Skip to main content

Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology

  • Chapter
  • First Online:
Concepts and Principles of Pharmacology

Abstract

Two technologies that have emerged in the last decade offer a new paradigm for modern pharmacology, as well as drug discovery and development. Quantitative systems pharmacology (QSP) is a complementary approach to traditional, target-centric pharmacology and drug discovery and is based on an iterative application of computational and systems biology methods with multiscale experimental methods, both of which include models of ADME-Tox and disease. QSP has emerged as a new approach due to the low efficiency of success in developing therapeutics based on the existing target-centric paradigm. Likewise, human microphysiology systems (MPS) are experimental models complementary to existing animal models and are based on the use of human primary cells, adult stem cells, and/or induced pluripotent stem cells (iPSCs) to mimic human tissues and organ functions/structures involved in disease and ADME-Tox. Human MPS experimental models have been developed to address the relatively low concordance of human disease and ADME-Tox with engineered, experimental animal models of disease. The integration of the QSP paradigm with the use of human MPS has the potential to enhance the process of drug discovery and development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Download references

Acknowledgments

Support from the National Institutes of Health awards UG3DK119973 (DLT), R01DK0017781 (DLT), 1UO1 TR002383 (DLT), U24TR002632 (AG/MS), SBIR HHSN271201800008C UO1CA204826 (CC), DA035778 (IB), and P41 GM103712 (IB) is gratefully acknowledged. We also thank the members of the University of Pittsburgh Drug Discovery Institute, the Department of Computational and Systems Biology, and other collaborators at the University of Pittsburgh and beyond for critical discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lansing Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taylor, D.L. et al. (2019). Harnessing Human Microphysiology Systems as Key Experimental Models for Quantitative Systems Pharmacology. In: Barrett, J., Page, C., Michel, M. (eds) Concepts and Principles of Pharmacology. Handbook of Experimental Pharmacology, vol 260. Springer, Cham. https://doi.org/10.1007/164_2019_239

Download citation

Publish with us

Policies and ethics