Skip to main content

Xanthine Oxidoreductase Inhibitors

  • Chapter
  • First Online:
Reactive Oxygen Species

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 264))

Abstract

Xanthine oxidase inhibitors are primarily used in the clinical prevention and treatment of gout associated with hyperuricemia. The archetypal xanthine oxidase inhibitor, Allopurinol has been shown to have other beneficial effects such as a reduction in vascular reactive oxygen species and mechano-energetic uncoupling. This chapter discusses these properties and their relevance to human pathophysiology with a focus on Allopurinol as well as newer xanthine oxidase inhibitors such as Febuxostat and Topiroxostat.

Graphical Abstract

Xanthine oxidase (XO) and xanthine dehydrogenase (XDH) are collectively referred to as xanthine oxidoreductase (XOR). XDH is initially synthesised as a 150-kDa protein from which XO is derived, e.g. under conditions of ischemia/hypoxia either reversibly by conformational changes (calcium or SH oxidation) or irreversibly by proteolysis, the latter leading to formation of a 130-kDa form of XO. Both, XO and XDH, catalyse the conversion of hypoxanthine via xanthine to uric acid, the former by using oxygen forming superoxide and hydrogen peroxide and the latter NAD+. However, XDH is in principle also able to generate ROS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alshahawey M, Shahin SM, Elsaid TW, Sabri NA (2017) Effect of febuxostat on the endothelial dysfunction in hemodialysis patients: a randomized, placebo-controlled, double-blinded study. Am J Nephrol 45:452–459

    CAS  PubMed  Google Scholar 

  • Amado LC, Saliaris AP, Raju SV, Lehrke S, St John M, Xie J, Stewart G, Fitton T, Minhas KM, Brawn J, Hare JM (2005) Xanthine oxidase inhibition ameliorates cardiovascular dysfunction in dogs with pacing-induced heart failure. J Mol Cell Cardiol 39:531–536

    CAS  PubMed  Google Scholar 

  • Augustin AJ, Boker T, Blumenroder SH, Lutz J, Spitznas M (1994) Free radical scavenging and antioxidant activity of allopurinol and oxypurinol in experimental lens-induced uveitis. Invest Ophthalmol Vis Sci 35:3897–3904

    CAS  PubMed  Google Scholar 

  • Bagnati M, Perugini C, Cau C, Bordone R, Albano E, Bellomo G (1999) When and why a water-soluble antioxidant becomes pro-oxidant during copper-induced low-density lipoprotein oxidation: a study using uric acid. Biochem J 340(Pt 1):143–152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beddhu S, Filipowicz R, Wang B, Wei G, Chen X, Roy AC, DuVall SL, Farrukh H, Habib AN, Bjordahl T, Simmons DL, Munger M, Stoddard G, Kohan DE, Greene T, Huang Y (2016) A randomized controlled trial of the effects of febuxostat therapy on adipokines and markers of kidney fibrosis in asymptomatic hyperuricemic patients with diabetic nephropathy. Can J Kidney Health Dis 3:2054358116675343

    PubMed  PubMed Central  Google Scholar 

  • Berry CE, Hare JM (2004) Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications. J Physiol 555:589–606

    CAS  PubMed  Google Scholar 

  • Butler R, Morris AD, Belch JJ, Hill A, Struthers AD (2000) Allopurinol normalizes endothelial dysfunction in type 2 diabetics with mild hypertension. Hypertension 35:746–751

    CAS  PubMed  Google Scholar 

  • Cappola TP, Kass DA, Nelson GS, Berger RD, Rosas GO, Kobeissi ZA, Marban E, Hare JM (2001) Allopurinol improves myocardial efficiency in patients with idiopathic dilated cardiomyopathy. Circulation 104:2407–2411

    CAS  PubMed  Google Scholar 

  • Cardillo C, Kilcoyne CM, Cannon RO 3rd, Quyyumi AA, Panza JA (1997) Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 30:57–63

    CAS  PubMed  Google Scholar 

  • Chen C, Lu JM, Yao Q (2016) Hyperuricemia-related diseases and xanthine oxidoreductase (xor) inhibitors: an overview. Med Sci Monit 22:2501–2512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Neogi T, Stamp L, Dalbeth N, Terkeltaub R (2018) New perspectives in rheumatology: implications of the cardiovascular safety of febuxostat and allopurinol in patients with gout and cardiovascular morbidities trial and the associated food and drug administration public safety alert. Arthritis Rheumatol 70:1702–1709

    PubMed  PubMed Central  Google Scholar 

  • Cicoira M, Zanolla L, Rossi A, Golia G, Franceschini L, Brighetti G, Zeni P, Zardini P (2002) Elevated serum uric acid levels are associated with diastolic dysfunction in patients with dilated cardiomyopathy. Am Heart J 143:1107–1111

    PubMed  Google Scholar 

  • Committee JF (2007) British national formulary. British Medical Association and Royal Pharmaceutical Society of Great Britain, London

    Google Scholar 

  • Das DK, Engelman RM, Clement R, Otani H, Prasad MR, Rao PS (1987) Role of xanthine oxidase inhibitor as free radical scavenger: a novel mechanism of action of allopurinol and oxypurinol in myocardial salvage. Biochem Biophys Res Commun 148:314–319

    CAS  PubMed  Google Scholar 

  • Day RO, Graham GG, Hicks M, McLachlan AJ, Stocker SL, Williams KM (2007) Clinical pharmacokinetics and pharmacodynamics of allopurinol and oxypurinol. Clin Pharmacokinet 46:623–644

    CAS  PubMed  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  • Della Corte E, Gozzetti G, Novello F, Stirpe F (1969) Properties of the xanthine oxidase from human liver. Biochim Biophys Acta 191:164–166

    CAS  PubMed  Google Scholar 

  • Doehner W, Schoene N, Rauchhaus M, Leyva-Leon F, Pavitt DV, Reaveley DA, Schuler G, Coats AJS, Anker SD, Hambrecht R (2002) Effects of xanthine oxidase inhibition with allopurinol on endothelial function and peripheral blood flow in hyperuricemic patients with chronic heart failure: results from 2 placebo-controlled studies. Circulation 105:2619–2624

    CAS  PubMed  Google Scholar 

  • Ekelund UE, Harrison RW, Shokek O, Thakkar RN, Tunin RS, Senzaki H, Kass DA, Marban E, Hare JM (1999) Intravenous allopurinol decreases myocardial oxygen consumption and increases mechanical efficiency in dogs with pacing-induced heart failure. Circ Res 85:437–445

    CAS  PubMed  Google Scholar 

  • Elion GB, Kovensky A, Hitchings GH (1966) Metabolic studies of allopurinol, an inhibitor of xanthine oxidase. Biochem Pharmacol 15:863–880

    CAS  PubMed  Google Scholar 

  • Elion GB, Yu TF, Gutman AB, Hitchings GH (1968) Renal clearance of oxipurinol, the chief metabolite of allopurinol. Am J Med 45:69–77

    CAS  PubMed  Google Scholar 

  • Engberding N, Spiekermann S, Schaefer A, Heineke A, Wiencke A, Muller M, Fuchs M, Hilfiker-Kleiner D, Hornig B, Drexler H, Landmesser U (2004) Allopurinol attenuates left ventricular remodeling and dysfunction after experimental myocardial infarction: a new action for an old drug? Circulation 110:2175–2179

    CAS  PubMed  Google Scholar 

  • Ernst ME, Fravel MA (2009) Febuxostat: a selective xanthine-oxidase/xanthine-dehydrogenase inhibitor for the management of hyperuricemia in adults with gout. Clin Ther 31:2503–2518

    CAS  PubMed  Google Scholar 

  • Farquharson CAJ, Butler R, Hill A, Belch JJF, Struthers AD (2002) Allopurinol improves endothelial dysfunction in chronic heart failure. Circulation 106:221–226

    CAS  PubMed  Google Scholar 

  • Faruque LI, Ehteshami-Afshar A, Wiebe N, Tjosvold L, Homik J, Tonelli M (2013) A systematic review and meta-analysis on the safety and efficacy of febuxostat versus allopurinol in chronic gout. Semin Arthritis Rheum 43:367–375

    CAS  PubMed  Google Scholar 

  • Fukui T, Maruyama M, Yamauchi K, Yoshitaka S, Yasuda T, Abe Y (2015) Effects of febuxostat on oxidative stress. Clin Ther 37:1396–1401

    CAS  PubMed  Google Scholar 

  • Gavin AD, Struthers AD (2005) Allopurinol reduces b-type natriuretic peptide concentrations and haemoglobin but does not alter exercise capacity in chronic heart failure. Heart 91:749–753

    CAS  PubMed  PubMed Central  Google Scholar 

  • George J, Struthers AD (2008) The role of urate and xanthine oxidase inhibitors in cardiovascular disease. Cardiovasc Ther 26:59–64

    CAS  PubMed  Google Scholar 

  • George J, Carr E, Davies J, Belch JJ, Struthers A (2006) High-dose allopurinol improves endothelial function by profoundly reducing vascular oxidative stress and not by lowering uric acid. Circulation 114:2508–2516

    CAS  PubMed  Google Scholar 

  • Gersch C, Palii SP, Kim KM, Angerhofer A, Johnson RJ, Henderson GN (2008) Inactivation of nitric oxide by uric acid. Nucleosides Nucleotides Nucleic Acids 27:967–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goharinia M, Zareei A, Rahimi M, Mirkhani H (2017) Can allopurinol improve retinopathy in diabetic rats? Oxidative stress or uric acid; which one is the culprit? Res Pharm Sci 12:401–408

    PubMed  PubMed Central  Google Scholar 

  • Graham S, Day RO, Wong H, McLachlan AJ, Bergendal L, Miners JO, Birkett DJ (1996) Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects. Br J Clin Pharmacol 41:299–304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Granger DN, Benoit JN, Suzuki M, Grisham MB (1989) Leukocyte adherence to venular endothelium during ischemia-reperfusion. Am J Phys 257:G683–G688

    CAS  Google Scholar 

  • Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW (1994) Angiotensin ii stimulates nadh and nadph oxidase activity in cultured vascular smooth muscle cells. Circ Res 74:1141–1148

    CAS  PubMed  Google Scholar 

  • Guan W, Osanai T, Kamada T, Hanada H, Ishizaka H, Onodera H, Iwasa A, Fujita N, Kudo S, Ohkubo T, Okumura K (2003) Effect of allopurinol pretreatment on free radical generation after primary coronary angioplasty for acute myocardial infarction. J Cardiovasc Pharmacol 41(5):699–705

    CAS  PubMed  Google Scholar 

  • Guerra P, Frias J, Ruiz B, Soto A, Carcas A, Govantes C, Montuenga C, Fernandez A (2001) Bioequivalence of allopurinol and its metabolite oxipurinol in two tablet formulations. J Clin Pharm Ther 26:113–119

    CAS  PubMed  Google Scholar 

  • Gutierrez-Macias A, Lizarralde-Palacios E, Martinez-Odriozola P, Miguel-De la Villa F (2005) Fatal allopurinol hypersensitivity syndrome after treatment of asymptomatic hyperuricaemia. BMJ 331:623–624

    PubMed  PubMed Central  Google Scholar 

  • Hancock JT, Salisbury V, Ovejero-Boglione MC, Cherry R, Hoare C, Eisenthal R, Harrison R (2002) Antimicrobial properties of milk: dependence on presence of xanthine oxidase and nitrite. Antimicrob Agents Chemother 46:3308–3310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11A

    CAS  PubMed  Google Scholar 

  • Hille R, Massey V (1981) Studies on the oxidative half-reaction of xanthine oxidase. J Biol Chem 256:9090–9095

    CAS  PubMed  Google Scholar 

  • Hoey BM, Butler J, Halliwell B (1988) On the specificity of allopurinol and oxypurinol as inhibitors of xanthine oxidase. A pulse radiolysis determination of rate constants for reaction of allopurinol and oxypurinol with hydroxyl radicals. Free Radic Res Commun 4:259–263

    CAS  PubMed  Google Scholar 

  • Huang Y, Zhang C, Xu Z, Shen J, Zhang X, Du H, Zhang K, Zhang D (2017) Clinical study on efficacy of allopurinol in patients with acute coronary syndrome and its functional mechanism. Hell J Cardiol 58:360–365

    Google Scholar 

  • Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP, Lin YL, Lan JL, Yang LC, Hong HS, Chen MJ, Lai PC, Wu MS, Chu CY, Wang KH, Chen CH, Fann CS, Wu JY, Chen YT (2005) Hla-b*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci U S A 102:4134–4139

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida K, Amaya Y, Noda K, Minoshima S, Hosoya T, Sakai O, Shimizu N, Nishino T (1993) Cloning of the cdna encoding human xanthine dehydrogenase (oxidase): structural analysis of the protein and chromosomal location of the gene. Gene 133:279–284

    CAS  PubMed  Google Scholar 

  • Kamel B, Graham GG, Williams KM, Pile KD, Day RO (2017) Clinical pharmacokinetics and pharmacodynamics of febuxostat. Clin Pharmacokinet 56:459–475

    CAS  PubMed  Google Scholar 

  • Kawamorita Y, Shiraishi T, Tamura Y, Kumagai T, Shibata S, Fujigaki Y, Hosoyamada M, Nakagawa T, Uchida S (2017) Renoprotective effect of topiroxostat via antioxidant activity in puromycin aminonucleoside nephrosis rats. Physiol Rep 5(15):e13358

    PubMed  PubMed Central  Google Scholar 

  • Keshavarzian A, Morgan G, Sedghi S, Gordon JH, Doria M (1990) Role of reactive oxygen metabolites in experimental colitis. Gut 31:786–790

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SA, Lee K, Minhas KM, Gonzalez DR, Raju SV, Tejani AD, Li D, Berkowitz DE, Hare JM (2004) Neuronal nitric oxide synthase negatively regulates xanthine oxidoreductase inhibition of cardiac excitation-contraction coupling. Proc Natl Acad Sci U S A 101:15944–15948

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khosravan R, Grabowski BA, Wu JT, Joseph-Ridge N, Vernillet L (2006) Pharmacokinetics, pharmacodynamics and safety of febuxostat, a non-purine selective inhibitor of xanthine oxidase, in a dose escalation study in healthy subjects. Clin Pharmacokinet 45:821–841

    CAS  PubMed  Google Scholar 

  • Kittleson MM, Hare JM (2005) Xanthine oxidase inhibitors: an emerging class of drugs for heart failure. Eur Heart J 26:1458–1460

    PubMed  Google Scholar 

  • Knight TR, Kurtz A, Bajt ML, Hinson JA, Jaeschke H (2001) Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci 62(2):212–220

    Google Scholar 

  • Kogler H, Fraser H, McCune S, Altschuld R, Marban E (2003) Disproportionate enhancement of myocardial contractility by the xanthine oxidase inhibitor oxypurinol in failing rat myocardium. Cardiovasc Res 59:582–592

    CAS  PubMed  Google Scholar 

  • Kojima S, Matsui K, Hiramitsu S, Hisatome I, Waki M, Uchiyama K et al (2019) Febuxostat for cerebral and cardiorenovascular events prevention study. Eur Heart J 40(22):1778–1786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Landmesser U, Spiekermann S, Dikalov S, Tatge H, Wilke R, Kohler C, Harrison DG, Hornig B, Drexler H (2002) Vascular oxidative stress and endothelial dysfunction in patients with chronic heart failure: role of xanthine-oxidase and extracellular superoxide dismutase. Circulation 106:3073–3078

    CAS  PubMed  Google Scholar 

  • Lee HJ, Jeong KH, Kim YG, Moon JY, Lee SH, Ihm CG, Sung JY, Lee TW (2014) Febuxostat ameliorates diabetic renal injury in a streptozotocin-induced diabetic rat model. Am J Nephrol 40:56–63

    CAS  PubMed  Google Scholar 

  • Mackenzie IS, Ford I, Walker A, Hawkey C, Begg A, Avery A, Taggar J, Wei L, Struthers AD, MacDonald TM (2016) Multicentre, prospective, randomised, open-label, blinded end point trial of the efficacy of allopurinol therapy in improving cardiovascular outcomes in patients with ischaemic heart disease: protocol of the all-heart study. BMJ Open 6:e013774

    PubMed  PubMed Central  Google Scholar 

  • Malik UZ, Hundley NJ, Romero G, Radi R, Freeman BA, Tarpey MM, Kelley EE (2011) Febuxostat inhibition of endothelial-bound xo: implications for targeting vascular ros production. Free Radic Biol Med 51:179–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Malkiel S, Har-el R, Schwalb H, Uretzky G, Borman JB, Chevion M (1993) Interaction between allopurinol and copper: possible role in myocardial protection. Free Radic Res Commun 18:7–15

    CAS  PubMed  Google Scholar 

  • Massey V, Komai H, Palmer G, Elion GB (1970) On the mechanism of inactivation of xanthine oxidase by allopurinol and other pyrazolo[3,4-d]pyrimidines. J Biol Chem 245:2837–2844

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Okamoto K, Ashizawa N, Nishino T (2011) Fyx-051: a novel and potent hybrid-type inhibitor of xanthine oxidoreductase. J Pharmacol Exp Ther 336:95–103

    CAS  PubMed  Google Scholar 

  • McInnes GT, Lawson DH, Jick H (1981) Acute adverse reactions attributed to allopurinol in hospitalised patients. Ann Rheum Dis 40:245–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mizukoshi T, Kato S, Ando M, Sobajima H, Ohashi N, Naruse T, Saka Y, Shimizu H, Nagata T, Maruyama S (2018) Renoprotective effects of topiroxostat for hyperuricaemic patients with overt diabetic nephropathy study (ETUDE study): a prospective, randomized, multicentre clinical trial. Nephrology (Carlton, Vic) 23(11):1023–1030

    CAS  Google Scholar 

  • Nakamura T, Murase T, Nampei M, Morimoto N, Ashizawa N, Iwanaga T, Sakamoto R (2016) Effects of topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in db/db mice. Eur J Pharmacol 780:224–231

    CAS  PubMed  Google Scholar 

  • Naumova AV, Chacko VP, Ouwerkerk R, Stull L, Marban E, Weiss RG (2006) Xanthine oxidase inhibitors improve energetics and function after infarction in failing mouse hearts. Am J Physiol Heart Circ Physiol 290:H837–H843

    CAS  PubMed  Google Scholar 

  • Nishizawa J, Nakai A, Matsuda K, Komeda M, Ban T, Nagata K (1999) Reactive oxygen species play an important role in the activation of heat shock factor 1 in ischemic-reperfused heart. Circulation 99:934–941

    CAS  PubMed  Google Scholar 

  • Ogino K, Kato M, Furuse Y, Kinugasa Y, Ishida K, Osaki S, Kinugawa T, Igawa O, Hisatome I, Shigemasa C, Anker SD, Doehner W (2009) Uric acid lowering treatment with benzbromarone in patients with heart failure: a double-blind placebo-controlled cross-over preliminary study. Circ Heart Fail 3:73–81

    PubMed  Google Scholar 

  • Okamoto K, Nishino T (2008) Crystal structures of mammalian xanthine oxidoreductase bound with various inhibitors: allopurinol, febuxostat, and fyx-051. J Nippon Med Sch 75:2–3

    PubMed  Google Scholar 

  • Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panus PC, Wright SA, Chumley PH, Radi R, Freeman BA (1992) The contribution of vascular endothelial xanthine dehydrogenase/oxidase to oxygen-mediated cell injury. Arch Biochem Biophys 294:695–702

    CAS  PubMed  Google Scholar 

  • Parks DA, Granger DN (1986) Xanthine oxidase: biochemistry, distribution and physiology. Acta Physiol Scand Suppl 548:87–99

    CAS  PubMed  Google Scholar 

  • Pea F (2005) Pharmacology of drugs for hyperuricemia. Mechanisms, kinetics and interactions. Contrib Nephrol 147:35–46

    CAS  PubMed  Google Scholar 

  • Perez NG, Gao WD, Marban E (1998) Novel myofilament ca2+-sensitizing property of xanthine oxidase inhibitors. Circ Res 83:423–430

    CAS  PubMed  Google Scholar 

  • Pinheiro LC, Oliveira-Paula GH, Portella RL, Guimaraes DA, de Angelis CD, Tanus-Santos JE (2016) Omeprazole impairs vascular redox biology and causes xanthine oxidoreductase-mediated endothelial dysfunction. Redox Biol 9:134–143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajendra NS, Ireland S, George J, Belch JJ, Lang CC, Struthers AD (2011) Mechanistic insights into the therapeutic use of high-dose allopurinol in angina pectoris. J Am Coll Cardiol 58:820–828

    CAS  PubMed  Google Scholar 

  • Ricardo SD, Bertram JF, Ryan GB (1995) Podocyte architecture in puromycin aminonucleoside-treated rats administered tungsten or allopurinol. Exp Nephrol 3:270–279

    CAS  PubMed  Google Scholar 

  • Saavedra WF, Paolocci N, St John ME, Skaf MW, Stewart GC, Xie JS, Harrison RW, Zeichner J, Mudrick D, Marban E, Kass DA, Hare JM (2002) Imbalance between xanthine oxidase and nitric oxide synthase signaling pathways underlies mechanoenergetic uncoupling in the failing heart. Circ Res 90:297–304

    CAS  PubMed  Google Scholar 

  • Schlesinger N (2004) Management of acute and chronic gouty arthritis: present state-of-the-art. Drugs 64:2399–2416

    CAS  PubMed  Google Scholar 

  • Sezai A, Soma M, Nakata K, Hata M, Yoshitake I, Wakui S, Hata H, Shiono M (2013) Comparison of febuxostat and allopurinol for hyperuricemia in cardiac surgery patients (nu-flash trial). Circ J 77:2043–2049

    CAS  PubMed  Google Scholar 

  • Sezai A, Obata K, Abe K, Kanno S, Sekino H (2017) Cross-over trial of febuxostat and topiroxostat for hyperuricemia with cardiovascular disease (TROFEO trial). Circ J 81(11):1707–1712

    CAS  PubMed  Google Scholar 

  • Sisto T, Paajanen H, Metsa-Ketela T, Harmoinen A, Nordback I, Tarkka M (1995) Pretreatment with antioxidants and allopurinol diminishes cardiac onset events in coronary artery bypass grafting. Ann Thorac Surg 59:1519–1523

    CAS  PubMed  Google Scholar 

  • Skinner KA, White CR, Patel R, Tan S, Barnes S, Kirk M, Darley-Usmar V, Parks DA (1998) Nitrosation of uric acid by peroxynitrite: formation of a vasoactive nitric oxide donor. J Biol Chem 273:24491–24497

    CAS  PubMed  Google Scholar 

  • Spector T (1977) Inhibition of urate production by allopurinol. Biochem Pharmacol 26:355–358

    CAS  PubMed  Google Scholar 

  • Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, Reepschlager N, Hornig B, Drexler H, Harrison DG (2003) Electron spin resonance characterization of vascular xanthine and nad(p)h oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 107:1383–1389

    CAS  PubMed  Google Scholar 

  • Stevens CR, Millar TM, Clinch JG, Kanczler JM, Bodamyali T, Blake DR (2000) Antibacterial properties of xanthine oxidase in human milk. Lancet 356:829–830

    CAS  PubMed  Google Scholar 

  • Stull LB, Leppo MK, Szweda L, Gao WD, Marban E (2004) Chronic treatment with allopurinol boosts survival and cardiac contractility in murine postischemic cardiomyopathy. Circ Res 95:1005–1011

    CAS  PubMed  Google Scholar 

  • Takano Y, Hase-Aoki K, Horiuchi H, Zhao L, Kasahara Y, Kondo S, Becker MA (2005) Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci 76:1835–1847

    CAS  PubMed  Google Scholar 

  • Tausche AK, Christoph M, Forkmann M, Richter U, Kopprasch S, Bielitz C, Aringer M, Wunderlich C (2014) As compared to allopurinol, urate-lowering therapy with febuxostat has superior effects on oxidative stress and pulse wave velocity in patients with severe chronic tophaceous gout. Rheumatol Int 34:101–109

    CAS  PubMed  Google Scholar 

  • Tsuda H, Kawada N, Kaimori JY, Kitamura H, Moriyama T, Rakugi H, Takahara S, Isaka Y (2012) Febuxostat suppressed renal ischemia-reperfusion injury via reduced oxidative stress. Biochem Biophys Res Commun 427:266–272

    CAS  PubMed  Google Scholar 

  • Turnheim K (1999) Oberbauer. Pharmacokinetics and pharmacodynamics of allopurinol in elderly and young subjects. Br J Clin Pharmacol 48:501–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez-Mellado J, Morales EM, Pacheco-Tena C, Burgos-Vargas R (2001) Relation between adverse events associated with allopurinol and renal function in patients with gout. Ann Rheum Dis 60:981–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waring WS (2002) Uric acid: an important antioxidant in acute ischaemic stroke. QJM 95:691–693

    CAS  PubMed  Google Scholar 

  • White WB, Saag KG, Becker MA, Borer JS, Gorelick PB, Whelton A, Hunt B, Castillo M, Gunawardhana L, CARES Investigators (2018) Cardiovascular safety of febuxostat or allopurinol in patients with gout. N Engl J Med 378:1200–1210

    CAS  PubMed  Google Scholar 

  • Yamaguchi M, Okamoto K, Kusano T, Matsuda Y, Suzuki G, Fuse A, Yokota H (2015) The effects of xanthine oxidoreductase inhibitors on oxidative stress markers following global brain ischemia reperfusion injury in c57bl/6 mice. PLoS One 10:e0133980

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vickneson, K., George, J. (2020). Xanthine Oxidoreductase Inhibitors. In: Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A. (eds) Reactive Oxygen Species . Handbook of Experimental Pharmacology, vol 264. Springer, Cham. https://doi.org/10.1007/164_2020_383

Download citation

Publish with us

Policies and ethics