Skip to main content

Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications

  • Chapter
  • First Online:
Concepts and Principles of Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 260))

Abstract

Ion channels are macromolecular proteins that form water-filled pores in cell membranes and they are critical for a variety of physiological and pharmacological functions. Dysfunctional ion channels can cause diseases known as channelopathies. Ion channels are encoded by approximately 400 genes, representing the second largest class of proven drug targets for therapeutic areas including neuropsychiatric disorders, cardiovascular and metabolic diseases, immunological diseases, nephrological diseases, gastrointestinal diseases, pulmonary/respiratory diseases, and many cancers. With more ion channel structures are being solved and functional robust assays are being developed, there are tremendous opportunities for identifying specific modulators targeting ion channels for new therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beecham GW, Hamilton K, Naj AC, Martin ER, Huentelman M, Myers AJ, Corneveaux JJ, Hardy J, Vonsattel JP, Younkin SG et al (2014) Genome-wide association meta-analysis of neuropathologic features of Alzheimer’s disease and related dementias. PLoS Genet 10:e1004606

    PubMed  PubMed Central  Google Scholar 

  • Biervert C, Schroeder BC, Kubisch C, Berkovic SF, Propping P, Jentsch TJ, Steinlein OK (1998) A potassium channel mutation in neonatal human epilepsy. Science 279:403–406

    CAS  PubMed  Google Scholar 

  • Brown DA, Adams PR (1980) Muscarinic suppression of a novel voltage-sensitive K+ current in a vertebrate neurone. Nature 283:673–676

    CAS  PubMed  Google Scholar 

  • Brunner JD, Lim NK, Schenck S, Duerst A, Dutzler R (2014) X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516:207–212

    CAS  PubMed  Google Scholar 

  • Burgener EB, Moss RB (2018) Cystic fibrosis transmembrane conductance regulator modulators: precision medicine in cystic fibrosis. Curr Opin Pediatr 30:372–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594

    CAS  PubMed  Google Scholar 

  • Charlier C, Singh NA, Ryan SG, Lewis TB, Reus BE, Leach RJ, Leppert M (1998) A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18:53–55

    CAS  PubMed  Google Scholar 

  • Chen M, Dong Y, Simard JM (2003) Functional coupling between sulfonylurea receptor type 1 and a nonselective cation channel in reactive astrocytes from adult rat brain. J Neurosci 23:8568–8577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Konig B, Liu T, Pervaiz S, Razzaque YS, Stauber T (2019) More than just a pressure relief valve: physiological roles of volume-regulated LRRC8 anion channels. Biol Chem 400:1481–1496

    PubMed  Google Scholar 

  • Cheng CJ, Sung CC, Huang CL, Lin SH (2015) Inward-rectifying potassium channelopathies: new insights into disorders of sodium and potassium homeostasis. Pediatr Nephrol 30:373–383

    PubMed  Google Scholar 

  • Clar DT, Maani CV (2019) Physiology, ligand gated chloride channel. StatPearls, Treasure Island

    Google Scholar 

  • Cox JJ, Reimann F, Nicholas AK, Thornton G, Roberts E, Springell K, Karbani G, Jafri H, Mannan J, Raashid Y et al (2006) An SCN9A channelopathy causes congenital inability to experience pain. Nature 444:894–898

    CAS  PubMed  PubMed Central  Google Scholar 

  • Csanady L, Vergani P, Gadsby DC (2019) Structure, gating, and regulation of the Cftr anion channel. Physiol Rev 99:707–738

    CAS  PubMed  Google Scholar 

  • Dang S, Feng S, Tien J, Peters CJ, Bulkley D, Lolicato M, Zhao J, Zuberbuhler K, Ye W, Qi L et al (2017) Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552:426–429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davies GC, Thornton MJ, Jenner TJ, Chen YJ, Hansen JB, Carr RD, Randall VA (2005) Novel and established potassium channel openers stimulate hair growth in vitro: implications for their modes of action in hair follicles. J Invest Dermatol 124:686–694

    CAS  PubMed  Google Scholar 

  • De La Fuente R, Namkung W, Mills A, Verkman AS (2008) Small-molecule screen identifies inhibitors of a human intestinal calcium-activated chloride channel. Mol Pharmacol 73:758–768

    Google Scholar 

  • Deneka D, Sawicka M, Lam AKM, Paulino C, Dutzler R (2018) Structure of a volume-regulated anion channel of the LRRC8 family. Nature 558:254–259

    CAS  PubMed  Google Scholar 

  • Deng PY, Rotman Z, Blundon JA, Cho Y, Cui J, Cavalli V, Zakharenko SS, Klyachko VA (2013) FMRP regulates neurotransmitter release and synaptic information transmission by modulating action potential duration via BK channels. Neuron 77:696–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dogan MF, Yildiz O, Arslan SO, Ulusoy KG (2019) Potassium channels in vascular smooth muscle: a pathophysiological and pharmacological perspective. Fundam Clin Pharmacol 33:504–523

    CAS  PubMed  Google Scholar 

  • Du W, Bautista JF, Yang HH, Diez-Sampedro A, You SA, Wang LJ, Kotagal P, Luders HO, Shi JY, Cui JM et al (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738

    CAS  PubMed  Google Scholar 

  • Friard J, Tauc M, Cougnon M, Compan V, Duranton C, Rubera I (2017) Comparative effects of chloride channel inhibitors on LRRC8/VRAC-mediated chloride conductance. Front Pharmacol 8:328

    PubMed  PubMed Central  Google Scholar 

  • Gentzsch M, Mall MA (2018) Ion channel modulators in cystic fibrosis. Chest 154:383–393

    PubMed  PubMed Central  Google Scholar 

  • George K, Sadiq NM (2019) GABA inhibitors. StatPearls, Treasure Island

    Google Scholar 

  • Gonzalez-Corrochano R, La Fuente JM, Cuevas P, Fernandez A, Chen MX, de Tejada IS, Angulo J (2013) Ca2+-activated K+ channel (K-Ca) stimulation improves relaxant capacity of PDE5 inhibitors in human penile arteries and recovers the reduced efficacy of PDE5 inhibition in diabetic erectile dysfunction. Br J Pharmacol 169:449–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrera GM, Heppner TJ, Nelson MT (2000) Regulation of urinary bladder smooth muscle contractions by ryanodine receptors and BK and SK channels. Am J Phys Regul Integr Comp Phys 279:R60–R68

    CAS  Google Scholar 

  • Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Hite RK, Tao X, MacKinnon R (2017) Structural basis for gating the high-conductance Ca(2+)-activated K(+) channel. Nature 541:52–57

    CAS  PubMed  Google Scholar 

  • Huang F, Zhang H, Wu M, Yang H, Kudo M, Peters CJ, Woodruff PG, Solberg OD, Donne ML, Huang X et al (2012a) Calcium-activated chloride channel TMEM16A modulates mucin secretion and airway smooth muscle contraction. Proc Natl Acad Sci U S A 109:16354–16359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang WC, Xiao S, Huang F, Harfe BD, Jan YN, Jan LY (2012b) Calcium-activated chloride channels (CaCCs) regulate action potential and synaptic response in hippocampal neurons. Neuron 74:179–192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Israel MR, Tay B, Deuis JR, Vetter I (2017) Sodium channels and venom peptide pharmacology. Adv Pharmacol 79:67–116

    CAS  PubMed  Google Scholar 

  • Jentsch TJ, Pusch M (2018) CLC chloride channels and transporters: structure, function, physiology, and disease. Physiol Rev 98:1493–1590

    CAS  PubMed  Google Scholar 

  • Jentsch TJ, Steinmeyer K, Schwarz G (1990) Primary structure of Torpedo marmorata chloride channel isolated by expression cloning in Xenopus oocytes. Nature 348:510–514

    CAS  PubMed  Google Scholar 

  • Ji Q, Guo S, Wang X, Pang C, Zhan Y, Chen Y, An H (2019) Recent advances in TMEM16A: structure, function, and disease. J Cell Physiol 234:7856–7873

    CAS  PubMed  Google Scholar 

  • Jiang Y, Pico A, Cadene M, Chait BT, MacKinnon R (2001) Structure of the RCK domain from the E. coli K+ channel and demonstration of its presence in the human BK channel. Neuron 29:593–601

    CAS  PubMed  Google Scholar 

  • Keating MT, Sanguinetti MC (2001) Molecular and cellular mechanisms of cardiac arrhythmias. Cell 104:569–580

    CAS  PubMed  Google Scholar 

  • Kefauver JM, Saotome K, Dubin AE, Pallesen J, Cottrell CA, Cahalan SM, Qiu Z, Hong G, Crowley CS, Whitwam T et al (2018) Structure of the human volume regulated anion channel. elife 7

    Google Scholar 

  • Kubisch C, Schroeder BC, Friedrich T, Lutjohann B, El-Amraoui A, Marlin S, Petit C, Jentsch TJ (1999) KCNQ4, a novel potassium channel expressed in sensory outer hair cells, is mutated in dominant deafness. Cell 96:437–446

    CAS  PubMed  Google Scholar 

  • Lee US, Cui JM (2009) Beta subunit-specific modulations of BK channel function by a mutation associated with epilepsy and dyskinesia. J Physiol 587:1481–1498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li N, Wu JX, Ding D, Cheng J, Gao N, Chen L (2017) Structure of a pancreatic ATP-sensitive potassium channel. Cell 168:101–110 e110

    CAS  PubMed  Google Scholar 

  • Luo Q, Chen L, Cheng X, Ma Y, Li X, Zhang B, Li L, Zhang S, Guo F, Li Y et al (2017) An allosteric ligand-binding site in the extracellular cap of K2P channels. Nat Commun 8:378

    PubMed  PubMed Central  Google Scholar 

  • Martinez AH, Mohiuddin SS (2019) Biochemistry, chloride channels. StatPearls, Treasure Island

    Google Scholar 

  • Matthews EA, Weible AP, Shah S, Disterhoft JF (2008) The BK-mediated fAHP is modulated by learning a hippocampus-dependent task. Proc Natl Acad Sci U S A 105(39):15154–15159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:36746–36752

    CAS  PubMed  Google Scholar 

  • Miledi R (1982) A calcium-dependent transient outward current in Xenopus laevis oocytes. Proc R Soc London Ser B 215:491–497

    CAS  Google Scholar 

  • Miller C (ed) (1986) Ion channel reconstitution. Plenum, New York. https://doi.org/10.1007/978-1-4757-1361-9

    Book  Google Scholar 

  • Moskwa P, Lorentzen D, Excoffon KJ, Zabner J, McCray PB Jr, Nauseef WM, Dupuy C, Banfi B (2007) A novel host defense system of airways is defective in cystic fibrosis. Am J Respir Crit Care Med 175:174–183

    CAS  PubMed  Google Scholar 

  • Namkung W, Phuan PW, Verkman AS (2011) TMEM16A inhibitors reveal TMEM16A as a minor component of calcium-activated chloride channel conductance in airway and intestinal epithelial cells. J Biol Chem 286:2365–2374

    CAS  PubMed  Google Scholar 

  • Neyroud N, Tesson F, Denjoy I, Leibovici M, Donger C, Barhanin J, Faure S, Gary F, Coumel P, Petit C et al (1997) A novel mutation in the potassium channel gene KVLQT1 causes the Jervell and Lange-Nielsen cardioauditory syndrome. Nat Genet 15:186–189

    CAS  PubMed  Google Scholar 

  • Oh SJ, Hwang SJ, Jung J, Yu K, Kim J, Choi JY, Hartzell HC, Roh EJ, Lee CJ (2013) MONNA, a potent and selective blocker for transmembrane protein with unknown function 16/anoctamin-1. Mol Pharmacol 84:726–735

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulino C, Kalienkova V, Lam AKM, Neldner Y, Dutzler R (2017) Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM. Nature 552:421–425

    CAS  PubMed  Google Scholar 

  • Poroca DR, Pelis RM, Chappe VM (2017) ClC channels and transporters: structure, physiological functions, and implications in human chloride channelopathies. Front Pharmacol 8:151

    PubMed  PubMed Central  Google Scholar 

  • Qiu Z, Dubin AE, Mathur J, Tu B, Reddy K, Miraglia LJ, Reinhardt J, Orth AP, Patapoutian A (2014) SWELL1, a plasma membrane protein, is an essential component of volume-regulated anion channel. Cell 157:447–458

    CAS  PubMed  PubMed Central  Google Scholar 

  • Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245:1066–1073

    CAS  PubMed  Google Scholar 

  • Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307

    CAS  PubMed  Google Scholar 

  • Sawada A, Takihara Y, Kim JY, Matsuda-Hashii Y, Tokimasa S, Fujisaki H, Kubota K, Endo H, Onodera T, Ohta H et al (2003) A congenital mutation of the novel gene LRRC8 causes agammaglobulinemia in humans. J Clin Invest 112:1707–1713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seo Y, Lee HK, Park J, Jeon DK, Jo S, Jo M, Namkung W (2016) Ani9, a novel potent small-molecule ANO1 inhibitor with negligible effect on ANO2. PLoS One 11:e0155771

    PubMed  PubMed Central  Google Scholar 

  • Shen H, Liu D, Wu K, Lei J, Yan N (2019) Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins. Science 363:1303–1308

    CAS  PubMed  Google Scholar 

  • Singh NA, Charlier C, Stauffer D, DuPont BR, Leach RJ, Melis R, Ronen GM, Bjerre I, Quattlebaum T, Murphy JV et al (1998) A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18:25–29

    CAS  PubMed  Google Scholar 

  • Stephan AB, Shum EY, Hirsh S, Cygnar KD, Reisert J, Zhao H (2009) ANO2 is the cilial calcium-activated chloride channel that may mediate olfactory amplification. Proc Natl Acad Sci U S A 106:11776–11781

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stohr H, Heisig JB, Benz PM, Schoberl S, Milenkovic VM, Strauss O, Aartsen WM, Wijnholds J, Weber BH, Schulz HL (2009) TMEM16B, a novel protein with calcium-dependent chloride channel activity, associates with a presynaptic protein complex in photoreceptor terminals. J Neurosci 29:6809–6818

    PubMed  PubMed Central  Google Scholar 

  • Strange K, Yamada T, Denton JS (2019) A 30-year journey from volume-regulated anion currents to molecular structure of the LRRC8 channel. J Gen Physiol 151:100–117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strug LJ, Stephenson AL, Panjwani N, Harris A (2018) Recent advances in developing therapeutics for cystic fibrosis. Hum Mol Genet 27:R173–R186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Syeda R, Qiu Z, Dubin AE, Murthy SE, Florendo MN, Mason DE, Mathur J, Cahalan SM, Peters EC, Montal M et al (2016) LRRC8 proteins form volume-regulated anion channels that sense ionic strength. Cell 164:499–511

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Hite RK, MacKinnon R (2017) Cryo-EM structure of the open high-conductance Ca(2+)-activated K(+) channel. Nature 541:46–51

    CAS  PubMed  Google Scholar 

  • Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269(5220):92–95

    CAS  PubMed  Google Scholar 

  • Voss FK, Ullrich F, Munch J, Lazarow K, Lutter D, Mah N, Andrade-Navarro MA, von Kries JP, Stauber T, Jentsch TJ (2014) Identification of LRRC8 heteromers as an essential component of the volume-regulated anion channel VRAC. Science 344:634–638

    CAS  PubMed  Google Scholar 

  • Wang W, MacKinnon R (2017) Cryo-EM structure of the open human ether-a-go-go-related K(+) channel hERG. Cell 169:422–430 e410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Rothberg BS, Brenner R (2009) Mechanism of increased BK channel activation from a channel mutation that causes epilepsy. J Gen Physiol 133(3):283–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HS, Pan Z, Shi W, Brown BS, Wymore RS, Cohen IS, Dixon JE, McKinnon D (1998) KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282:1890–1893

    CAS  PubMed  Google Scholar 

  • Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Wang Y, Li S, Xu Z, Li H, Ma L, Fan J, Bu D, Liu B, Fan Z et al (2004) Mutations in SCN9A, encoding a sodium channel alpha subunit, in patients with primary erythermalgia. J Med Genet 41:171–174

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM et al (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215

    CAS  PubMed  Google Scholar 

  • Yang Y, Li PY, Cheng J, Mao L, Wen J, Tan XQ, Liu ZF, Zeng XR (2013) Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension 61:519–525

    CAS  PubMed  Google Scholar 

  • Yang J, Krishnamoorthy G, Saxena A, Zhang G, Shi J, Yang H et al (2010) An epilepsy/dyskinesia-associated mutation enhances BK channel activation by potentiating Ca2+ sensing. Neuron 66(6):871–883

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF (2015) Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharmacol 88:203–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, Liu Y, Tang F, Liang B, Chen H, Zhang H, Wang K (2019) Electrophysiological and pharmacological characterization of a novel and potent neuronal Kv7 channel opener SCR2682 for antiepilepsy. FASEB J 33:9154–9166

    CAS  PubMed  Google Scholar 

  • Zhu S, Noviello CM, Teng J, Walsh RM Jr, Kim JJ, Hibbs RE (2018) Structure of a human synaptic GABAA receptor. Nature 559:67–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zunkler BJ (2006) Human ether-a-go-go-related (HERG) gene and ATP-sensitive potassium channels as targets for adverse drug effects. Pharmacol Ther 112:12–37

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KeWei Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, Y., Wang, K. (2019). Exploiting the Diversity of Ion Channels: Modulation of Ion Channels for Therapeutic Indications. In: Barrett, J., Page, C., Michel, M. (eds) Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology, vol 260. Springer, Cham. https://doi.org/10.1007/164_2019_333

Download citation

Publish with us

Policies and ethics