyl-inositol-bisphosphate

PLC:

Phospholipase C

PTK:

Protein tyrosine kinase

STIM1:

Stromal interaction protein-1

TBC:

Taste bud cell

VEG:

von Ebner’s glands

References

  • Adachi S, Eguchi A, Sakamoto K, Asano H, Manabe Y, Matsumura S, Tsuzuki S, Inoue K, Fushiki T (2014) Behavioral palatability of dietary fatty acids correlates with the intracellular calcium ion levels induced by the fatty acids in GPR120-expressing cells. Biomed Res 35:357–367

    CAS  PubMed  Google Scholar 

  • Abdoul-Azize S, Atek-Mebarki F, Bitam A, Sadou H, Koceïr EA, Khan NA (2013) Oro-gustatory perception of dietary lipids and calcium signaling in taste bud cells are altered in nutritionally obesity-prone Psammomys obesus. PLoS One 1:e68532

    Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 32:2131–2157

    Google Scholar 

  • Bajit H, Ait Si Mohammed O, Guennoun Y, Benaich S, Bouaiti E, Belghiti H, Mrabet M, Elfahime EM, El Haloui NE, Saeid N, El Kari K, Hichami A, Khan NA, Benkirane H, Aguenaou H (2020) Single-nucleotide polymorphism rs1761667 in the CD36 gene is associated with orosensory perception of a fatty acid in obese and normalweight Moroccan subjects. J Nutr Res 9:e24. https://doi.org/10.1017/jns.2020.18. eCollection 2020

    Article  CAS  Google Scholar 

  • Bartoshuk LM, Duffy VB, Hayes JE, Moskowitz HR, Snyder DJ (2006) Psychophysics of sweet and fat perception in obesity: problems, solutions and new perspectives. Philos Trans R Soc Lond Ser B Biol Sci 361:1137–1148

    Google Scholar 

  • Bensalem A, Murtaza B, Hichami A, Khan AS, Oulamara H, Merlen G, Berrichi M, Agli AN, Tordjmann T, Khan NA (2019) Bile acid receptor TGR5 is critically involved in preference for dietary lipids and obesity. J Nutr Biochem 76:108298

    PubMed  Google Scholar 

  • Berrichi M, Benammar C, Murtaza B, Hichami A, Belarbi M, Khan NA (2019) Zizyphus lotus L. fruit attenuates obesity-associated alterations: in vivo mechanisms. Arch Physiol Biochem:1–8. https://doi.org/10.1080/13813455.2019.1621349

  • Berrichi M, Hichami A, Addou-Klouche L, Khan AS, Khan NA (2020) CD36 and GPR120 methylation associates with Orosensory detection thresholds for fat and bitter in Algerian young obese children. J Clin Med 9:E1956

    PubMed  Google Scholar 

  • Berthoud HR, Zheng H (2012) Modulation of taste responsiveness and food preference by obesity and weight loss. Physiol Behav 107:527–532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Besnard P, Passilly-Degrace P, Khan NA (2016) Taste of fat: a sixth taste modality? Physiol Rev 96:151–176

    CAS  PubMed  Google Scholar 

  • Besnard P, Christensen JE, Brignot H, Bernard A, Passilly-Degrace P, Nicklaus S, Pais de Barros JP, Collet X, Lelouvier B, Servant F, Blasco-Baque V, Verges B, Lagrost L, Feron G, Burcelin R (2018) Obese subjects with specific gustatory papillae microbiota and salivary cues display an impairment to sense lipids. Sci Rep 8:6742. https://doi.org/10.1038/s41598-018-24619-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bokor S, Legry V, Meirhaeghe A, Ruiz JR, Mauro B, Widhalm K, Manios Y, Amouyel P, Moreno LA, Molnàr D, Dallongeville J, HELENA Study Group (2010) Single-nucleotide polymorphism of CD36 locus and obesity in European adolescents. Obesity 18:1398–1403

    CAS  PubMed  Google Scholar 

  • Bolotina VM, Csutora P (2005) CIF and other mysteries of the store-operated Ca2+-entry pathway. Trends Biochem Sci 30:378–387

    CAS  PubMed  Google Scholar 

  • Charlton SJ, Vauquelin G (2010) Elusive equilibrium: the challenge of interpreting receptor pharmacology using calcium assays. Br J Pharmacol 161:1250–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, Le Coutre J, Ninomiya Y, Damak S (2010) Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci 30:8376–8382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chalé-Rush A, Burgess JR, Mattes RD (2007) Multiple routes of chemosensitivity to free fatty acids in humans. A J Physiol Gastroint Liver Physiol 292:206–1212

    Google Scholar 

  • Chen S-YC, Bench EM, Allerton TD, Schreiber AL, Arceneaux KP 3rd, Primeaux SD (2013) Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol 305:R1346–R1355

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, Merlin JF, Poirier H, Niot I, Khan NA (2013) Obesity alters the gustatory perception of lipids in the mouse: plausible involvement of lingual CD36. J Lipid Res 54:2485–2494

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choo E, Wong L, Chau P, Bushnell J, Dando R (2020) Offspring of obese mice display enhanced intake and sensitivity for palatable stimuli, with altered expression of taste signaling elements. Sci Rep 10:12776

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christine Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RSJ (2010) Oral sensitivity to fatty acids, food consumption and BMI in human subjects. B J Nutr 104:145–152

    Google Scholar 

  • Costanzi S, Neumann S, Gershengorn MC (2008) Seven transmembrane-spanning receptors for free fatty acids as therapeutic targets for diabetes mellitus: pharmacological, phylogenetic, and drug discovery aspects. J Biol Chem 283:16269–16273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costanzo A, Nowson C, Orellana L, Bolhuis D, Duesing K, Keast R (2019) A low-fat diet upregulates expression of fatty acid taste receptor gene FFAR4 in fungiform papillae in humans: a co-twin randomised controlled trial. Br J Nutr 122:1212–1220

    CAS  PubMed  Google Scholar 

  • Daoudi H, Plesník J, Sayed A, Šerý O, Rouabah A, Rouabah L, Khan NA (2015) Oral fat sensing and CD36 gene polymorphism in Algerian lean and obese teenagers. Nutrients 7:9096–9104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Díaz M, García C, Sebastiani G, López-Bermejo A, Ibáñez L, de Zegher F (2016) Placental and cord blood methylation of genes involved in energy homeostasis: association with fetal growth and neonatal body composition. Diabetes 66:779–784

    PubMed  Google Scholar 

  • Djeziri FZ, Belarbi M, Murtaza B, Hichami A, Benammar C, Khan NA (2018) Oleanolic acid improves diet-induced obesity by modulating fat preference and inflammation in mice. Biochimie 152:110–120

    CAS  PubMed  Google Scholar 

  • Dramane G, Abdoul-Azize S, Hichami A, Vögtle T, Akpona S, Chouabe C, Sadou H, Nieswandt B, Besnard P, Khan NA (2012) STIM1 regulates calcium signaling in taste bud cells and preference for fat in mice. J Clin Invest 122:2267–2282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drewnowski A, Brunzell JD, Sande K, Iverius PH, Greenwood MR (1985) Sweet tooth reconsidered: taste responsiveness in human obesity. Physiol Behav 35:617–622

    CAS  PubMed  Google Scholar 

  • Duca FA, Swartz TD, Sakar Y, Covasa M (2012) Increased oral detection, but decreased intestinal signaling for fats in mice lacking gut microbiota. PLoS One 7:e39748

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrlich M (2002) DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413

    CAS  PubMed  Google Scholar 

  • El-Yassimi A, Hichami A, Besnard P, Khan NA (2008) Linoleic acid induces calcium signaling, Src kinase phosphorylation, and neurotransmitter release in mouse CD36-positive gustatory cells. J Biol Chem 283:12949–12959

    CAS  PubMed  Google Scholar 

  • Fukuwatari T, Kawada T, Tsuruta M, Hiraoka T, Iwanaga T, Sugimoto E, Fushiki T (1997) Expression of the putative membrane fatty acid transporter (FAT) in taste buds of the circumvallate papillae in rats. FEBS Lett 414:461–464

    CAS  PubMed  Google Scholar 

  • Fukuwatari T, Shibata K, Iguchi K, Saeki T, Iwata A, Tani K, Sugimoto E, Fushiki T (2003) Role of gustation in the recognition of oleate and triolein in anosmic rats. Physiol Behav 78:579–583

    CAS  PubMed  Google Scholar 

  • Gaillard D, Laugerette F, Darcel N, El-Yassimi A, Passilly-Degrace A, Hichami A, Khan NA, Montmayeur JP, Besnard P (2008) The gustatory pathway is involved in CD36-mediated orosensory perception of long-chain fatty acids in the mouse. FASEB J 22:1458–1468

    CAS  PubMed  Google Scholar 

  • Galindo MM, Voigt N, Stein J, van Lengerich J, Raguse J-D, Hofmann T, Meyerhof W, Behrens M (2012) G protein-coupled receptors in human fat taste perception. Chem Senses 37:123–139

    CAS  PubMed  Google Scholar 

  • Ghosh A, Murugesan G, Chen K, Zhang L, Wang Q, Febbraio M, Anselmo RM, Marchant K, Barnard J, Silverstein R (2011) Platelet CD36 surface expression levels affect functional responses to oxidized LDL and are associated with inheritance of specific genetic polymorphisms. Blood 117:6355–6366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilbertson TA, Khan NA (2014) Cell signaling mechanisms of oro-gustatory detection of dietary fat: advances and challenges. Prog Lipid Res 53:82–92

    CAS  PubMed  Google Scholar 

  • Gilbertson TA, Fontenot DT, Liu L, Zhang H, Monroe WT (1997) Fatty acid modulation of K+ channels in taste receptor cells: gustatory cues for dietary fat. Am J Phys 272:C1203–C1210

    CAS  Google Scholar 

  • Godinot N, Yasumatsu K, Barcos ME, Pineau N, Ledda M, Viton F, Ninomiya Y, le Coutre J, Damak S (2013) Activation of tongue-expressed GPR40 and GPR120 by non caloric agonists is not sufficient to drive preference in mice. Neuroscience 250:20–30

    CAS  PubMed  Google Scholar 

  • Hamosh M, Scow RO (1973) Lingual lipase and its role in the digestion of dietary lipid. J Clin Invest 52:88–95

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartley IE, Liem DG, Keast R (2019) Umami as an ‘Alimentary’ taste. A new perspective on taste classification. Nutrients 11(1):182

    CAS  PubMed Central  Google Scholar 

  • Herness MS, Gilbertson TA (1999) Cellular mechanisms of taste transduction. Annu Rev Physiol 61:873–900

    CAS  PubMed  Google Scholar 

  • Hiraoka T, Fukuwatari T, Imaizumi M, Fushiki T (2003) Effects of oral stimulation with fats on the cephalic phase of pancreatic enzyme secretion in esophagostomized rats. Physiol Behav 79:713–717

    CAS  PubMed  Google Scholar 

  • Hirasawa A, Hara T, Katsuma S, Adachi T, Tsujimoto G (2008) Free fatty acid receptors and drug discovery. Bio Pharmaceut Bull 31:1847–1851

    CAS  Google Scholar 

  • Huang MM, Bolen JB, Barnwell JW, Shattil SJ, Brugge JS (1991) Membrane glycoprotein IV (CD36) is physically associated with the Fyn, Lyn, and yes protein-tyrosine kinases in human platelets. Proc Natl Acad Sci 88:7844–7848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh Y, Kawamata Y, Harada M, Kobayashi M, Fujii R, Fukusumi S et al (2003) Free fatty acids regulate insulin secretion from pancreatic β cells through GPR40. Nature 422:173–176

    CAS  PubMed  Google Scholar 

  • Jin J, Lian T, Gu C, Yu K, Gao YQ, Su XD (2016) The effects of cytosine methylation on general transcription factors. Sci Rep 6:29119

    PubMed  PubMed Central  Google Scholar 

  • Karmous I, Plesník J, Khan AS, Šerý O, Abid A, Mankai A, Aouidet A, Khan NA (2018) Orosensory detection of bitter in fat-taster healthy and obese participants: genetic polymorphism of CD36 and TAS2R38. Clin Nutr 37:313–320

    CAS  PubMed  Google Scholar 

  • Kawai T, Fushiki T (2003) Importance of lipolysis in oral cavity for orosensory detection of fat. Am J Physiol Regul Integr Comparat Physiol 285:R447–R454

    CAS  Google Scholar 

  • Keller KL, Liang CHL, Sakimura J, May D, Belle CV, Breen C, Driggin E, Tepper BJ, Lanzano PC, Deng L, Chung WK (2012) Common variants in the CD36 gene are associated with oral fat perception, fat preferences, and obesity in African Americans. Obesity 20:1066–1073

    CAS  PubMed  Google Scholar 

  • Keller M, Hopp L, Liu X, Wohland T, Rohde K, Cancello R, Klös M, Bacos K, Kern M, Eichelmann F, , Dietrich A, Schön MR, Gärtner D, Lohmann T, Dreßler M, Stumvoll M, Kovacs P, DiBlasio AM, Ling C, Binder H, Blüher M, Böttcher Y (2016) Genome-wide DNA promoter methylation and transcriptome analysis in human adipose tissue unravels novel candidate genes for obesity. Mol Metab 6:86–100

    PubMed  PubMed Central  Google Scholar 

  • Kenakin T (1997) Differences between natural and recombinant G protein-coupled receptor systems with varying receptor/G protein stoichiometry. Trends Pharmacol Sci 18:456–464

    CAS  PubMed  Google Scholar 

  • Kenakin T (2019) Biased receptor signaling in drug discovery. Pharmacol Rev 71:267–315

    CAS  PubMed  Google Scholar 

  • Khan AS, Keast R, Khan NA (2020) Preference for dietary fat: from detection to disease. Prog Lipid Res 78:101032

    CAS  PubMed  Google Scholar 

  • Laugerette F, Passilly-Degrace P, Patris B, Niot I, Febbraio M, Montmayeur JP, Besnard P (2005) CD36 involvement in orosensory detection of dietary lipids, spontaneous fat preference, and digestive secretions. J Clin Invest 115:3177–3184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Hansen DR, Kim I, Gilbertson TA (2005) Expression and characterization of delayed rectifying K+ channels in anterior rat taste buds. Am J Physiol Cell Physiol 289:C868–C880

    CAS  PubMed  Google Scholar 

  • Liu P, Shah BP, Croasdell S, Gilbertson TA (2011) Transient receptor potential channel type M5 is essential for fat taste. J Neurosci 31:8634–8642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu D, Costanzo A, Evans MDM, Archer NS, Nowson C, Duesing K, Keast R (2018) Expression of the candidate fat taste receptors in human fungiform papillae and the association with fat taste function. Br J Nutr 120:64–73

    CAS  PubMed  Google Scholar 

  • Loper HB, La Sala M, Dotson C, Steinle N (2015) Taste perception, associated hormonal modulation, and nutrient intake. Nutr Rev 73:83–91

    PubMed  PubMed Central  Google Scholar 

  • LopezJimenez ND, Sainz E, Cavenagh MM, Cruz-Ithier MA, Blackwood CA, Battey JF, Sullivan SL (2005) Two novel genes, Gpr113, which encodes a family 2 G-protein-coupled receptor, and Trcg1, are selectively expressed in taste receptor cells. Genomics 85:472–482

    CAS  PubMed  Google Scholar 

  • Love-Gregory L, Sherva R, Schappe T, Qi JS, McCrea J et al (2011) Common CD36 SNPs reduce protein expression and may contribute to a protective atherogenic profile. Hum Mol Genet 20:193–192

    CAS  PubMed  Google Scholar 

  • Ma X, Bacci S, Mlynarski W, Gottardo L et al (2004) A common haplotype at the CD36 locus is associated with high free fatty acid levels and increased cardiovascular risk in Caucasians. Hum Mol Genet 13:2197–2205

    CAS  PubMed  Google Scholar 

  • Martin C, Passilly-Degrace P, Chevrot M, Ancel D, Sparks SM, Drucker DJ, Besnard P (2012) Lipid-mediated release of GLP-1 by mouse taste buds from circumvallate papillae: putative involvement of GPR120 and impact on taste sensitivity. J Lipid Res 53:2256–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, Fushiki T (2009) Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett 450:186–190

    CAS  PubMed  Google Scholar 

  • Mattes RD (2008) Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses 34:145–150

    PubMed  PubMed Central  Google Scholar 

  • Mattes RD (2009) Is there a fatty acid taste? Annu Rev Nutr 29:305–327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mela DJ, Sacchetti DA (1991) Sensory preferences for fats: relationships with diet and body composition. Am J Clin Nutr 53:908–915

    CAS  PubMed  Google Scholar 

  • Mignen O, Thompson JL, Shuttleworth TJ (2009) The molecular architecture of the arachidonate-regulated Ca2+-selective ARC channel is a pentameric assembly of Orai1 and Orai3 subunits. J Physiol 587:4181–4197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miras AD, le Roux CW (2010) Bariatric surgery and taste: novel mechanisms of weight loss. Curr Opin Gastroenterol 26:140–145

    PubMed  Google Scholar 

  • Miura H, Kusakabe Y, Harada S (2006) Cell lineage and differentiation in taste buds. Arch Histol Cytol 69:209–225

    CAS  PubMed  Google Scholar 

  • Montmayeur JP, Liberles SD, Matsunami H, Buck LB (2001) A candidate taste receptor gene near a sweet taste locus. Nat Neurosci 4:492–498

    CAS  PubMed  Google Scholar 

  • Mrizak I, Šerý O, Plesnik J, Arfa A, Fekih M, Bouslema A, Zaouali M, Tabka Z, Khan NA (2015) The A allele of cluster of differentiation 36 (CD36) SNP 1761667 associates with decreased lipid taste perception in obese Tunisian women. Br J Nutr 113:1330–1337

    CAS  PubMed  Google Scholar 

  • Murtaza B, Berrichi M, Bennamar C, Tordjmann T, Djeziri FZ, Hichami A, Leemput J, Belarbi M, Ozdener H, Khan NA (2017) Zizyphin modulates calcium signalling in human taste bud cells and fat taste perception in the mouse. Fundam Clin Pharmacol 31:486–494

    CAS  PubMed  Google Scholar 

  • Murtaza B, Hichami A, Khan AS, Plesnik J, Sery O, Dietrich A, Birnbaumer L, Khan NA (2020a) Implication of TRPC3 channel in gustatory perception of dietary lipids. Acta Physiol. (Accepted)

    Google Scholar 

  • Murtaza B, Hichami A, Khan AS, Shimpukade B, Ulven T, Ozdener MH, Khan NA (2020b) Novel GPR120 agonist TUG891 modulates fat taste perception and preference and activates tongue-brain-gut axis in mice. J Lipid Res 61:133–142

    CAS  PubMed  Google Scholar 

  • Neyraud E, Palicki O, Schwartz C, Nicklaus S, Feron G (2012) Variability of human saliva composition: possible relationships with fat perception and liking. Arch Oral Biol 57:55–66

    Google Scholar 

  • Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan W, Li P, Lu WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oquendo P, Hundt E, Lawler J, Seed B (1989) CD36 directly mediates cytoadherence of Plasmodium falciparum parasitized erythrocytes. Cell 58:95–101

    CAS  PubMed  Google Scholar 

  • Ozdener MH, Subramaniam S, Sundaresan S, Sery O, Hashimoto T, Asakawa Y, Besnard P, Abumrad NA, Khan NA (2014) CD36-and GPR120-mediated Ca2+ signaling in human taste bud cells mediates differential responses to fatty acids and is altered in obese mice. Gastroenterology 146:995–1005

    CAS  PubMed  Google Scholar 

  • Pepino MY, Love-Gregory L, Klein S, Abumrad NA (2012) The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res 53:561–566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peterschmitt Y, Abdoul-Azize S, Murtaza B, Barbier M, Khan AS, Millot JL, Khan NK (2018) Fatty acid lingual application activates gustatory and reward brain circuits in the mouse. Nutrients 10:1246

    PubMed Central  Google Scholar 

  • Putney JW Jr (1999) TRP, inositol 1,4,5-trisphosphate receptors, and capacitative calcium entry. Proc Natl Acad Sci U S A 96:14669–14671

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ring A, Le Lay S, Pohl J, Verkade P, Stremmel W (2006) Caveolin-1 is required for fatty acid translocase (FAT/CD36) localization and function at the plasma membrane of mouse embryonic fibroblasts. Biochim Biophys Acta 761:416–423

    Google Scholar 

  • Rolls ET (2012) Mechanisms for sensing fat in food in the mouth: presented at the symposium "the taste for fat: new discoveries on the role of fat in sensory perception, metabolism, sensory pleasure and beyond" held at the Institute of Food Technologists 2011 annual meeting, New Orleans, LA, USA., June 12, 2011. J Food Sci 77:S140–S142

    CAS  PubMed  Google Scholar 

  • Running CA, Craig BA, Mattes RD (2015) Oleogustus: the unique taste of fat. Chem Senses 470:507–516

    Google Scholar 

  • Sarkar S, Kochhar KP, Khan NA (2019) Fat addiction: psychological and physiological trajectory. Nutrients 11:E2785

    PubMed  Google Scholar 

  • Sayed A, Šerý O, Plesnik J, Daoudi H, Rouabah A, Rouabah L, Khan NA (2015) CD36 AA genotype is associated with decreased lipid taste perception in young obese, but not lean, children. Int J Obes 39:920–924

    CAS  Google Scholar 

  • Sclafani A, Ackroff K (2014) Maltodextrin and fat preference deficits in "taste-blind" P2X2/P2X3 knockout mice. Chem Senses 39:507–514

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sclafani A, Zukerman S, Glendinning JI, Margolskee RF (2007) Fat and carbohydrate preferences in mice: the contribution of α-gustducin and Trpm5 taste-signaling proteins. Am J Physiol Regul Integr Comparat Physiol Am Physiol Soc 293:R1504–R1513

    CAS  Google Scholar 

  • Sclafani A, Zukerman S, Ackroff K (2013) GPR40 and GPR120 fatty acid sensors are critical for postoral but not oral mediation of fat preferences in the mouse. Am J Physiol Regul Integr Comp Physiol 305:R1490–R1497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugamprema D, Muthuswamy K, Subramanian G, Ponnusamy V, Krishnan V, Subramaniam S (2020) Fat taste signal transduction and its possible negative modulator components. Prog Lipid Res 79:101035

    CAS  PubMed  Google Scholar 

  • Shin AC, Berthoud HR (2011) Food reward functions as affected by obesity and bariatric surgery. International journal of obesity. Nat Publ Group 35:S3–S40

    Google Scholar 

  • Shin YK, Martin B, Golden E, Dotson CD, Maudsley S, Kim W, Jang HJ, Mattson MP, Drucker DJ, Egan JM, Munger SD (2008) Modulation of taste sensitivity by GLP-1 signaling. J Neurochem 106:455–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silverstein RL, Febbraio M (2009) CD36, a scavenger receptor involved in immunity, metabolism, angiogenesis, and behavior. Sci Signal 26:2.re3

    Google Scholar 

  • Sinclair MS, Perea-Martinez I, Dvoryanchikov G, Yoshida M, Nishimori K, Roper SD, Chaudhari N (2010) Oxytocin signaling in mouse taste buds. PLoS One 5:e11980

    PubMed  PubMed Central  Google Scholar 

  • Spielman AI, D’Abundo S, Field RB, Schmale H (1993) Protein analysis of human von Ebner saliva and a method for its collection from the foliate papillae. J Dent Res 72:1331–1335

    CAS  PubMed  Google Scholar 

  • Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS (2010) Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr 104:145–152

    CAS  PubMed  Google Scholar 

  • Subramaniam S, Ozdener MH, Abdoul-Azize S, Saito K, Malik B, Maquart G, Hashimoto T, Marambaud P, Aribi M, Tordoff MG, Besnard P, Khan NA (2016) ERK1/2 activation in human taste bud cells regulates fatty acid signaling and gustatory perception of fat in mice and humans. FASEB J 30:3489–3500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki T (2007) Cellular mechanisms in taste buds. Bull Tokyo Dental College Tokyo Dental College 48:151–161

    CAS  Google Scholar 

  • Takeda M, Hoshino T (1975) Fine structure of taste buds in the rat. Arch Histol Jpn 37:395–413

    CAS  PubMed  Google Scholar 

  • Takeda M, Sawano S, Imaizumi M, Fushiki T (2001) Preference for corn oil in olfactory-blocked mice in the conditioned place preference test and the two-bottle choice test. Life Sci 69:847–854

    CAS  PubMed  Google Scholar 

  • Tandon NN, Lipsky RH, Burgess WH, Jamieson GA (1989) Isolation and characterization of platelet glycoprotein IV (CD36). J Biol Chem 264:7570–7575

    CAS  PubMed  Google Scholar 

  • Taruno A, Vingtdeux V, Ohmoto M, Ma Z, Dvoryanchikov G, Li A, Adrien L, Zhao H, Leung S, Abernethy M, Koppel J, Davies P, Civan MM, Chaudhari N, Matsumoto I, Hellekant G, Tordoff MG, Marambaud P, Foskett JK (2013) CALHM1 ion channel mediates purinergic neurotransmission of sweet, bitter and umami tastes. Nature 7440:223–226

    Google Scholar 

  • Tsuruta M, Kawada T, Fukuwatari T, Fushiki T (1999) The orosensory recognition of long-chain fatty acids in rats. Physiol Behav 66:285–288

    CAS  PubMed  Google Scholar 

  • US Patent 2019 265 231A1:GPCR (GPR113) Involved in fat, fatty acid and/or lipid-associated taste and use in assays for identifying taste modulatory

    Google Scholar 

  • Van Oort MM, van Doorn JM, Bonen A, Glatz JF, van der Horst DJ, Rodenburg KW, Luiken JJ (2008) Insulin-induced translocation of CD36 to the plasma membrane is reversible and shows similarity to that of GLUT4. Biochim Biophys Acta 1781:61–71

    PubMed  Google Scholar 

  • Voigt N, Stein J, Galindo MM, Dunkel A, Raguse JD, Meyerhof W, Hofmann T, Behrens M (2014) The role of lipolysis in human orosensory fat perception. J Lipid Res 55:870–882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Wu X, Simonavicius N, Tian H, Ling L (2006) Medium-chain fatty acids as ligands for orphan G proteincoupled receptor GPR84. J Biol Chem 281:34457–34464

    CAS  PubMed  Google Scholar 

  • Yasumatsu K, Iwata S, Inoue M, Ninomiya Y (2019) Fatty acid taste quality information via GPR120 in the anterior tongue of mice. Acta Physiol 226:e13215

    Google Scholar 

  • Yoneda T, Saitou K, Mizushige T, Matsumura S, Manabe Y, Tsuzuki S, Inoue K, Fushiki T (2007) The palatability of corn oil and linoleic acid to mice as measured by short-term two-bottle choice and licking tests. Physiol Behav 91:304–309

    CAS  PubMed  Google Scholar 

  • Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM (2011) Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem 113:663–667

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

All the authors declare that they do not have any conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naim Akhtar Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hichami, A., Khan, A.S., Khan, N.A. (2021). Cellular and Molecular Mechanisms of Fat Taste Perception. In: Palmer, R.K., Servant, G. (eds) The Pharmacology of Taste . Handbook of Experimental Pharmacology, vol 275. Springer, Cham. https://doi.org/10.1007/164_2021_437

Download citation

Publish with us

Policies and ethics