GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum

  • Verginia C. Cuzon CarlsonEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 248)


Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol’s actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.


Action control Addiction Alcohol Cortico-striatal loop Neurotransmitter Synaptic transmission 


  1. Abrahao KP, Ariwodola OJ, Butler TR, Rau AR, Skelly MJ, Carter E, Alexander NP, McCool BA, Souza-Formigoni ML, Weiner JL (2013) Locomotor sensitization to ethanol impairs NMDA receptor-dependent synaptic plasticity in the nucleus accumbens and increases ethanol self-administration. J Neurosci 33:4834–4842PubMedPubMedCentralGoogle Scholar
  2. Addolorato G, Leggio L, Ferrulli A, Cardone S, Vonghia L, Mirijello A, Abenavoli L, D’Angelo C, Caputo F, Zambon A, Haber PS, Gasbarrini G (2007) Effectiveness and safety of baclofen for maintenance of alcohol abstinence in alcohol-dependent patients with liver cirrhosis: a randomized, double-blind controlled study. Lancet 370:1915–1922PubMedGoogle Scholar
  3. Adermark L, Clarke RB, Söderpalm B, Ericson M (2011) Ethanol-induced modulation of synaptic output from the dorsolateral striatum in rats is regulated by cholinergic interneurons. Neurochem Int 58:693–699PubMedGoogle Scholar
  4. Aguayo LD, Pancetti FC (1994) Ethanol modulation of the γ-aminobutyric acidA-and glycine-activated Cl-current in cultured mouse neurons. J Pharmacol Exp Ther 270:61–69PubMedGoogle Scholar
  5. Alasmari F, Abuhamdah S, Sari Y (2015) Effects of ampicillin on cysteine/glutamate antiporter and glutamate transporter 1 isoforms as well as ethanol drinking in male P rats. Neurosci Lett 600:148–152PubMedPubMedCentralGoogle Scholar
  6. Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9:357–381PubMedGoogle Scholar
  7. Anderson NJ, Daunais JB, Friedman DP, Grant KA, McCool BA (2007) Long-term ethanol self-administration by the nonhuman primate, Macaca fascicularis, decreases the benzodiazepine sensitivity of amygdala GABA(A) receptors. Alcohol Clin Exp Res 31:1061–1070PubMedPubMedCentralGoogle Scholar
  8. Ariwodola OJ, Weiner JL (2004) Ethanol potentiation of GABAergic synaptic transmission may be self-limiting: role of presynaptic GABA(B) receptors. J Neurosci 24:10679–10686PubMedGoogle Scholar
  9. Ary AW, Cozzoli DK, Finn DA, Crabbe JC, Dehoff MH, Worley PF, Szumlinski KK (2012) Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity. Alcohol 46:377–387PubMedPubMedCentralGoogle Scholar
  10. Aubert I, Ghorayeb I, Mornamd E, Bloch B (2000) Phenotypical characterization of the neurons expressing the D1 and D2 dopamine receptors in the monkey striatum. J Comp Neurol 418:22–32PubMedPubMedCentralGoogle Scholar
  11. Augier E, Dulman RS, Damadzic R, Pilling A, Hamilton JP, Heilig M (2017) The GABAB positive allosteric modulator ADX71441 attenuates alcohol self-administration and relapse to alcohol seeking in rats. Neuropsychopharmacology 42:1789–1799PubMedPubMedCentralGoogle Scholar
  12. Augood SJ, Westmore K, Emson PC (1997) Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study. Neuroscience 76:763–774PubMedGoogle Scholar
  13. Bäckström P, Hyytiä P (2004) Ionotropic glutamate receptor agonists modulate cue-induced reinstatement of ethanol-seeking behavior. Alcohol Clin Exp Res 28(4):558–565PubMedGoogle Scholar
  14. Bauer J, Pedersen A, Scherbaum N, Bening J, Patschke J, Kugel H, Heindel W, Arolt V, Ohrmann P (2013) Craving in alcohol-dependent patients after detoxification is related to glutamatergic dysfunction in the nucleus accumbens and the anterior cingulate cortex. Neuropsychopharmacology 38:1401–1408PubMedPubMedCentralGoogle Scholar
  15. Beckley JT, Laguesse S, Phamluong K, Morisot N, Wegner SA, Ron D (2016) The first alcohol drink triggers mTORC1-dependent synaptic plasticity in nucleus accumbens dopamine D1 receptor neurons. J Neurosci 36:701–713PubMedPubMedCentralGoogle Scholar
  16. Belelli D, Harrison NL, Maguire J, Macdonald RL, Walker MC, Cope DW (2009) Extrasynaptic GABAA receptors: form, pharmacology, and function. J Neurosci 29:12757–12763PubMedPubMedCentralGoogle Scholar
  17. Belin-Rauscent A, Everitt BJ, Belin D (2012) Intrastriatal shifts mediate the transition from drug-seeking actions to habits. Biol Psychiatry 72:343–345PubMedGoogle Scholar
  18. Bennett BD, Bolam JP (1994) Localization of parvalbumin-immunoreactive structures in primate caudate-putamen. J Comp Neurol 347:340–356PubMedGoogle Scholar
  19. Beraha EM, Salemink E, Goudriaan AE, Bakker A, de Jong D, Smits N, Zwart JW, Geest DV, Bodewits P, Schiphof T, Defoumy H, van Tricht M, van den Brink W, Wiers RW (2016) Efficacy and safety of high-dose baclofen for the treatment of alcohol dependence: a multicenter, randomized, double-blind controlled trial. Eur Neuropsychopharmacol 26:1950–1959PubMedGoogle Scholar
  20. Berglind WJ, Case JM, Parker MP, Fuchs RA, See RE (2006) Dopamine D1 or D2 receptor antagonism within the basolateral amygdala differentially alters the acquisition of cocaine-cue associations necessary for cue-induced reinstatement of cocaine-seeking. Neuroscience 137:699–706PubMedPubMedCentralGoogle Scholar
  21. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685PubMedPubMedCentralGoogle Scholar
  22. Besheer J, Grondin JJ, Cannady R, Sharko AC, Faccidomo S, Hodge CW (2010) Metabotropic glutamate receptor 5 activity in the nucleus accumbens is required for the maintenance of ethanol self-administration in a rat genetic model of high alcohol intake. Biol Psychiatry 67:812–822PubMedPubMedCentralGoogle Scholar
  23. Blodgett JC, Del Re AC, Maisel NC, Finney JW (2014) A meta-analysis of topiramate’s effects for individuals with alcohol use disorders. Alcohol Clin Exp Res 38:1481–1488PubMedPubMedCentralGoogle Scholar
  24. Blomeley CP, Cains S, Smith R, Bracci E (2011) Ethanol affects striatal interneurons directly and projection neurons through a reduction in cholinergic tone. Neuropsychopharmacology 36:1033–1046PubMedPubMedCentralGoogle Scholar
  25. Bolam JP, Wainer BH, Smith AD (1984) Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnataion and electro microscopy. Neuroscience 12:711–718PubMedPubMedCentralGoogle Scholar
  26. Borghese M, Storustovu S, Ebert B, Herd MB, Belelli D, Lambert JJ, Marshall G, Wafford KA, Harris RA (2006) The delta subunit of γ-aminobutyric acid type A receptors does not confer sensitivity to low concentrations of ethanol. J Pharmacol Exp Ther 316:1360–1368PubMedPubMedCentralGoogle Scholar
  27. Botta P, Radcliffe RA, Carta M, Mameli M, Daly E, Floyd KL, Dietrich RA, Valenzuela CF (2007) Modulation of GABAA receptors in cerebellar granule neurons by ethanol: a review of genetic and electrophysiological studies. Alcohol 41:187–199PubMedPubMedCentralGoogle Scholar
  28. Bragina L, Bonifacino T, Bassi S, Milanese M, Bonanno G, Conit F (2015) Differential expression of metabotropic glutamate and GABA receptors at neocortical glutamatergic and GABAergic axon terminals. Front Cell Neurosci 9:345PubMedPubMedCentralGoogle Scholar
  29. Britt JP, Benaliouad F, McDevitt RA, Stuber GD, Wise RA, Bonci A (2012) Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76:790–803PubMedPubMedCentralGoogle Scholar
  30. Cagetti E, Liang J, Spigelman I, Olsen RW (2003) Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function and decreases behavioral responses to positive allosteric modulators of GABAA receptors. Mol Pharmacol 63:53–64PubMedGoogle Scholar
  31. Calabresi P, Gubellini P, Centonze D, Picconi B, Bernardi G, Chergui K, Svenningsson P, Fienberg AA, Greengard P (2000) Dopamine and cAMP-regulated phosphoprotein 32kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J Neurosci 20:8443–8451PubMedGoogle Scholar
  32. Calton JL, Wilson WA, Moore SD (1998) Magnesium-dependent inhibition of N-methyl-D-aspartate receptor-mediated synaptic transmission by ethanol. J Pharmacol Exp Ther 287:1015–1019PubMedGoogle Scholar
  33. Caputo F, Addolorato G, Stoppo M, Francini S, Vignoli T, Lorenzini F, Del Re A, Comaschi C, Andreone P, Trevisani F, Bernardi M, Alcohol Treatment Study Group (2007) Comparing and combining gamma-hydroxybutyric acid (GHB) and naltrexone in maintaining abstinence from alcohol: an open randomized comparative study. Eur Neuropsychopharmacol 17:781–789PubMedGoogle Scholar
  34. Carlezon WA Jr, Devine DP, Wise RA (1995) Habit-forming actions of nomifensine in nucleus accumbens. Psychopharmacology (Berl) 122:194–197Google Scholar
  35. Carpenter-Hyland EP, Chandler LJ (2006) Homeostatic plasticity during alcohol exposure promotes enlargement of dendritic spines. Eur J Neurosci 24:3496–3506PubMedGoogle Scholar
  36. Carpenter-Hyland EP, Woodward JJ, Chandler LJ (2004) Chronic ethanol induces synaptic but not extrasynaptic targeting of NMDA receptors. J Neurosci 24:7859–7868PubMedGoogle Scholar
  37. Carta M, Mameli M, Valenzuela CF (2004) Alcohol enhances GABAergic transmission to cerebellar granule cells via an increase in Golgi cell excitability. J Neurosci 24:3746–3751PubMedPubMedCentralGoogle Scholar
  38. Carvalho Poyraz F, Holzner E, Bailey MR, Meszaros J, Kenney L, Kheirbek MA, Balsam PD, Kellendonk C (2016) Decreasing striatopallidal pathway function enhances motivation by energizing the initiation of goal-directed action. J Neurosci 36:5988–6001PubMedPubMedCentralGoogle Scholar
  39. Chandler LJ, Norwood D, Sutton G (1999) Chronic ethanol upregulates NMDA and AMPA, but not kinate receptor subunit proteins in rat primary cortical cultures. Alcohol Clin Exp Res 23:363–370PubMedGoogle Scholar
  40. Chen X, Moore-Nichols D, Nguyen H, Michaelis EK (1999) Calcium influx through NMDA receptors, chronic receptor inhibition by ethanol and 2-amino-5-phosponopentanoic acid, and receptor protein expression. J Neurochem 72:1969–1980PubMedGoogle Scholar
  41. Cheng Y, Huang CCY, Ma T, Wei X, Wang X, Lu J, Wang J (2017) Distinct synaptic strengthening of the striatal direct and indirect pathways drives alcohol consumption. Biol Psychiatry 81:918–929PubMedGoogle Scholar
  42. Chu B, Anantharam V, Treistman SN (1995) Ethanol inhibition of recombinant heteromeric NMDA channels in the presence and absence of modulators. J Neurochem 65:140–148PubMedGoogle Scholar
  43. Clarke R, Adermark L (2015) Dopaminergic regulation of striatal interneurons in reward and addiction: focus on alcohol. Neural Plast 2015:814567PubMedPubMedCentralGoogle Scholar
  44. Corbit LH, Nie H, Janak PH (2012) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395PubMedPubMedCentralGoogle Scholar
  45. Corbit LH, Leung BK, Balleine BW (2013) The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions. J Neurosci 33:17682–17690PubMedGoogle Scholar
  46. Corbit LH, Nie H, Janak PH (2014) Habitual alcohol seeking: time course and the contribution of subregions of the dorsal striatum. Biol Psychiatry 72:389–395Google Scholar
  47. Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localization of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420PubMedGoogle Scholar
  48. Costa ET, Soto EE, Cardoso RA, Olivera DS, Valenzuela CF (2000) Acute effects of ethanol on kainite receptors in cultured hippocampal neurons. Alcohol Clin Exp Res 24:220–225PubMedGoogle Scholar
  49. Cowan RL, Wilson CJ, Emson PC, Heizmann CW (1990) Parvalbumin-containing GABAergic interneurons in the rat neostriatum. J Comp Neurol 302:197–205PubMedGoogle Scholar
  50. Cozzoli DK, Courson J, Caruana AL, Miller BW, Greentree DI, Thompson AB, Wroten MG, Zhang PW, Xiao B, Hu JH, Klugmann M, Metten P, Worley PF, Crabbe JC, Szumlinski KK (2012) Nucleus accumbens mGluR5-associated signaling regulates binge alcohol drinking under drinking-in-the dark procedures. Alcohol Clin Exp Res 36:1623–1633PubMedPubMedCentralGoogle Scholar
  51. Criswell HE, Ming Z, Kelm MK, Breese GR (2008) Brain regional differences in the effect of ethanol on GABA release from presynaptic terminals. J Pharmacol Exp Ther 326:596–603PubMedPubMedCentralGoogle Scholar
  52. Crowder TL, Ariwodola OJ, Weiner JL (2002) Ethanol antagonizes kainite receptor-mediated inhibition of evoked GABA (A) inhibitor postsynaptic currents in the rat hippocampal CA1 region. J Pharmacol Exp Ther 303:937–944PubMedGoogle Scholar
  53. Cuzon Carlson VC, Seabold GK, Helms CM, Garg N, Odarigi M, Rau AR, Daunais J, Alvarez A, Lovinger DM, Grant KA (2011) Synaptic and morphological neuroadaptations in the putamen associated with long-term, relapsing alcohol drinking in primates. Neuropsychopharmacology 36:2513–2528PubMedPubMedCentralGoogle Scholar
  54. Cuzon Carlson VC, Grant KA, Lovinger DM (2017) Synaptic adaptations to chronic ethanol intake in male rhesus monkey dorsal striatum depend on age of drinking onset. Neuropharmacology 131:128–142. CrossRefPubMedPubMedCentralGoogle Scholar
  55. Dahchour A, Quertemont E, De Witte P (1994) Acute ethanol increases taurine but neither glutamate nor GABA in the nucleus accumbens of male rats: a microdialysis study. Alcohol Alcohol 29:485–487PubMedGoogle Scholar
  56. Dahchour A, Quertemont E, De Witte P (1996) Taurine increases in the nucleus accumbens microdialysate after acute ethanol administration to naïve and chronically alcoholised rats. Brain Res 735:9–19PubMedGoogle Scholar
  57. Dahchour A, De Witte P, Bolo N, Nédélec JF, Muzet M, Durbin P, Macher JP (1998) Central effects of acamprosate: part I. Acamprosate blocks the glutamate increase in the nucleus accumbens microdialysate in ethanol withdrawn rats. Psychiatry Res 82:107–114PubMedGoogle Scholar
  58. Dalley JW, Cardinal RN, Robbins TW (2004) Prefrontal executive and cognitive functions in rodents: neural and neurochemical substrates. Neurosci Biobehav Rev 28:771–784PubMedGoogle Scholar
  59. Das SC, Yamamoto BK, Hristov AM, Sari Y (2015) Ceftriaxone attenuates ethanol drinking and restores extracellular glutamate concentration through normalization of GLT-1 in nucleus accumbens of male alcohol-preferring rats. Neuropharmacology 97:67–74PubMedPubMedCentralGoogle Scholar
  60. DePoy L, Daut R, Brigman JL, MacPherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Saksida LM, Kunos G, Lovinger DM, Bussey TJ, Camp MC, Holmes A (2013) Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci U S A 110:14783–14788PubMedPubMedCentralGoogle Scholar
  61. Dickinson A, Wood N, Smith JW (2002) Alcohol seeking by rats: action or habit? Q J Exp Psychol B 55:331–348PubMedGoogle Scholar
  62. Dildy-Mayfield JE, Harris RA (1992) Comparison of ethanol sensitivity of rat brain kainate, DL-alpha-amino-3-hydroxy-5-methyl-4-isoxalone proprionic acid and N-methyl-d-aspartate receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther 262:487–494PubMedGoogle Scholar
  63. Ding ZM, Engelman EA, Rodd ZA, McBride WJ (2012) Ethanol increases glutamate neurotransmission in the posterior ventral tegmental area of female Wistar rats. Alcohol Clin Exp Res 36:633–640PubMedGoogle Scholar
  64. Ding ZM, Rodd ZA, Engelman EA, Bailey JA, Lahiri DK, McBride WJ (2013) Alcohol drinking and deprivation alter basal extracellular glutamate concentrations and clearance in the mesolimbic system of alcohol-preferring (P) rats. Addict Biol 18:297–306PubMedGoogle Scholar
  65. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–62PubMedGoogle Scholar
  66. Donoghue K, Elzerbi C, Saunders R, Whittington C, Pilling S, Drummond C (2015) The efficacy of acamprosate and naltrexone in the treatment of alcohol dependence, Europe versus the rest of the world: a meta-analysis. Addiction 110:920–930PubMedGoogle Scholar
  67. Eisenhardt M, Leixner S, Lujan R, Spanagel R, Bilbao A (2015) Glutamate receptors within the mesolimbic dopamine system mediate alcohol relapse behavior. J Neurosci 35:15523–15538PubMedGoogle Scholar
  68. Everitt BJ, Robbins TW (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37:1946–1954PubMedGoogle Scholar
  69. Everitt BJ, Robbins TW (2016) Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol 67:23–50PubMedGoogle Scholar
  70. Everitt BJ, Belin D, Economidou D, Pelloux Y, Dalley JW, Robbins TW (2008) Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos Trans R Soc Lond B Biol Sci 363:3125–3135PubMedPubMedCentralGoogle Scholar
  71. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229PubMedGoogle Scholar
  72. Ferrani-Kile K, Randall PK, Leslie SW (2003) Acute ethanol affects phosphorylation state of the NMDA receptor complex: implication of tyrosine phosphatases and protein kinase A. Mol Brain Res 115:78–86PubMedGoogle Scholar
  73. Fliegel S, Brand I, Soanagel R, Noori HR (2013) Ethanol-induced alterations of amino acids measured by in vivo microdialysis in rats: a meta-analysis. In Silico Pharmacol 1:7PubMedPubMedCentralGoogle Scholar
  74. Floyd DW, Jung KY, McCool BA (2003) Chronic ethanol ingestion facilitates N-methyl-D-aspartate receptor function and expression in rat lateral/basolateral amygdala neurons. J Pharmacol Exp Ther 307:1020–1029PubMedGoogle Scholar
  75. Floyd DW, Friedman DP, Daunais JB, Pierre PJ, Grant KA, McCool BA (2004) Long-term ethanol self-administration by cynomolgus macaques alters the pharmacology and expression of GABAA receptors in basolateral amygdala. J Pharmacol Exp Ther 311:1071–1079PubMedGoogle Scholar
  76. Freund G, Anderson KJ (1996) Glutamate receptors in the frontal cortex of alcoholics. Alcohol Clin Exp Res 20:1165–1172PubMedGoogle Scholar
  77. Freund G, Anderson KJ (1999) Glutamate receptors in the cingulate cortex, hippocampus, and cerebellar vermis of alcoholics. Alcohol Clin Exp Res 23:1–6PubMedGoogle Scholar
  78. Fritschy JM, Panzanelli P, Tyagarajan SK (2012) Molecular and functional heterogeneity of GABAergic synapses. Cell Mol Life Sci 69:2485–2499PubMedGoogle Scholar
  79. Fuchs RA, Branham RK, See RE (2006) Different neural substrates mediate cocaine seeking after abstinence versus extinction training: a critical role for the dorsolateral caudate-putamen. J Neurosci 26:3584–3588PubMedPubMedCentralGoogle Scholar
  80. Fujiyama F, Sohn J, Nakano T, Furata T, Nakamura KC, Matsuda W, Kaneko T (2011) Exclusive and common targets of neostriatofugal projections of rat striosome neurons: a single neuron-tracing study using a viral vector. Eur J Neurosci 33:668–677PubMedPubMedCentralGoogle Scholar
  81. Gage PW, Robertson B (1985) Prolongation of inhibitory postsynaptic currents by pentobarbitone, halothane and ketamine in CA1 pyramidal cells in rat hippocampus. Br J Pharmacol 85:675–681PubMedPubMedCentralGoogle Scholar
  82. Gallimberti L, Ferri M, Ferrara SD, Fadda F, Gessa GL (1992) Gamma-hydroxybutyric acid in the treatment of alcohol dependence: a double-blind study. Alcohol Clin Exp Res 16:673–676PubMedPubMedCentralGoogle Scholar
  83. Gerfen CR, Surmeier DJ (2011) Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 34:441–466PubMedPubMedCentralGoogle Scholar
  84. Gibbs JW 3rd, Sombati S, DeLorenzo RJ, Coulter DA (2000) Cellular actions of topiramate: blockade of kainate-evoked inward currents in cultured hippocampal neurons. Epilepsia 41:S10–S16PubMedPubMedCentralGoogle Scholar
  85. Gittis AH, Hang GB, LaDow ES, Shoenfeld LR, Atallah BV, Finkbeiner S, Kreitzer AC (2011) Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine. Neuron 71:858–868PubMedPubMedCentralGoogle Scholar
  86. Gonda X (2012) Basic pharmacology of NMDA receptors. Curr Pharm Des 18:1558–1567PubMedGoogle Scholar
  87. Gonzales KK, Smith Y (2015) Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 1349:1–45PubMedPubMedCentralGoogle Scholar
  88. Goodwani S, Saternos H, Alasmari F, Sari Y (2017) Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci Biobehav Rev 77:14–31PubMedPubMedCentralGoogle Scholar
  89. Groenewegen HJ, Wright CI, Beijer AV, Voorn P (1999) Convergence and segregation of ventral striatal inputs and outputs. Ann N Y Acad Sci 877:49–63PubMedGoogle Scholar
  90. Grueter BA, Brasnjo G, Malenka RC (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. Nat Neurosci 13:1519–1525PubMedPubMedCentralGoogle Scholar
  91. Gunaydin LA, Kreitzer AC (2016) Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol 78:327–350PubMedPubMedCentralGoogle Scholar
  92. Guo Y, Wang HL, Xiang XH, Zhao Y (2009) The role of glutamate and its receptors in mesocorticolimbic dopaminergic regions in opioid addiction. Neurosci Biobehav Rev 33:864–873PubMedPubMedCentralGoogle Scholar
  93. Haber SN (2011) Neuroanatomy of reward: a view from the ventral striatum. In: Gottfried JA (ed) Neurobiology of sensation and reward. CRC Press and Taylor & Francis, Boca Raton, pp 235–262Google Scholar
  94. Haber SN, Fudge JL, McFarland NR (2000) Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci 20:2369–2382PubMedPubMedCentralGoogle Scholar
  95. Harris BR, Gibson DA, Prendergast MA, Blanchard JA, Holley RC, Hart SR, Scotland RL, Foster TC, Pedigo NW, Littleton JM (2003) The neurotoxicity induced by ethanol withdrawal in mature organotypic hippocampal slices might involve cross-talk between metabotropic glutamate type 5 receptors and N-methyl-D-aspartate receptors. Alcohol Clin Exp Res 27:1724–1735PubMedPubMedCentralGoogle Scholar
  96. Heimer L, Alheid GF (1991) Piecing together the puzzle of basal forebrain anatomy. Adv Exp Med Biol 295:1–42PubMedPubMedCentralGoogle Scholar
  97. Heimer L, Wilson RD (1975) The subcortical projections of the allocortex: similarities in the neural associations of the hippocampus, the piriform cortex, and the neocortex. In: Santini M (ed) Golgi centennial symposium proceedings. Raven, New York, pp 177–193Google Scholar
  98. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C (1991) Specificity in the projection patterns of accumbal core and shell in rat. Neuroscience 41:89–125PubMedPubMedCentralGoogle Scholar
  99. Hemby SE, O’Connor JA, Acosta G, Floyd D, Anderson N, McCool BA, Friedman D, Grant KA (2006) Ethanol-induced regulation of GABA-A subunit mRNAs in prefrontal fields of cynomolgus monkeys. Alcohol Clin Exp Res 30:1978–1985PubMedPubMedCentralGoogle Scholar
  100. Herd MB, Brown AR, Lambert JJ, Belelli D (2013) Extrasynaptic GABA(A) receptors couple presynaptic activity to postsynaptic inhibition in the somatosensory thalamus. J Neurosci 33:14850–14868PubMedPubMedCentralGoogle Scholar
  101. Hikida T, Yawata S, Yamaguchi T, Sanjo T, Sasaoka T, Wang Y, Nakanishi S (2013) Pathway-specific modulation of nucleus accumbens in reward and aversive behavior via selective transmitter receptors. Proc Natl Acad Sci 110:342–347PubMedGoogle Scholar
  102. Hodge CW, Cox AA (1998) The discriminative stimulus effects of ethanol are mediated by NMDA and GABA(A) receptors in specific limbic brain regions. Psychopharmacology (Berl) 139:95–107Google Scholar
  103. Hogarth L, Balleine BW, Corbit LH, Killcross S (2013) Associative learning mechanisms underpinning the transition from recreational drug use to addiction. Ann N Y Acad Sci 1282:12–24PubMedPubMedCentralGoogle Scholar
  104. Holmes A, Spanagel R, Krystal JH (2013) Glutamatergic targets for new alcohol medications. Psychopharmacology (Berl) 229:539–554Google Scholar
  105. Hopf FW (2017) Do specific NMDA receptors subunits act as gateways for addictive behaviors? Genes Brain Behav 16:118–138PubMedGoogle Scholar
  106. Hopkins DA, Holstege G (1978) Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp Brain Res 32:529–547PubMedGoogle Scholar
  107. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens – olfactory tubercle complex. Brain Res Rev 56:27–78PubMedPubMedCentralGoogle Scholar
  108. Imperato A, DiChiara G (1986) Preferential stimulation of dopamine release in the nucleus accumbens of freely moving rats by ethanol. J Pharmacol Exp Ther 239:219–228PubMedGoogle Scholar
  109. Iorio KR, Reinlib L, Tabakoff B, Hoffman PL (1992) Chronic exposure of cerebellar granule cells to ethanol results in increased N-methyl-D-asparate receptor function. Mol Pharmacol 41:1142–1148PubMedGoogle Scholar
  110. Ito R, Dalley JW, Robbins TW, Everitt BJ (2002) Dopamine release in the dorsal striatum during cocaine-seeking behavior under the control of a drug-associated cue. J Neurosci 22:6247–6253PubMedGoogle Scholar
  111. Jeanes ZM, Buske TR, Morrisett RA (2011) In vivo chronic intermittent ethanol exposure reverses the polarity of synaptic plasticity in the nucleus accumbens shell. J Pharmacol Exp Ther 336:155–164PubMedPubMedCentralGoogle Scholar
  112. Jeanes ZM, Buske TR, Morrisett RA (2014) Cell type-specific encoding of ethanol exposure in the nucleus accumbens shell. Neuroscience 277:184–195PubMedPubMedCentralGoogle Scholar
  113. Jin Z, Bhandage AK, Bazov I, Kononenko O, Bakalkin G, Korpi ER, Birnir B (2014) Expression of specific ionotropic glutamate and GABA-A receptor subunits is decreased in central amygdala of alcoholics. Front Cell Neurosci 8:288PubMedPubMedCentralGoogle Scholar
  114. Johnson BA, Rosenthal N, Capece JA, Wiegand F, Mao L, Beyers K, Ait-Daoud N, Anton RF, Ciraulo D, Kranzler HR, Mann K, O’Malley SS, Swift RM (2007) Topiramate for treating alcohol dependence: a randomized controlled trial. JAMA 298:1641–1651PubMedGoogle Scholar
  115. Jonas DE, Amick HR, Feltner C, Bobashev G, Thomas K, Wilnes R, Kim MM, Shanahan E, Gass CE, Rowe CJ, Garbutt JC (2014) Pharmacotherapy for adults with alcohol use disorders in outpatient settings: a systemic review and meta-analysis. JAMA 311:1889–1900PubMedPubMedCentralGoogle Scholar
  116. Kalev-Zylinska ML, During MJ (2007) Paradoxical faciliatory effect of low-dose alcohol consumption on memory mediated by NMDA receptors. J Neurosci 27:10456–10467PubMedPubMedCentralGoogle Scholar
  117. Kalluri HS, Mehta AK, Ticky MK (1998) Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Brain Res Mol Brain Res 58:221–224PubMedGoogle Scholar
  118. Kamal RM, van Noorden MS, Franzek E, Dijkstra BA, Loonen AJ, De Jong CA (2016) The neurobiological mechanisms of gamma-hydroxybutyrate dependence and withdrawal and their clinical relevance: a review. Neuropsychobiology 73:65–80PubMedGoogle Scholar
  119. Kasai H, Fukuda M, Watanabe S, Hayashi-Takagi A, Noguchi J (2010) Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci 33:121–129PubMedGoogle Scholar
  120. Kash TL, Baucum AJ 2nd, Conrad KL, Colbran RJ, Winder DG (2009) Alcohol exposure alters NMDAR function in the bed nucleus of the stria terminalis. Neuropsychopharmacology 34:2420–2429PubMedPubMedCentralGoogle Scholar
  121. Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC (1995) Striatal interneurons: chemical, physiological and morphological characterization. Trends Neurosci 18:527–535PubMedGoogle Scholar
  122. Kelm MK, Criswell HE, Breese GR (2011) Ethanol-enhanced GABA release: a focus on G-protein coupled receptors. Brain Res Rev 65:113–123PubMedGoogle Scholar
  123. Kemp JM, Powell TP (1971) The structure of the caudate nucleus of the cat: light and electron microscopy. Phil Trans R Soc London 262:383–401Google Scholar
  124. Kenny PJ, Markou A (2004) The ups and downs of addiction: role of metabotropic glutamate receptors. Trends Pharmacol Sci 25:265–272PubMedGoogle Scholar
  125. Kerr JN, Wickens JR (2001) Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 85:117–124PubMedGoogle Scholar
  126. Kita H (1993) GABAergic circuits of the striatum. Prog Brain Res 99:51–72PubMedGoogle Scholar
  127. Kita H, Kitai ST (1988) Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations. Brain Res 447:346–352PubMedGoogle Scholar
  128. Kittler JT, Chen G, Honing S, Bogdanov T, McAinsh K, Arancibia-Carcamo IL, Jovanovic JN, Pangalos MN, Haucke V, Yan Z, Moss SJ (2005) Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc Natl Acad Sci U S A 102:14871–14876PubMedPubMedCentralGoogle Scholar
  129. Koob GF (2013) Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol 23:559–563PubMedGoogle Scholar
  130. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35:217–238PubMedGoogle Scholar
  131. Koós T, Tepper JM (1999) Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nat Neurosci 2:467–472PubMedPubMedCentralGoogle Scholar
  132. Kranzler HR, Wetherill R, Feinn R, Pond T, Gelernter J, Covault J (2014) Posttreatment effects of topiramate treatment for heavy drinking. Alcohol Clin Exp Res 38:3017–3023PubMedPubMedCentralGoogle Scholar
  133. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626PubMedPubMedCentralGoogle Scholar
  134. Kravitz AV, Tye LD, Kreitzer AC (2012) Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci 15:816–818PubMedPubMedCentralGoogle Scholar
  135. Kreitzer AC, Malenka RC (2007) Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 445:643–647PubMedPubMedCentralGoogle Scholar
  136. Kreitzer AC, Malenka RC (2008) Striatal plasticity and basal ganglia circuit function. Neuron 60:543–554PubMedPubMedCentralGoogle Scholar
  137. Krupitsky EM, Neznanova I, Masalov D, Burakov AM, Didenko T, Romanova T, Tsoy M, Bespalov A, Slavina TY, Grinenko AA, Petrakis IL, Pittman B, Gueorguieva R, Zvartau EE, Krystal JH (2007) Effect of memantine on cue-induced alcohol craving in recovering alcohol-dependent patients. Am J Psychiatry 164:519–523PubMedPubMedCentralGoogle Scholar
  138. Krystal JH, Petrakis IL, Krupitsky E, Schutz C, Trevisan L, D’Souza DC (2003) NMDA receptor antagonism and the ethanol intoxication signal: from alcoholism risk to pharmacotherapy. Ann N Y Acad Sci 1003:176–184PubMedPubMedCentralGoogle Scholar
  139. Kubota Y, Kawaguchi Y (2000) Dependence of GABAergic synaptic areas on the interneuron type and target size. J Neurosci 20:467–472Google Scholar
  140. Kumari M, Ticku MK (2000) Regulation of NMDA receptors by ethanol. Prog Drug Res 54:151–189Google Scholar
  141. Kuner T, Schoepfer R, Korpi ER (1993) Ethanol inhibits glutamate-induced currents in heteromeric NMDA receptor subtypes. Neuroreport 5:297–300PubMedPubMedCentralGoogle Scholar
  142. Kupchik YM, Brown RM, Heinsbroek JA, Lobo MK, Schwartz DJ, Kalivas PW (2015) Coding the direct/indirect pathways by D1 and D2 receptors is not valid for accumbens projections. Nat Neurosci 18:1230–1232PubMedPubMedCentralGoogle Scholar
  143. Kupferschmidt DA, Cody PA, Lovinger DM, Davis MI (2015) Brain BLAQ: posthoc thick-section histochemistry for localizing optogenetic consturcts in neurons and their distal terminals. Front Neuroanat 9:6PubMedPubMedCentralGoogle Scholar
  144. Läck AK, Diaz MR, Chappell A, DuBois DW, McCool BA (2007) Chronic ethanol and withdrawal differentially modulate pre-and postsynaptic function at glutamatergic synapses in rat basolateral amygdala. J Neurophysiol 98:3185–3196PubMedPubMedCentralGoogle Scholar
  145. Lambot L, Chaves Rodriguez E, Houtteman D, Li Y, Schiffmann SN, Gall D, de Kerchove d’Exaerde A (2016) Striatopallidal neuron NMDA receptors control synaptic connectivity, locomotor, and goal-directed behaviors. J Neurosci 36:4976–4992PubMedPubMedCentralGoogle Scholar
  146. Le Moine C, Bloch B (1995) D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 355:418–426PubMedGoogle Scholar
  147. Li HF, Kendig JJ (2003) Ethanol withdrawal hyper-responsiveness mediated by NMDA receptors in spinal cord motor neurons. Br J Pharmacol 139:73–80PubMedPubMedCentralGoogle Scholar
  148. Li Q, Wilson WA, Swartzwelder HS (2006) Developmental differences in the sensitivity of spontaneous and miniature IPSCs to ethanol. Alcohol Clin Exp Res 30:119–126PubMedGoogle Scholar
  149. Liang J, Cagetti E, Olsen RW, Spigelman I (2004) Altered pharmacology of synaptic and extrasynaptic GABAA receptors on CA1 hippocampal neurons is consistent with subunit changes in a model of alcohol withdrawal and dependence. J Pharmacol Exp Ther 310:1234–1245PubMedGoogle Scholar
  150. Liang J, Lindemeyer AK, Suryanarayanan A, Meyer EM, Marty VN, Ahmad SO, Shao XM, Olsen RW, Spigelman I (2014) Plasticity of GABA(A) receptor-mediated neurotransmission in the nucleus accumbens of alcohol-dependent rats. J Neurophysiol 112:39–50PubMedPubMedCentralGoogle Scholar
  151. Lima-Landman MT, Albuquerque EX (1989) Ethanol potentiates and blocks NMDA-activated single-channel currents in rat hippocampal pyramidal cells. FEBS Lett 247:61–67PubMedPubMedCentralGoogle Scholar
  152. Lingford-Hughes A, Reid AG, Myers J, Feeney A, Hammers A, Taylor LG, Rosso L, Turkheimer F, Brooks DJ, Grasby P, Nutt DJ (2012) A [11C] Ro154513 PET study suggests that alcohol dependence in man is associated with reduced alpha 5 benzodiazepine receptors in limbic regions. J Psychopharmacol 26:273–281PubMedPubMedCentralGoogle Scholar
  153. Loebrich S, Bahring R, Katsuno T, Tsukita S, Kneussel M (2006) Activated radixin is essential for GABAA receptor alpha5 subunit anchoring at the actin cytoskeleton. EMBO J 25:987–999PubMedPubMedCentralGoogle Scholar
  154. Lominac KD, Kapasova Z, Hannun RA, Patterson C, Middaugh LD, Szumlinksi KK (2006) Behavioral and neurochemical interactions between group I mGluR antagonists and ethanol: potential insight into their anti-addictive properties. Drug Alcohol Depend 85:142–156PubMedGoogle Scholar
  155. Lopez MF, Becker HC, Chandler LJ (2014) Repeated episodes of chronic intermittent ethanol promote insensitivity to devaluation of the reinforcing effect of ethanol. Alcohol 48:639–645PubMedPubMedCentralGoogle Scholar
  156. Lovinger DM (2017) Presynaptic ethanol actions: potential roles in ethanol seeking. Handb Exp Pharmacol.
  157. Lovinger DM, White G, Weight FF (1989) Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724PubMedPubMedCentralGoogle Scholar
  158. Lovinger DM, White G, Weight FF (1990) NMDA receptor-mediated synaptic excitation selectively inhibited by ethanol in hippocampal slice from adult rat. J Neurosci 10:1372–1379PubMedGoogle Scholar
  159. Lu XY, Ghasemzadeh MB, Kalivas PW (1998) Expression of D1 receptor, D2 receptor, substance P, and enkephalin messenger RNAs in the neurons projecting from the nucleus accumbens. Neuroscience 82:767–780PubMedGoogle Scholar
  160. Luo Z, Volkow ND, Heintz N, Pan Y, Du C (2011) Acute cocaine induces fast activation of D1 receptor and progressive deactivation of D2 receptor striatal neurons: in vivo optical microprobe [Ca2+] imaging. J Neurosci 31:13180–13190PubMedPubMedCentralGoogle Scholar
  161. Ma T, Barbee B, Wang X, Wang J (2017) Alcohol induces input-specific aberrant synaptic plasticity in the rat dorsomedial striatum. Neuropharmacology 123:46–54PubMedPubMedCentralGoogle Scholar
  162. Maguire EP, Macpherson T, Swinny JD, Dixon CI, Herd MB, Belelli D, Stephens DN, King SL, Lambert JJ (2014) Tonic inhibition of accumbal spiny neurons by extrasynaptic alpha4betadelta GABAA receptors modulates the actions of psychostimulants. J Neurosci 34:823–838PubMedPubMedCentralGoogle Scholar
  163. Maisel NC, Blodgett JC, Wilbourne PL, Humphreys K, Finney JW (2013) Meta-analysis of naltrexone and acamprosate for treating alcohol use disorders: when are these medications most helpful? Addiction 108:275–293PubMedGoogle Scholar
  164. Maldve RE, Zhang TA, Ferrani-Kile K, Schreiber SS, Lippmann MJ, Snyder GL, Fienberg AA, Leslie SW, Gonzales RA, Morrisett RA (2002) DARPP-32 and regulation of the ethanol sensitivity of NMDA receptors in the nucleus accumbens. Nat Neurosci 5:641–648PubMedGoogle Scholar
  165. Malenka RC, Nicoll RA (1999) Long-term potentiation – a decade of progress? Science 285:1870–1874PubMedPubMedCentralGoogle Scholar
  166. Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126PubMedGoogle Scholar
  167. Mallet N, LeMoine C, Charpier S, Ganon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869PubMedGoogle Scholar
  168. Martin D, Swartzwelder HS (1992) Ethanol inhibits release of excitatory amino acids from slices of hippocampal area CA1. Eur J Pharmacol 219:469–472PubMedGoogle Scholar
  169. Martin D, Morrisett RA, Bian XP, Wilson WA, Swartzwelder HS (1991) Ethanol inhibition of NMDA mediated depolarizations is increased in the presence of Mg2+. Brain Res 546:227–234PubMedGoogle Scholar
  170. Martinotti G, Di Nicola M, De Vita O, Hatzigakoumis DS, Guglielmo R, Santucci B, Aliotta F, Romanelli R, Verrastro V, Petruccelli F, Di Giannantonio M, Janiri L (2014) Low-dose topiramate in alcohol dependence: a single-blind, placebo-controlled study. J Clin Psychopharmacol 34:709–715PubMedGoogle Scholar
  171. Marty VN, Spigelman I (2012) Long-lasting alterations in membrane properties K(+) currents, and glutamatergic synaptic currents of nucleus accumbens medium spiny neurons in a rat model of alcohol dependence. Front Neurosci 6:86PubMedPubMedCentralGoogle Scholar
  172. Mason BJ, Quello S, Goodell V, Shadan F, Kyle M, Begovic A (2014) Gabapentin treatment for alcohol dependence: a randomized clinical trial. JAMA Intern Med 174:70–77PubMedPubMedCentralGoogle Scholar
  173. Masood K, Wu C, Brauneis U, Weight FF (1994) Differential ethanol sensitivity of recombinant N-methyl-D-aspartate receptor subunits. Mol Pharmacol 45:324–329PubMedPubMedCentralGoogle Scholar
  174. Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendirit spines. Nature 429:761–766PubMedPubMedCentralGoogle Scholar
  175. McGeorge AJ, Faull RLM (1989) The organization of the projection from the cerebral cortex to the striatum in the rat. Neuroscience 29:503–537PubMedPubMedCentralGoogle Scholar
  176. Meinhardt MW, Hansson AC, Perreau-Lentz S, Bauder-Wenz C, Stahlin O, Heilig M, Harper C, Drescher KU, Spanagel R, Sommer WH (2013) Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J Neurosci 33:2794–2806PubMedPubMedCentralGoogle Scholar
  177. Mele M, Ribeiro L, Inacio AR, Wieloch T, Duarte CB (2014) GABA(A) receptor dephosphorylation followed by internalization is coupled to neuronal death in in vitro ischemia. Neurobiol Dis 65:220–232PubMedPubMedCentralGoogle Scholar
  178. Melendez RI, Hicks MP, Cagle SS, Kalivas PW (2005) Ethanol exposure decreases glutamate uptake in the nucleus accumbens. Alcohol Clin Exp Res 29:326–333PubMedPubMedCentralGoogle Scholar
  179. Melis M, Camarini R, Ungless MA, Bonci A (2002) Long-lasting potentiation of GABAergic synapses in dopamine neurons after a single in vivo ethanol exposure. J Neurosci 22:2074–2082PubMedPubMedCentralGoogle Scholar
  180. Meredith GE (1999) The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci 877:140–156PubMedPubMedCentralGoogle Scholar
  181. Messenger MJ, Dawson LG, Duty S (2002) Changes in metabotropic glutamate messenger 1-8 gene expression in the rodent basal ganglia motor loop following lesion of the nigrostriatal tract. Neuropharmacology 43:261–271PubMedPubMedCentralGoogle Scholar
  182. Michaelis EK, Michaelis ML, Freed WJ, Foye J (1993) Glutamate receptor changes in brain synaptic membrane during chronic alcohol intake. Alcohol Alcohol Suppl 2:377–381PubMedPubMedCentralGoogle Scholar
  183. Ming Z, Criswell HE, Yu G, Breese GR (2006) Competing presynaptic and postsynaptic effects of ethanol on cerebellar purkinje neurons. Alcohol Clin Exp Res 30:1400–1407PubMedPubMedCentralGoogle Scholar
  184. Mirshahi T, Woodward JJ (1995) Ethanol sensitivity of heteromeric NMDA receptors: effects of subunit assembly, glycine and NMDAR1 Mg(2+)-insensitive mutants. Neuropharmacology 34:347–355PubMedPubMedCentralGoogle Scholar
  185. Misgeld U, Drew G, Yanovsky Y (2007) Presynaptic modulation of GABA release in the basal ganglia. Prog Brain Res 160:245–259PubMedPubMedCentralGoogle Scholar
  186. Miyakawa T, Yagi T, Kitazawa H, Yasuda M, Kawai N, Tsuboi K, Niki H (1997) Fyn-kinase as a determinant of ethanol sensitivity: relation to NMDA-receptor function. Science 278:698–701PubMedPubMedCentralGoogle Scholar
  187. Moghaddam B, Bolinao ML (1994) Biphasic effect of ethanol on extracellular accumulation of glutamate in the hippocampus and the nucleus accumbens. Neurosci Lett 178:99–102PubMedPubMedCentralGoogle Scholar
  188. Moon IS, Apperson ML, Kennedy MB (1994) The major tyrosine-phosphorylated protein in the postsynaptic density fraction is N-methyl-D-aspartate receptor subunit 2B. Proc Natl Acad Sci U S A 91:3954–3958PubMedPubMedCentralGoogle Scholar
  189. Morrisett RA, Martin D, Oetting TA, Lewis DV, Wilson WA, Swartzwelder HS (1991) Ethanol and magnesium ions inhibit N-methyl-D-aspartate-mediated synaptic potentials in an interactive manner. Neuropharmacology 30:1173–1178PubMedPubMedCentralGoogle Scholar
  190. Moykkynen T, Korpi ER, Lovinger DM (2003) Ethanol inhibits alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionc acid (AMPA) receptor function in central nervous system neurons by stabilizing desensitization. J Pharmacol Exp Ther 306:546–555PubMedPubMedCentralGoogle Scholar
  191. Muller J, Dreisbach G, Goschke T, Hensch T, Lesch KP, Brocke B (2007) Dopamine and cognitive control: the prospect of monetary gains influences the balance between flexibility and stability in a set-shifting paradigm. Eur J Neurosci 26:3661–3668PubMedPubMedCentralGoogle Scholar
  192. Muller CA, Geisel O, Pelz P, Higl V, Kruger J, Stickel A, Beck A, Wernecke KD, Hellweg R, Heinz A (2015) High-dose baclofen for the treatment of alcohol dependence (BACLAD study): a randomized, placebo-controlled trial. Eur Neuropsychopharmacol 25:1167–1177PubMedPubMedCentralGoogle Scholar
  193. Nagy J (2008) Alcohol related changes in regulation of NMDA receptor functions. Curr Neuropharmacol 6:39–54PubMedPubMedCentralGoogle Scholar
  194. Nagy J, Kolok S, Dezso P, Boros A, Szobathelyi Z (2003) Differential alterations in the expression of NMDA receptor subunits following chronic ethanol treatment in primary cultures of rat cortical and hippocampal neurons. Neurochem Int 42:35–43PubMedPubMedCentralGoogle Scholar
  195. Neasta J, Ben Hamida S, Yowell Q, Carnicells S, Ron D (2010) Role for mammalian target of rapamycin complex 1 signaling in neuroadaptations underlying alcohol-related disorders. Proc Natl Acad Sci U S A 107:20093–20098PubMedPubMedCentralGoogle Scholar
  196. Nelson TE, Ur CL, Gruol DL (2005) Chronic intermittent ethanol exposure enhances NMDA-receptor-mediated synaptic responses and NMDA receptor expression in hippocampal CA1 region. Brain Res 1048:69–79PubMedPubMedCentralGoogle Scholar
  197. Nestoros JN (1980) Ethanol specifically potentiates GABA-mediated neurotransmission in feline cerebral cortex. Science 209:708–710PubMedGoogle Scholar
  198. Nie Z, Madamba S, Siggins G (1997) Ethanol enhances GABAergic transmission in nucleus accumbens: regulation by metabotropic mechanisms. Alcohol Clin Exp Res 21:74AGoogle Scholar
  199. Nie Z, Madamba S, Siggins G (2000) Ethanol enhances γ-aminobutyric acid responses in a subpopulation of nucleus accumbens neurons; role of metabotropic glutamate receptors. J Pharmacol Exp Ther 293:654–661PubMedPubMedCentralGoogle Scholar
  200. Nie Z, Schweitzer P, Roberts AJ, Madamba SG, Moore SD, Siggins GR (2004) Ethanol augments GABAergic transmission in the central amygdala via CRF1 receptors. Science 303:1512–1514PubMedGoogle Scholar
  201. Obara I, Bell RL, Goulding SP, Reyes CM, Larson LA, Ary AW, Truitt WA, Szumlinksi KK (2009) Differential effects of chronic ethanol consumption and withdrawal on homer/glutamate receptor expression in subregions of the accumbens and amygdala of P rats. Alcohol Clin Exp Res 33:1924–1934PubMedPubMedCentralGoogle Scholar
  202. Olive MF (2009) Metabotropic glutamate receptor ligands as potential therapeutics for addiction. Curr Drug Abuse Rev 2:83–98PubMedPubMedCentralGoogle Scholar
  203. Olsen RW, Sieghart W (2008) International Union of Pharmacology. LXX. Subtypes of gamma-aminobutyric acid(A) receptors: classification on the bass of subunit composition, pharmacology, and function. Update. Pharmacol Rev 60:243–260PubMedPubMedCentralGoogle Scholar
  204. Olsen RW, Sieghart W (2009) GABA A receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology 56:141–148PubMedGoogle Scholar
  205. Olsen RW, Hanchar HJ, Meera P, Wallner M (2007) GABAA receptor subtypes: the “one glass of wine” receptors. Alcohol 41:201–209PubMedPubMedCentralGoogle Scholar
  206. Othman T, Singlair CJ, Haughey N, Geiger JD, Parkinson FE (2002) Ethanol alters glutamate but not adenosine uptake in rat astrocytes: evidence for protein kinase C involvement. Neurochem Res 27:289–296PubMedGoogle Scholar
  207. Pan WX, Mao T, Dudman JT (2010) Inputs to the dorsal striatum of the mouse of the mouse reflect the parallel circuit architecture of the forebrain. Front Neuroanat 4:147PubMedPubMedCentralGoogle Scholar
  208. Papadeas S, Grobin AC, Morrow AL (2001) Chronic ethanol consumption differentially alters GABA(A) receptor alpha 1 and alpha 4 subunit peptide expression and GABA(A) receptor-mediated 36 Cl(-) uptake in mesocorticolimbic regions of the rat brain. Alcohol Clin Exp Res 25:1270–1275PubMedGoogle Scholar
  209. Papp E, Borhegyi Z, Tomioka R, Rockland KS, Mody I, Freund TF (2012) Glutamatergic input from specific sources influences the nucleus accumbens-ventral pallidum information flow. Brain Struct Funct 217:37–48PubMedGoogle Scholar
  210. Patton MH, Roberts DM, Lovinger DM, Mathur BN (2016) Ethanol disinhibits dorsolateral striatal medium spiny neurons through activation of a presynaptic delta opioid receptor. Neuropsychopharmacology 41:1831–1840PubMedPubMedCentralGoogle Scholar
  211. Peris J, Eppler B, Hu M, Walker DW, Hunter BE, Mason K (1997) Effects of chronic ethanol exposure on GABA receptors and GABAB receptor modulation of 3H-GABA release in the hippocampus. Alcohol Clin Exp Res 21:1047–14052PubMedPubMedCentralGoogle Scholar
  212. Piepponen TP, Kiianmaa K, Ahtee L (2002) Effects of ethanol on the accumbal output of dopamine, GABA and glutamate in alcohol-tolerant and alcohol-nontolerant rats. Pharmacol Biochem Behav 74:21–30PubMedPubMedCentralGoogle Scholar
  213. Planert H, Berger TK, Silberberg G (2013) Membrane properties of striatal direct and indirect pathway neurons in mice and rat slices and their modulation by dopamine. PLoS One 8:e57054PubMedPubMedCentralGoogle Scholar
  214. Pomierny-Chamiolo L, Rup K, Pomierny B, Niedzielska E, Kalivas PW, Filip M (2014) Metabotropic glutamatergic receptors and their ligands in drug addiction. Pharmacol Ther 142:281–305PubMedPubMedCentralGoogle Scholar
  215. Popp RL, Lickteig R, Browning MD, Lovinger DM (1998) Ethanol sensitivity and subunit composition of NMDA receptors in cultured striatal neurons. Neuropharmacology 37:45–56PubMedPubMedCentralGoogle Scholar
  216. Proctor WR, DIao L, Freund RK, Browning MD, Wu PH (2006) Synaptic GABAergic and glutamatergic mechanisms underlying alcohol sensitivity in mouse hippocampal neurons. J Physiol 575:145–149PubMedPubMedCentralGoogle Scholar
  217. Qi ZH, Song M, Wallace MJ, Wang D, Newton PM, McMahon T, Chou WH, Zhang C, Shokat KM, Messing RO (2007) Protein kinase C epsilon regulates gamma-aminobutyrate type A receptors sensitivity to ethanol and benzodiazepines through phosphorylation of gamma2 subunits. J Biol Chem 282:33052–33063PubMedPubMedCentralGoogle Scholar
  218. Quertemont E, Linotte S, De Witte P (2002) Differential taurine responsiveness to ethanol in high- and low-alcohol sensitive rats: a brain microdialysis study. Eur J Pharmacol 444:143–150PubMedPubMedCentralGoogle Scholar
  219. Rabe CS, Tabakoff B (1990) Glycine site-directed agonists reverse the actions of ethanol at the N-methyl-D-aspartate receptor. Mol Pharmacol 38:753–757PubMedPubMedCentralGoogle Scholar
  220. Renteria R, Maier EY, Buske TR, Morrisett RA (2017) Selective alterations of NMDAR function and plasticity in D1 and D2 medium spiny neurons in the nucleus accumbens shell following chronic intermittent ethanol exposure. Neuropharmacology 112:164–171PubMedGoogle Scholar
  221. Reynaud M, Aubin HJ, Trinquet F, Zakine B, Dano C, Dematteis M, Trojak B, Paille F, Detilleux M (2017) A randomized, placebo-controlled study of high-dose baclofen in alcohol-dependent patients – the ALPADIR study. Alcohol Alcohol 52:439–446PubMedGoogle Scholar
  222. Reynolds JNJ, Wickens JR (2002) Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 15:507–521PubMedGoogle Scholar
  223. Roberto M, Madamba SG, Moore SD, Tallent MK, Siggins GR (2003) Ethanol increases GABAergic transmission at both pre- and postsynaptic sites in rat central amygdala neurons. Proc Natl Acad Sci U S A 100:2053–2058PubMedPubMedCentralGoogle Scholar
  224. Roberto M, Madamba SG, Stouffer DG, Parsons LH, Siggins GR (2004) Increased GABA release in the central amygdala of ethanol-dependent rats. J Neurosci 24:10159–10166PubMedPubMedCentralGoogle Scholar
  225. Roberto M, Gilpin NW, O’Dell LE, Cruz MT, Morse AC, Siggins GR, Koob GF (2008) Cellular and behavioral interactions of gabapentin with alcohol dependence. J Neurosci 28:5762–5771PubMedGoogle Scholar
  226. Roberto M, Cruz MT, Gilpin NW, Sabino V, Schweitzer P, Bajo M, Cottone P, Madamba SG, Stouffer DG, Zorilla EP, Koob GF, Siggins GR, Parsons LH (2010) Corticotropin releasing factor-induced amygdala gamma-aminobutyric acid release plays a key role in alcohol dependence. Biol Psychiatry 67:831–839PubMedPubMedCentralGoogle Scholar
  227. Rodd-Henricks ZA, McKinzie DL, Li TK, Murphey JM, McBride WJ (2002) Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 303:1216–1226PubMedGoogle Scholar
  228. Rossetti ZL, Carboni S (1995) Ethanol withdrawal is associated with increased extracellular glutamate in the rat striatum. Eur J Pharmacol 283:177–183PubMedGoogle Scholar
  229. Rossetti Z, Carboni S, Fadda F (1999) Glutamate-induced increase of extracellular glutamate through N-methyl-D-aspartate receptors in ethanol withdrawal. Neuroscience 93:1135–1140PubMedGoogle Scholar
  230. Sanna E, Serra M, Cossu A, Colombo G, Follesa P, Cuccheddu T, Concas A, Biggio G (1993) Chronic ethanol intoxication induces differential effects on GABAA and NMDA receptor function in the rat brain. Alcohol Clin Exp Res 17:115–123PubMedGoogle Scholar
  231. Sanna E, Talani G, Busonero F, Pisu MG, Purdy RH, Serra M, Biggio G (2004) Brain steroidogenesis mediates ethanol modulation of GABAA receptor activity in rat hippocampus. J Neurosci 24:6521–6530PubMedGoogle Scholar
  232. Santerre JL, Rogow JA, Kolitz EB, Pal R, Landin JD, Gigante E, Werner DF (2014) Ethanol dose-dependently elicits opposing regulatory effects on hippocampal AMPA receptor GluA2 subunits through a zeta inhibitory peptide-sensitive kinase in adolescent and adult Sprague-Dawley rats. Neuroscience 280:50–59PubMedPubMedCentralGoogle Scholar
  233. Schumann G, Johann M, Frank J, Preuss U, Dahmen N, Laucht M, Rieschel M, Rujescu D, Lourdusamy A, Clarke TK, Krause K, Dyer A, Depner M, Wellek S, Treutlein J, Szegdi A, Giegling I, Cichon S, Blomeyer D, Heinz A, Heath S, Lathrop M, Wodarz N, Soyka M, Spanagel R, Mann K (2008) Systematic analysis of glutamatergic neurotransmission genes in alcohol dependence and adolescent risky drinking behavior. Arch Gen Psychiatry 65:826–838PubMedGoogle Scholar
  234. Schwarzer C, Berresheim U, Pirker S, Wieselthaler A, Fuchs K, Sieghart W, Sperk G (2001) Distribution for the major gamma-aminobutyric acid (A) receptor subunits in the basal ganglia and associated limbic brain areas of the adult rat. J Comp Neurol 433:526–549PubMedPubMedCentralGoogle Scholar
  235. Selim M, Bradberry CW (1996) Effect of ethanol on extracellular 5-HT and glutamate in the nucleus accumbens and prefrontal cortex: comparison between the Lewis and Fischer 344 rat strains. Brain Res 716:157–164PubMedPubMedCentralGoogle Scholar
  236. Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303PubMedPubMedCentralGoogle Scholar
  237. Siggins GR, Pittman QJ, French ED (1987) Effects of ethanol on CA1 and CA3 pyramidal cells in the hippocampal slice preparation: an intracellular study. Brain Res 414:22–34PubMedPubMedCentralGoogle Scholar
  238. Siggins GR, Roberto M, Nie Z (2005) The tipsy terminal: presynaptic effects of ethanol. Pharmacol Ther 107:80–98PubMedGoogle Scholar
  239. Silberman Y, Shi L, Brunso-Bechtold JK, Weiner JL (2008) Distinct mechanisms of ethanol potentiation of local and paracapsular GABAergic synapses in the rat basolateral amygdala. J Pharmacol Exp Ther 324:251–260PubMedGoogle Scholar
  240. Silberman Y, Shi L, Ariwodola OJ, Weiner JL (2009) Differential effects of GABAB autoreceptor activation on ethanol potentiation of local and lateral paracapsular GABAergic synapses in the rat basolateral amygdala. Neuropharmacology 56:886–895PubMedPubMedCentralGoogle Scholar
  241. Sinclair JD, Senter RJ (1967) Increased preference for ethanol in rats following deprivation. Psychon Sci 8:11–12Google Scholar
  242. Sinclair JD, Senter RJ (1968) Development of an alcohol-deprivation effect in rats. Q J Stud Alcohol 29:863–867PubMedGoogle Scholar
  243. Sinclair CM, Cleva RM, Hood LE, Olive MF, Gass JT (2012) mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacol Biochem Behav 101:329–335PubMedPubMedCentralGoogle Scholar
  244. Smith TL (1997) Regulation of glutamate uptake in astrocytes continuously exposed to ethanol. Life Sci 61:2499–2505PubMedGoogle Scholar
  245. Smith AD, Bolam JP (1990) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons. Trends Neurosci 13:259–265PubMedGoogle Scholar
  246. Smith Y, Parent A (1986) Neuropeptide Y-immunoreactive neurons in the striatum of the cat and monkey: morphological characteristics, intrinsic organization and co-localization with somatostatin. Brain Res 372:241–252PubMedGoogle Scholar
  247. Smothers CT, Woodward JJ (2003) Effect of the NR3 subunit on ethanol inhibition of recombinant NMDA receptors. Brain Res 987:117–121PubMedGoogle Scholar
  248. Snell LD, Tabakoff B, Hoffman PL (1994) Involvement of protein kinase C in ethanol-induced inhibition of NMDA receptor function in cerebellar granule cells. Alcohol Clin Exp Res 18:81–85PubMedGoogle Scholar
  249. Soyka M, Kranzler HR, Hesselbrock V, Kasper S, Muschler J, Moller HJ, WFSBP Task Force on Treatment Guidelines for Substance Use Disorders (2016) Guidelines for biological treatment of substance use and related disorders, part I: alcoholism, first revision. World J Biol Psychiatry 23:1–34Google Scholar
  250. Surmeier DJ, Song WJ, Yan Z (1996) Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 16:6579–6591PubMedGoogle Scholar
  251. Suto N, Ecke LE, You ZB, Wise RA (2010) Extracellular fluctuations of dopamine and glutamate in the nucleus accumbens core and shell associated with lever-pressing during cocaine self-administration, extinction, and yoked cocaine administration. Psychopharmacology 211:267–275PubMedPubMedCentralGoogle Scholar
  252. Suvarna N, Borgland SL, Wang J, Phamluong K, Aberson YP, Bonci A, Ron D (2005) Ethanol alters trafficking and functional N-methyl-D-aspartate receptor NR2 subunit ration via H-ras. J Biol Chem 280:31450–31459PubMedPubMedCentralGoogle Scholar
  253. Suzdak PD, Schwartz RD, Skolnick P, Paul SM (1986) Ethanol stimulates γ-aminobutyric acid receptor-mediated chloride transport in rat brain synaptoneurosomes. Proc Natl Acad Sci 83:4071–4075PubMedPubMedCentralGoogle Scholar
  254. Szumlinski KK, Diab ME, Friedman R, Henze LM, Lominac KD, Bowers MS (2007) Accumbens neurochemical adaptations produced by binge-like alcohol consumption. Psychopharmacology (Berl) 190:415–431Google Scholar
  255. Taylor CP (1997) Mechanisms of action of gabapentin. Rev Neurol 153:S39–S45PubMedPubMedCentralGoogle Scholar
  256. Tepper JM, Bolam JP (2004) Functional diversity and specificity of neostriatal interneurons. Curr Opin Neurobiol 14:685–692PubMedGoogle Scholar
  257. Theile JW, Morikawa H, Gonzales RA, Morrisett RA (2008) Ethanol enhances GABAergic transmission onto dopamine neurons in the ventral tegmental area of the rat. Alcohol Clin Exp Res 32:1040–1048PubMedPubMedCentralGoogle Scholar
  258. Tiwari V, Veeraiah P, Subramaniam V, Patel AB (2014) Differential effects of ethanol on regional glutamatergic and GABAergic neurotransmission pathways in mice brain. J Neurochem 128:628–640PubMedPubMedCentralGoogle Scholar
  259. Tonner PH, Miller KW (1995) Molecular sites of general anaesthetic action on acetylcholine receptors. Eur J Anaesthesiol 12:21–30PubMedPubMedCentralGoogle Scholar
  260. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496PubMedPubMedCentralGoogle Scholar
  261. Tremwel MF, Hunter BE, Peris J (1994) Chronic ethanol exposure enhances [3H]GABA release and does not affect GABAA receptor mediated 36Cl uptake. Synapse 17:149–154PubMedPubMedCentralGoogle Scholar
  262. Trevisan L, Fitzgerald LW, Brose N, Gasic GP, Heinemann SF, Duman RS, Nestler EJ (1994) Chronic ingestion of ethanol upregulates NMDAR1 receptor subunit immunoreactivity in rat hippocampus. J Neurochem 62:1635–1638PubMedPubMedCentralGoogle Scholar
  263. Tsai G, Coyle JT (1998) The role of glutamatergic neurotransmission in the pathophysiology of alcoholism. Annu Rev Med 49:173–184PubMedGoogle Scholar
  264. Tsai G, Gastfriend DR, Coyle JT (1995) The glutamatergic basis of human alcoholism. Am J Psychiatry 152:332–340PubMedGoogle Scholar
  265. Tunstall MJ, Oorschot DE, Kean A, Wickens JR (2002) Inhibitory interactions between spiny projection neurons in the rat striatum. J Neurophysiol 88:1263–1269PubMedGoogle Scholar
  266. Vengeliene V, Cilbao A, Molander A, Spanagel R (2008) Neuropharmacology of alcohol addiction. Br J Pharmacol 154:299–315PubMedPubMedCentralGoogle Scholar
  267. Voris J, Smith NL, Rao SM, Thorne DL, Flowers QJ (2003) Gabapentin for the treatment of ethanol withdrawal. Subst Abus 24:129–132PubMedGoogle Scholar
  268. Walker MC, Semyanov A (2008) Regulation of excitability by extrasynaptic GABA(A) receptors. Results Probl Cell Differ 44:29–48PubMedGoogle Scholar
  269. Wallner M, Hanchar HJ, Olsen RW (2006) Low dose acute alcohol effects on GABAA receptor subtypes. Pharmacol Ther 112:513–528PubMedPubMedCentralGoogle Scholar
  270. Wang XJ (1999) Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J Neurosci 19:9587–9603PubMedPubMedCentralGoogle Scholar
  271. Wang J, Carnicella S, Phamluong K, Jeanblanc J, Ronesi JA, Chaudhru N, Janak PH, Lovinger DM, Ron D (2007) Ethanol induces long-term facilitation of NR2B-NMDA receptor activity in the dorsal striatum: implications for alcohol drinking behavior. J Neurosci 27:3593–3602PubMedPubMedCentralGoogle Scholar
  272. Wang J, Lanfranco MF, Gibb SL, Yowell QV, Carnicella S, Ron D (2010) Long-lasting adaptations of the NR2B-containing NMDA receptors in the dorsomedial striatum play a crucial role in alcohol consumption and relapse. J Neurosci 31:8163–8174Google Scholar
  273. Wang J, Ben Hamida S, Darcq E, Zhu W, Gibb SL, Lanfranco MF, Carnicella S, Ron D (2012) Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior. J Neurosci 32:15124–15132PubMedPubMedCentralGoogle Scholar
  274. Wang J, Cheng Y, Wang X, Roltsch Hellard E, Ma T, Gil H, Ben Hamida S, Ron D (2015) Alcohol elicits functional and structural plasticity selectively in dopamine D1 receptor-expressing neurons of the dorsomedial striatum. J Neurosci 35:11634–11463PubMedPubMedCentralGoogle Scholar
  275. Ward RJ, Colivicchi MA, Allen R, Schol F, Lallemand F, de Witte P, Ballini C, Corte LD, Dexter D (2009) Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 111:1119–1128PubMedGoogle Scholar
  276. Webster KE (1961) Corticostriate interrelations in the albino rat. J Anat 95:532–545PubMedPubMedCentralGoogle Scholar
  277. Weight FF, Peoples RW, Wright JM, Lovinger DM, White G (1993) Ethanol action on excitatory amino acid activated ion channels. Alcohol Alcohol Supp 2:353–358Google Scholar
  278. Weiner JL, Zhang L, Carlen PL (1994) Potentiation of GABAA-mediated synaptic current by ethanol in hippocampal CA1 neurons: possible role of protein kinase C. J Pharmacol Exp Ther 268:1388–1395PubMedGoogle Scholar
  279. Weiner JL, Valenzuela CF, Watson PL, Frazier CJ, Dunwiddie TV (1997) Elevation of basal protein kinase C activity increases ethanol sensitivity of GABAA receptors in rat hippocampus CA1 pyramidal neurons. J Neurochem 68:1949–1959PubMedGoogle Scholar
  280. Welsh BT, Goldstein BE, Mihic SJ (2009) Single-channel analysis of ethanol enhancement of glycine receptor function. J Pharmacol Exp Ther 330:198–205PubMedPubMedCentralGoogle Scholar
  281. Wenzel A, Fritschy JM, Mohler H, Benke D (1997) NMDA receptor heterogeneity during postnatal development of the rat brain: differential expression of the NR2A, NR2B, and NR2C subunit proteins. J Neurochem 68:469–478PubMedPubMedCentralGoogle Scholar
  282. White G, Lovinger DM, Weight FF (1990) Ethanol inhibits NMDA-activated current but does not alter GABA-activated current in an isolated adult mammalian neuron. Brain Res 507:332–336PubMedGoogle Scholar
  283. Wilcox MC, Cuzon Carlson VC, Sherazee N, Sprow GM, Bock R, Thiele TE, Lovinger DM, Alvarez VA (2014) Repeated binge-like ethanol drinking alters ethanol drinking patterns and depresses striatal GABAergic transmission. Neuropsychopharmacology 39:579–594PubMedPubMedCentralGoogle Scholar
  284. Wilson CJ, Chang HT, Kitai ST (1990) Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 10:508–519PubMedPubMedCentralGoogle Scholar
  285. Woodward JJ (1994) A comparison of the effects of ethanol and the competitive glycine antagonist 7-chlorokynurenic acid on N-methyl-D-aspartic acid-induced neurotransmitter release from hippocampa slices. J Neurochem 62:987–991PubMedGoogle Scholar
  286. Woodward JJ (2000) Ethanol and NMDA receptor signaling. Crit Rev Neurobiol 14:69–89PubMedPubMedCentralGoogle Scholar
  287. Wu PH, Poelchen W, Proctor WR (2005) Differential GABAB receptor modulation of ethanol effects on GABAA synaptic activity in hippocampal CA1 neurons. J Pharmacol Exp Ther 312:1082–1089PubMedGoogle Scholar
  288. Xia JX, Li K, Zhou R, Zhang XH, Ge YB, Ru Yuan X (2006) Alterations of rat corticostriatal synaptic plasticity after chronic ethanol exposure and withdrawal. Alcohol Clin Exp Res 30:819–824PubMedGoogle Scholar
  289. Yaka R, Phamluong K, Ron D (2003) Scaffolding of Fyn kinase to the NMDA receptor determines brain region sensitivity to ethanol. J Neurosci 23:3623–3632PubMedPubMedCentralGoogle Scholar
  290. Yamakura T, Mori H, Masaki H, Shimoji K, Mishina M (1993) Different sensitivities of NMDA receptor channel subtypes to non-competitive antagonists. Neuroreport 4:687–690PubMedGoogle Scholar
  291. Yamamoto Y, Nakanishi H, Takai N, Shimazoe T, Watanabe S, Kita H (1999) Expression of N-methyl-D-aspartate-dependent long-term potentiation in the neostriatal neurons in an in vitro slice after ethanol withdrawal of the rat. Neuroscience 91:59–68PubMedGoogle Scholar
  292. Yin HH, Knowlton BJ, Balleine BW (2005a) Blockade of NMDA receptors in the dorsomedial striatum prevents action-outcome learning in instrumental conditioning. Eur J Neurosci 22:505–512PubMedGoogle Scholar
  293. Yin HH, Ostlund SB, Knowlton BJ, Balleine BW (2005b) The role of the dorsomedial stratum in instrumental conditioning. Eur J Neurosci 22:513–523PubMedGoogle Scholar
  294. Yin HH, Knowlton BJ, Balleine BW (2006) Inactivation of dorsolateral striatum enhances sensitivity in action-outcome contingency in instrumental conditioning. Behav Brain Res 166:189–196PubMedGoogle Scholar
  295. Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J Neurosci 19:1976–1987PubMedGoogle Scholar
  296. Zahm DS, Brog JS (1992) On the significance of subterritories in the “accumbens” part of the rat ventral striatum. Neuroscience 50:751–767PubMedPubMedCentralGoogle Scholar
  297. Zahm DS, Heimer L (1990) Two transpallidal pathways originating in the rat nucleus accumbens. J Comp Neurol 302:437–446PubMedPubMedCentralGoogle Scholar
  298. Zhou Q, Verdoorn TA, Lovinger DM (1998) Alcohols potentiate the function of 5-HT3 receptor-channels on NCB-20 neuroblastoma cells by favoring and stabilizing the open channel state. J Physiol 507:335–352PubMedPubMedCentralGoogle Scholar
  299. Zhou L, Furuta T, Kaneko T (2003) Chemical organization of projection neurons in the rat accumbens nucleus and olfactory tubercle. Neuroscience 120:783–798PubMedPubMedCentralGoogle Scholar
  300. Zhu PJ, Lovinger DM (2006) Ethanol potentiates GABAergic synaptic transmission in a postsynaptic neuron/synaptic bouton preparation from basolateral amygdala. J Neurophysiol 96:433–441PubMedGoogle Scholar
  301. Ziskind-Conhaim L, Gao BX, Hinckley C (2003) Ethanol dual modulatory actions on spontaneous postsynaptic currents in spinal motoneurons. J Neurophysiol 89:806–813PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Oregon National Primate Research CenterBeavertonUSA

Personalised recommendations