Advertisement

Innate Immune Signaling and Alcohol Use Disorders

  • Leon G. ColemanJr.Email author
  • Fulton T. Crews
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 248)

Abstract

Innate immune signaling is an important feature in the pathology of alcohol use disorders. Alcohol abuse causes persistent innate immune activation in the brain. This is seen in postmortem human alcoholic brain specimens, as well as in primate and rodent models of alcohol consumption. Further, in vitro models of alcohol exposure in neurons and glia also demonstrate innate immune activation. The activation of the innate immune system seems to be important in the development of alcohol use pathology, as anti-immune therapies reduce pathology and ethanol self-administration in rodent models. Further, innate immune activation has been identified in each of the stages of addiction: binge/intoxication, withdrawal/negative affect, and preoccupation/craving. This suggests that innate immune activation may play a role both in the development and maintenance of alcoholic pathology. In this chapter, we discuss the known contributions of innate immune signaling in the pathology of alcohol use disorders, and present potential therapeutic interventions that may be beneficial for alcohol use disorders.

Keywords

Addiction Alcohol Neuroimmune Treatment 

Notes

Acknowledgments

We thank the National Institute on Alcohol Abuse and Alcoholism for its support through the Neurobiology of Adolescent Drinking in Adulthood (NADIA) consortium (AA020024, AA020023), the Bowles Center for Alcohol Studies (AA011605), the U54 collaborative partnership between NCCU and UNC (AA019767), the K08 award program (AA024829), and the Monkey Alcohol and Tissue Research Resource (MATRR-R24 AA019431).

References

  1. Agrawal RG et al (2011) Minocycline reduces ethanol drinking. Brain Behav Immun 25(Suppl 1):S165–S169PubMedPubMedCentralGoogle Scholar
  2. Alfonso-Loeches S et al (2010) Pivotal role of TLR4 receptors in alcohol-induced neuroinflammation and brain damage. J Neurosci 30(24):8285–8295PubMedGoogle Scholar
  3. Aloe L et al (1999) Learning abilities, NGF and BDNF brain levels in two lines of TNF-alpha transgenic mice, one characterized by neurological disorders, the other phenotypically normal. Brain Res 840(1–2):125–137PubMedGoogle Scholar
  4. Arezoomandan R, Haghparast A (2016) Administration of the glial cell modulator, minocycline, in the nucleus accumbens attenuated the maintenance and reinstatement of morphine-seeking behavior. Can J Physiol Pharmacol 94(3):257–264PubMedGoogle Scholar
  5. Attarzadeh-Yazdi G, Arezoomandan R, Haghparast A (2014) Minocycline, an antibiotic with inhibitory effect on microglial activation, attenuates the maintenance and reinstatement of methamphetamine-seeking behavior in rat. Prog Neuro-Psychopharmacol Biol Psychiatry 53:142–148Google Scholar
  6. Bachtell R et al (2015) Targeting the toll of drug abuse: the translational potential of toll-like receptor 4. CNS Neurol Disord Drug Targets 14(6):692–699PubMedPubMedCentralGoogle Scholar
  7. Badanich KA, Becker HC, Woodward JJ (2011) Effects of chronic intermittent ethanol exposure on orbitofrontal and medial prefrontal cortex-dependent behaviors in mice. Behav Neurosci 125(6):879–891PubMedPubMedCentralGoogle Scholar
  8. Bai L et al (2014) Toll-like receptor 4-mediated nuclear factor-kappaB activation in spinal cord contributes to chronic morphine-induced analgesic tolerance and hyperalgesia in rats. Neurosci Bull 30(6):936–948PubMedPubMedCentralGoogle Scholar
  9. Bajo M et al (2015a) Role of the IL-1 receptor antagonist in ethanol-induced regulation of GABAergic transmission in the central amygdala. Brain Behav Immun 45:189–197PubMedGoogle Scholar
  10. Bajo M et al (2015b) IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Front Pharmacol 6:49PubMedPubMedCentralGoogle Scholar
  11. Ballester J, Valentine G, Sofuoglu M (2017) Pharmacological treatments for methamphetamine addiction: current status and future directions. Expert Rev Clin Pharmacol 10(3):305–314PubMedGoogle Scholar
  12. Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179(1–2):53–56PubMedGoogle Scholar
  13. Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2(4):241–248PubMedGoogle Scholar
  14. Barbierato M et al (2013) Astrocyte-microglia cooperation in the expression of a pro-inflammatory phenotype. CNS Neurol Disord Drug Targets 12(5):608–618PubMedGoogle Scholar
  15. Beattie EC et al (2002) Control of synaptic strength by glial TNFalpha. Science 295(5563):2282–2285PubMedGoogle Scholar
  16. Bell RL et al (2015) Ibudilast reduces alcohol drinking in multiple animal models of alcohol dependence. Addict Biol 20(1):38–42PubMedGoogle Scholar
  17. Beynon SB, Walker FR (2012) Microglial activation in the injured and healthy brain: what are we really talking about? Practical and theoretical issues associated with the measurement of changes in microglial morphology. Neuroscience 225:162–171PubMedGoogle Scholar
  18. Bhattacharya A, Drevets WC (2017) Role of neuro-immunological factors in the pathophysiology of mood disorders: implications for novel therapeutics for treatment resistant depression. Curr Top Behav Neurosci 31:339–356PubMedGoogle Scholar
  19. Bhattacharya A et al (2016) Role of neuro-immunological factors in the pathophysiology of mood disorders. Psychopharmacology 233(9):1623–1636PubMedGoogle Scholar
  20. Bi W et al (2011) Rifampicin inhibits microglial inflammation and improves neuron survival against inflammation. Brain Res 1395:12–20PubMedGoogle Scholar
  21. Bian C et al (2015) Involvement of CX3CL1/CX3CR1 signaling in spinal long term potentiation. PLoS One 10(3):e0118842PubMedPubMedCentralGoogle Scholar
  22. Bierhaus A et al (2003) A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 100(4):1920–1925PubMedPubMedCentralGoogle Scholar
  23. Blanc L et al (2013) Gram-positive bacterial lipoglycans based on a glycosylated diacylglycerol lipid anchor are microbe-associated molecular patterns recognized by TLR2. PLoS One 8(11):e81593PubMedPubMedCentralGoogle Scholar
  24. Blanco AM et al (2005) Involvement of TLR4/type I IL-1 receptor signaling in the induction of inflammatory mediators and cell death induced by ethanol in cultured astrocytes. J Immunol 175(10):6893–6899PubMedGoogle Scholar
  25. Blednov YA et al (2005) Perturbation of chemokine networks by gene deletion alters the reinforcing actions of ethanol. Behav Brain Res 165(1):110–125PubMedPubMedCentralGoogle Scholar
  26. Blednov YA et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain Behav Immun 25(Suppl 1):S92–S105PubMedPubMedCentralGoogle Scholar
  27. Blednov YA et al (2012) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 17(1):108–120PubMedGoogle Scholar
  28. Blednov YA et al (2014) Inhibition of phosphodiesterase 4 reduces ethanol intake and preference in C57BL/6J mice. Front Neurosci 8:129PubMedPubMedCentralGoogle Scholar
  29. Borner C, Hollt V, Kraus J (2012) Mechanisms of the inhibition of nuclear factor-kappaB by morphine in neuronal cells. Mol Pharmacol 81(4):587–597PubMedGoogle Scholar
  30. Bose S, Cho J (2013) Role of chemokine CCL2 and its receptor CCR2 in neurodegenerative diseases. Arch Pharm Res 36(9):1039–1050PubMedGoogle Scholar
  31. Breese GR, Overstreet DH, Knapp DJ (2005) Conceptual framework for the etiology of alcoholism: a “kindling”/stress hypothesis. Psychopharmacology 178(4):367–380PubMedGoogle Scholar
  32. Breese GR et al (2008) Repeated lipopolysaccharide (LPS) or cytokine treatments sensitize ethanol withdrawal-induced anxiety-like behavior. Neuropsychopharmacology 33(4):867–876PubMedGoogle Scholar
  33. Brombacher TM et al (2017) IL-13-mediated regulation of learning and memory. J Immunol 198(7):2681–2688PubMedGoogle Scholar
  34. Brubaker SW et al (2015) Innate immune pattern recognition: a cell biological perspective. Annu Rev Immunol 33:257–290PubMedPubMedCentralGoogle Scholar
  35. Bsibsi M et al (2010) The microtubule regulator stathmin is an endogenous protein agonist for TLR3. J Immunol 184(12):6929–6937PubMedGoogle Scholar
  36. Buwitt-Beckmann U et al (2006) TLR1- and TLR6-independent recognition of bacterial lipopeptides. J Biol Chem 281(14):9049–9057PubMedGoogle Scholar
  37. Calu DJ et al (2007) Associative encoding in posterior piriform cortex during odor discrimination and reversal learning. Cereb Cortex 17(6):1342–1349PubMedGoogle Scholar
  38. Cameron JS et al (2007) Toll-like receptor 3 is a potent negative regulator of axonal growth in mammals. J Neurosci 27(47):13033–13041PubMedPubMedCentralGoogle Scholar
  39. Caraci F et al (2015) A key role for TGF-beta1 in hippocampal synaptic plasticity and memory. Sci Rep 5:11252PubMedPubMedCentralGoogle Scholar
  40. Chen G et al (2012) Autophagy is a protective response to ethanol neurotoxicity. Autophagy 8(11):1577–1589PubMedPubMedCentralGoogle Scholar
  41. Coleman LG Jr et al (2011) Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol Clin Exp Res 35(4):671–688PubMedPubMedCentralGoogle Scholar
  42. Coleman LG Jr, Zou J, Crews FT (2017) Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 14(1):22PubMedPubMedCentralGoogle Scholar
  43. Cozzoli DK et al (2016) Functional regulation of PI3K-associated signaling in the accumbens by binge alcohol drinking in male but not female mice. Neuropharmacology 105:164–174PubMedPubMedCentralGoogle Scholar
  44. Crews FT, Boettiger CA (2009) Impulsivity, frontal lobes and risk for addiction. Pharmacol Biochem Behav 93(3):237–247PubMedPubMedCentralGoogle Scholar
  45. Crews FT, Vetreno RP (2014) Neuroimmune basis of alcoholic brain damage. Int Rev Neurobiol 118:315–357PubMedPubMedCentralGoogle Scholar
  46. Crews FT, Vetreno RP (2016) Mechanisms of neuroimmune gene induction in alcoholism. Psychopharmacology 233(9):1543–1557PubMedGoogle Scholar
  47. Crews F et al (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30(11):1938–1949PubMedGoogle Scholar
  48. Crews FT, Zou J, Qin L (2011) Induction of innate immune genes in brain create the neurobiology of addiction. Brain Behav Immun 25(Suppl 1):S4–S12PubMedPubMedCentralGoogle Scholar
  49. Crews FT et al (2013) High mobility group box 1/toll-like receptor danger signaling increases brain neuroimmune activation in alcohol dependence. Biol Psychiatry 73(7):602–612PubMedGoogle Scholar
  50. Crews FT et al (2015) Neuroimmune function and the consequences of alcohol exposure. Alcohol Res 37(2):331–351PubMedPubMedCentralGoogle Scholar
  51. Crews FT et al (2016) Adolescent alcohol exposure persistently impacts adult neurobiology and behavior. Pharmacol Rev 68(4):1074–1109PubMedPubMedCentralGoogle Scholar
  52. Crews FT et al (2017) The role of neuroimmune signaling in alcoholism. Neuropharmacology 122:56–73PubMedPubMedCentralGoogle Scholar
  53. Cui C, Shurtleff D, Harris RA (2014) Neuroimmune mechanisms of alcohol and drug addiction. Int Rev Neurobiol 118:1–12PubMedPubMedCentralGoogle Scholar
  54. Cui C et al (2015) Brain pathways to recovery from alcohol dependence. Alcohol 49(5):435–452PubMedPubMedCentralGoogle Scholar
  55. Dantzer R et al (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56PubMedPubMedCentralGoogle Scholar
  56. Davis RL, Syapin PJ (2004) Ethanol increases nuclear factor-kappa B activity in human astroglial cells. Neurosci Lett 371(2–3):128–132PubMedGoogle Scholar
  57. Dawson DA et al (2008) Age at first drink and the first incidence of adult-onset DSM-IV alcohol use disorders. Alcohol Clin Exp Res 32(12):2149–2160PubMedPubMedCentralGoogle Scholar
  58. Derecki NC et al (2010) Regulation of learning and memory by meningeal immunity: a key role for IL-4. J Exp Med 207(5):1067–1080PubMedPubMedCentralGoogle Scholar
  59. Di Castro MA et al (2016) The chemokine CXCL16 modulates neurotransmitter release in hippocampal CA1 area. Sci Rep 6:34633PubMedPubMedCentralGoogle Scholar
  60. Drew PD et al (2015) Pioglitazone blocks ethanol induction of microglial activation and immune responses in the hippocampus, cerebellum, and cerebral cortex in a mouse model of fetal alcohol spectrum disorders. Alcohol Clin Exp Res 39(3):445–454PubMedPubMedCentralGoogle Scholar
  61. Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28(3):138–145PubMedGoogle Scholar
  62. Fernandez-Lizarbe S, Pascual M, Guerri C (2009) Critical role of TLR4 response in the activation of microglia induced by ethanol. J Immunol 183(7):4733–4744PubMedGoogle Scholar
  63. Fernandez-Lizarbe S, Montesinos J, Guerri C (2013) Ethanol induces TLR4/TLR2 association, triggering an inflammatory response in microglial cells. J Neurochem 126(2):261–273PubMedGoogle Scholar
  64. Fortier CB et al (2008) Delay discrimination and reversal eyeblink classical conditioning in abstinent chronic alcoholics. Neuropsychology 22(2):196–208PubMedPubMedCentralGoogle Scholar
  65. Frank MG et al (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59PubMedGoogle Scholar
  66. Frank MG et al (2016) The danger-associated molecular pattern HMGB1 mediates the neuroinflammatory effects of methamphetamine. Brain Behav Immun 51:99–108PubMedGoogle Scholar
  67. Franke H (1995) Influence of chronic alcohol treatment on the GFAP-immunoreactivity in astrocytes of the hippocampus in rats. Acta Histochem 97(3):263–271PubMedGoogle Scholar
  68. Freeman K et al (2012) Temporal changes in innate immune signals in a rat model of alcohol withdrawal in emotional and cardiorespiratory homeostatic nuclei. J Neuroinflammation 9:97PubMedPubMedCentralGoogle Scholar
  69. George FR (1989) The role of arachidonic acid metabolites in mediating ethanol self-administration and intoxication. Ann N Y Acad Sci 559:382–391PubMedGoogle Scholar
  70. Ginhoux F et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330(6005):841–845PubMedPubMedCentralGoogle Scholar
  71. Ginhoux F et al (2013) Origin and differentiation of microglia. Front Cell Neurosci 7:45PubMedPubMedCentralGoogle Scholar
  72. Gorina R et al (2011) Astrocyte TLR4 activation induces a proinflammatory environment through the interplay between MyD88-dependent NFkappaB signaling, MAPK, and Jak1/Stat1 pathways. Glia 59(2):242–255PubMedGoogle Scholar
  73. Goshen I et al (2007) A dual role for interleukin-1 in hippocampal-dependent memory processes. Psychoneuroendocrinology 32(8–10):1106–1115PubMedGoogle Scholar
  74. Grant BF, Dawson DA (1998) Age of onset of drug use and its association with DSM-IV drug abuse and dependence: results from the National Longitudinal Alcohol Epidemiologic Survey. J Subst Abus 10(2):163–173Google Scholar
  75. Guo ML et al (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11(7):995–1009PubMedPubMedCentralGoogle Scholar
  76. Hanke ML, Kielian T (2011) Toll-like receptors in health and disease in the brain: mechanisms and therapeutic potential. Clin Sci 121(9):367–387PubMedPubMedCentralGoogle Scholar
  77. Hashioka S et al (2015) Interferon-gamma-induced neurotoxicity of human astrocytes. CNS Neurol Disord Drug Targets 14(2):251–256PubMedGoogle Scholar
  78. He J, Crews FT (2008) Increased MCP-1 and microglia in various regions of the human alcoholic brain. Exp Neurol 210(2):349–358PubMedGoogle Scholar
  79. Heberlein A et al (2014) TNF-alpha and IL-6 serum levels: neurobiological markers of alcohol consumption in alcohol-dependent patients? Alcohol 48(7):671–676PubMedGoogle Scholar
  80. Hoeffel G et al (2015) C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity 42(4):665–678PubMedPubMedCentralGoogle Scholar
  81. Hu W et al (2011) Inhibition of phosphodiesterase-4 decreases ethanol intake in mice. Psychopharmacology 218(2):331–339PubMedPubMedCentralGoogle Scholar
  82. Hutchinson MR et al (2010) Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain Behav Immun 24(1):83–95PubMedGoogle Scholar
  83. Irwin MR et al (2009) Tumor necrosis factor antagonism normalizes rapid eye movement sleep in alcohol dependence. Biol Psychiatry 66(2):191–195PubMedPubMedCentralGoogle Scholar
  84. Izquierdo A et al (2016) The neural basis of reversal learning: an updated perspective. Neuroscience.  https://doi.org/10.1016/j.neuroscience.2016.03.021. [Epub ahead of print]
  85. Jackson AC, Rossiter JP, Lafon M (2006) Expression of toll-like receptor 3 in the human cerebellar cortex in rabies, herpes simplex encephalitis, and other neurological diseases. J Neurovirol 12(3):229–234PubMedGoogle Scholar
  86. Jacobsen JH, Hutchinson MR, Mustafa S (2016) Drug addiction: targeting dynamic neuroimmune receptor interactions as a potential therapeutic strategy. Curr Opin Pharmacol 26:131–137PubMedGoogle Scholar
  87. Jacobsen JHW et al (2018) The efficacy of (+)-naltrexone on alcohol preference and seeking behaviour is dependent on light-cycle. Brain Behav Immun 67:181–193PubMedGoogle Scholar
  88. Jang E et al (2013) Phenotypic polarization of activated astrocytes: the critical role of lipocalin-2 in the classical inflammatory activation of astrocytes. J Immunol 191(10):5204–5219PubMedGoogle Scholar
  89. Janko C et al (2014) Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 20(7):1075–1085PubMedPubMedCentralGoogle Scholar
  90. Jensen CJ, Massie A, De Keyser J (2013) Immune players in the CNS: the astrocyte. J Neuroimmune Pharmacol 8(4):824–839PubMedGoogle Scholar
  91. Jimenez JL et al (2001) Phosphodiesterase 4 inhibitors prevent cytokine secretion by T lymphocytes by inhibiting nuclear factor-kappaB and nuclear factor of activated T cells activation. J Pharmacol Exp Ther 299(2):753–759PubMedGoogle Scholar
  92. Jokisch D et al (2014) Impairments in learning by monetary rewards and alcohol-associated rewards in detoxified alcoholic patients. Alcohol Clin Exp Res 38(7):1947–1954PubMedGoogle Scholar
  93. June HL et al (2015) CRF-amplified neuronal TLR4/MCP-1 signaling regulates alcohol self-administration. Neuropsychopharmacology 40(6):1549–1559PubMedPubMedCentralGoogle Scholar
  94. Kaltschmidt B, Kaltschmidt C (2015) NF-KappaB in long-term memory and structural plasticity in the adult mammalian brain. Front Mol Neurosci 8:69PubMedPubMedCentralGoogle Scholar
  95. Kane CJ et al (2011) Protection of neurons and microglia against ethanol in a mouse model of fetal alcohol spectrum disorders by peroxisome proliferator-activated receptor-gamma agonists. Brain Behav Immun 25(Suppl 1):S137–S145PubMedPubMedCentralGoogle Scholar
  96. Kettenmann H et al (2011) Physiology of microglia. Physiol Rev 91(2):461–553PubMedGoogle Scholar
  97. Kettenmann H, Kirchhoff F, Verkhratsky A (2013) Microglia: new roles for the synaptic stripper. Neuron 77(1):10–18PubMedGoogle Scholar
  98. Khairova RA et al (2009) A potential role for pro-inflammatory cytokines in regulating synaptic plasticity in major depressive disorder. Int J Neuropsychopharmacol 12(4):561–578PubMedPubMedCentralGoogle Scholar
  99. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952PubMedPubMedCentralGoogle Scholar
  100. Kim C et al (2013) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562PubMedPubMedCentralGoogle Scholar
  101. Knapp DJ, Crews FT (1999) Induction of cyclooxygenase-2 in brain during acute and chronic ethanol treatment and ethanol withdrawal. Alcohol Clin Exp Res 23(4):633–643PubMedGoogle Scholar
  102. Koob GF, Le Moal M (2005) Plasticity of reward neurocircuitry and the ‘dark side’ of drug addiction. Nat Neurosci 8(11):1442–1444PubMedGoogle Scholar
  103. Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238PubMedGoogle Scholar
  104. Koob GF, Volkow ND (2016) Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3(8):760–773PubMedPubMedCentralGoogle Scholar
  105. Kreisel T et al (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19(6):699–709PubMedGoogle Scholar
  106. Lawrimore C, Crews F (2017) Ethanol, TLR3, and TLR4 agonists have unique innate immune responses in neuron-like SH-SY5Y and microglia-like BV2. Alcohol Clin Exp Res 41:939–954PubMedPubMedCentralGoogle Scholar
  107. Leclercq S et al (2014) Role of inflammatory pathways, blood mononuclear cells, and gut-derived bacterial products in alcohol dependence. Biol Psychiatry 76(9):725–733PubMedGoogle Scholar
  108. Lee M, McGeer E, McGeer PL (2013) Neurotoxins released from interferon-gamma-stimulated human astrocytes. Neuroscience 229:164–175PubMedGoogle Scholar
  109. Lehmann SM et al (2012a) An unconventional role for miRNA: let-7 activates toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835PubMedGoogle Scholar
  110. Lehmann SM et al (2012b) Extracellularly delivered single-stranded viral RNA causes neurodegeneration dependent on TLR7. J Immunol 189(3):1448–1458PubMedGoogle Scholar
  111. Lewohl JM et al (2011) Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res 35(11):1928–1937PubMedPubMedCentralGoogle Scholar
  112. Liang Y et al (2014) Toll-like receptor 4 is associated with seizures following ischemia with hyperglycemia. Brain Res 1590:75–84PubMedGoogle Scholar
  113. Liddelow SA et al (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541(7638):481–487PubMedPubMedCentralGoogle Scholar
  114. Lim SW et al (2017) Simvastatin therapy in the acute stage of traumatic brain injury attenuates brain trauma-induced depression-like behavior in rats by reducing Neuroinflammation in the hippocampus. Neurocrit Care 26:122–132.  https://doi.org/10.1007/s12028-016-0290-6 CrossRefPubMedGoogle Scholar
  115. Lippai D et al (2013) Alcohol-induced IL-1beta in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leukoc Biol 94(1):171–182PubMedPubMedCentralGoogle Scholar
  116. Liu J et al (2011) Binge alcohol drinking is associated with GABAA alpha2-regulated toll-like receptor 4 (TLR4) expression in the central amygdala. Proc Natl Acad Sci U S A 108(11):4465–4470PubMedPubMedCentralGoogle Scholar
  117. Loftis JM, Janowsky A (2014) Neuroimmune basis of methamphetamine toxicity. Int Rev Neurobiol 118:165–197PubMedPubMedCentralGoogle Scholar
  118. Ma Y et al (2006) Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol 175(2):209–215PubMedPubMedCentralGoogle Scholar
  119. Madrigal JL et al (2002) Stress-induced increase in extracellular sucrose space in rats is mediated by nitric oxide. Brain Res 938(1–2):87–91PubMedGoogle Scholar
  120. Mao XR et al (2009) Unique aspects of transcriptional regulation in neurons--nuances in NFkappaB and Sp1-related factors. J Neuroinflammation 6:16PubMedPubMedCentralGoogle Scholar
  121. Marciniak E et al (2015) The chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 5:15862PubMedPubMedCentralGoogle Scholar
  122. Maroso M et al (2011) Interleukin-1 type 1 receptor/toll-like receptor signalling in epilepsy: the importance of IL-1beta and high-mobility group box 1. J Intern Med 270(4):319–326PubMedGoogle Scholar
  123. Marshall SA et al (2016a) IL-1 receptor signaling in the basolateral amygdala modulates binge-like ethanol consumption in male C57BL/6J mice. Brain Behav Immun 51:258–267PubMedGoogle Scholar
  124. Marshall SA, Geil CR, Nixon K (2016b) Prior binge ethanol exposure potentiates the microglial response in a model of alcohol-induced neurodegeneration. Brain Sci 6(2).  https://doi.org/10.3390/brainsci6020016
  125. Marshall SA, McKnight KH, Blose AK, Lysle DT, Thiele TE (2017) Modulation of binge-like ethanol consumption by IL-10 signaling in the basolateral amygdala. J Neuroimmune Pharmacol 12:249–259.  https://doi.org/10.1007/s11481-016-9709-2 CrossRefPubMedGoogle Scholar
  126. Mayfield J, Ferguson L, Harris RA (2013) Neuroimmune signaling: a key component of alcohol abuse. Curr Opin Neurobiol 23(4):513–520PubMedPubMedCentralGoogle Scholar
  127. McCarthy GM et al (2017) Chronic ethanol consumption: role of TLR3/TRIF-dependent signaling. Addict Biol epub ahead of printGoogle Scholar
  128. Montesinos J et al (2015) TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun 45:233–244.  https://doi.org/10.1016/j.bbi.2014.11.015 CrossRefPubMedGoogle Scholar
  129. Montesinos J, Alfonso-Loeches S, Guerri C (2016) Impact of the innate immune response in the actions of ethanol on the central nervous system. Alcohol Clin Exp Res 40(11):2260–2270PubMedGoogle Scholar
  130. Montesinos J, Gil A, Guerri C (2017) Nalmefene prevents alcohol-induced neuroinflammation and alcohol drinking preference in adolescent female mice: role of TLR4. Alcohol Clin Exp Res (41)7:1257–1270Google Scholar
  131. Most D, Ferguson L, Harris RA (2014) Molecular basis of alcoholism. Handb Clin Neurol 125:89–111PubMedPubMedCentralGoogle Scholar
  132. Muller S, Ronfani L, Bianchi ME (2004) Regulated expression and subcellular localization of HMGB1, a chromatin protein with a cytokine function. J Intern Med 255(3):332–343PubMedGoogle Scholar
  133. Mulligan MK et al (2006) Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proc Natl Acad Sci U S A 103(16):6368–6373PubMedPubMedCentralGoogle Scholar
  134. Narayanan KB, Park HH (2015) Toll/interleukin-1 receptor (TIR) domain-mediated cellular signaling pathways. Apoptosis 20(2):196–209PubMedGoogle Scholar
  135. Neupane SP (2016) Neuroimmune interface in the comorbidity between alcohol use disorder and major depression. Front Immunol 7:655PubMedPubMedCentralGoogle Scholar
  136. Northcutt AL et al (2015) DAT isn’t all that: cocaine reward and reinforcement require toll-like receptor 4 signaling. Mol Psychiatry 20(12):1525–1537PubMedPubMedCentralGoogle Scholar
  137. Nunez YO et al (2013) Positively correlated miRNA-mRNA regulatory networks in mouse frontal cortex during early stages of alcohol dependence. BMC Genomics 14:725PubMedPubMedCentralGoogle Scholar
  138. Obernier JA et al (2002) Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 72(3):521–532PubMedGoogle Scholar
  139. Okuma Y et al (2014) Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1-RAGE interaction. Neuropharmacology 85:18–26PubMedGoogle Scholar
  140. Okun E et al (2010) Toll-like receptor 3 inhibits memory retention and constrains adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 107(35):15625–15630PubMedPubMedCentralGoogle Scholar
  141. Okvist A et al (2007) Neuroadaptations in human chronic alcoholics: dysregulation of the NF-kappaB system. PLoS One 2(9):e930PubMedPubMedCentralGoogle Scholar
  142. Park JS et al (2004) Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 279(9):7370–7377PubMedGoogle Scholar
  143. Park CK et al (2014) Extracellular microRNAs activate nociceptor neurons to elicit pain via TLR7 and TRPA1. Neuron 82(1):47–54PubMedPubMedCentralGoogle Scholar
  144. Pascual M et al (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25(2):541–550PubMedGoogle Scholar
  145. Pascual M et al (2011) Impact of TLR4 on behavioral and cognitive dysfunctions associated with alcohol-induced neuroinflammatory damage. Brain Behav Immun 25(Suppl 1):S80–S91PubMedGoogle Scholar
  146. Pekny M, Pekna M (2014) Astrocyte reactivity and reactive astrogliosis: costs and benefits. Physiol Rev 94(4):1077–1098PubMedGoogle Scholar
  147. Periyasamy P, Guo ML, Buch S (2016) Cocaine induces astrocytosis through ER stress-mediated activation of autophagy. Autophagy 12(8):1310–1329PubMedPubMedCentralGoogle Scholar
  148. Periyasamy P et al (2017) Cocaine-mediated downregulation of miR-124 activates microglia by targeting KLF4 and TLR4 signaling. Mol Neurobiol Epub ahead of printGoogle Scholar
  149. Pla A, Pascual M, Guerri C (2016) Autophagy constitutes a protective mechanism against ethanol toxicity in mouse astrocytes and neurons. PLoS One 11(4):e0153097PubMedPubMedCentralGoogle Scholar
  150. Plane JM et al (2010) Prospects for minocycline neuroprotection. Arch Neurol 67(12):1442–1448PubMedPubMedCentralGoogle Scholar
  151. Prieto GA, Cotman CW (2017) Cytokines and cytokine networks target neurons to modulate long-term potentiation. Cytokine Growth Factor Rev 34:27–33PubMedPubMedCentralGoogle Scholar
  152. Prieto GA et al (2015) Synapse-specific IL-1 receptor subunit reconfiguration augments vulnerability to IL-1beta in the aged hippocampus. Proc Natl Acad Sci U S A 112(36):E5078–E5087PubMedPubMedCentralGoogle Scholar
  153. Qin L, Crews FT (2012a) NADPH oxidase and reactive oxygen species contribute to alcohol-induced microglial activation and neurodegeneration. J Neuroinflammation 9:5PubMedPubMedCentralGoogle Scholar
  154. Qin L, Crews FT (2012b) Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflammation 9:130PubMedPubMedCentralGoogle Scholar
  155. Qin L et al (2007) Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 55(5):453–462PubMedPubMedCentralGoogle Scholar
  156. Qin L et al (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10PubMedPubMedCentralGoogle Scholar
  157. Ray LA et al (2014) Opportunities for the development of neuroimmune therapies in addiction. Int Rev Neurobiol 118:381–401PubMedGoogle Scholar
  158. Reissner KJ, Kalivas PW (2010) Using glutamate homeostasis as a target for treating addictive disorders. Behav Pharmacol 21(5–6):514–522PubMedPubMedCentralGoogle Scholar
  159. Ripley TL et al (2015) The novel mu-opioid antagonist, GSK1521498, reduces ethanol consumption in C57BL/6J mice. Psychopharmacology 232(18):3431–3441PubMedPubMedCentralGoogle Scholar
  160. Rostene W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: a new class of neuromodulator? Nat Rev Neurosci 8(11):895–903PubMedGoogle Scholar
  161. Rubio-Araiz A et al (2017) Disruption of blood-brain barrier integrity in postmortem alcoholic brain: preclinical evidence of TLR4 involvement from a binge-like drinking model. Addict Biol 22:1103–1116.  https://doi.org/10.1111/adb.12376 CrossRefPubMedGoogle Scholar
  162. Salter MW, Stevens B (2017) Microglia emerge as central players in brain disease. Nat Med 23(9):1018–1027PubMedGoogle Scholar
  163. Schoenbaum G et al (2004) Cocaine-experienced rats exhibit learning deficits in a task sensitive to orbitofrontal cortex lesions. Eur J Neurosci 19(7):1997–2002PubMedGoogle Scholar
  164. Serramia MJ, Munoz-Fernandez MA, Alvarez S (2015) HIV-1 increases TLR responses in human primary astrocytes. Sci Rep 5:17887PubMedPubMedCentralGoogle Scholar
  165. Sheng J, Ruedl C, Karjalainen K (2015) Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity 43(2):382–393PubMedGoogle Scholar
  166. Sironi L et al (2006) Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis 22(2):445–451PubMedGoogle Scholar
  167. Stalnaker TA et al (2009) Neural substrates of cognitive inflexibility after chronic cocaine exposure. Neuropharmacology 56(Suppl 1):63–72PubMedGoogle Scholar
  168. Storer PD et al (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161(1–2):113–122PubMedGoogle Scholar
  169. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40(2):133–139PubMedGoogle Scholar
  170. Sugimura T, Yoshimura Y, Komatsu Y (2015) TNFalpha is required for the production of T-type Ca(2+) channel-dependent long-term potentiation in visual cortex. Neurosci Res 96:37–44PubMedGoogle Scholar
  171. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820PubMedGoogle Scholar
  172. Tancredi V et al (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146(2):176–178PubMedGoogle Scholar
  173. Theberge FR et al (2013) Effect of chronic delivery of the toll-like receptor 4 antagonist (+)-naltrexone on incubation of heroin craving. Biol Psychiatry 73(8):729–737PubMedPubMedCentralGoogle Scholar
  174. Townshend JM, Duka T (2003) Mixed emotions: alcoholics’ impairments in the recognition of specific emotional facial expressions. Neuropsychologia 41(7):773–782PubMedGoogle Scholar
  175. Tynan RJ et al (2010) Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 24(7):1058–1068PubMedGoogle Scholar
  176. Vabulas RM et al (2002) The endoplasmic reticulum-resident heat shock protein Gp96 activates dendritic cells via the toll-like receptor 2/4 pathway. J Biol Chem 277(23):20847–20853PubMedGoogle Scholar
  177. Valenta JP, Gonzales RA (2016) Chronic intracerebroventricular infusion of monocyte chemoattractant protein-1 leads to a persistent increase in sweetened ethanol consumption during operant self-administration but does not influence sucrose consumption in long-Evans rats. Alcohol Clin Exp Res 40(1):187–195PubMedGoogle Scholar
  178. Valles SL et al (2004) Chronic ethanol treatment enhances inflammatory mediators and cell death in the brain and in astrocytes. Brain Pathol 14(4):365–371PubMedGoogle Scholar
  179. Vetreno RP, Crews FT (2012) Adolescent binge drinking increases expression of the danger signal receptor agonist HMGB1 and toll-like receptors in the adult prefrontal cortex. Neuroscience 226:475–488PubMedPubMedCentralGoogle Scholar
  180. Vetreno RP, Crews FT (2014) Current hypotheses on the mechanisms of alcoholism. Handb Clin Neurol 125:477–497PubMedPubMedCentralGoogle Scholar
  181. Vetreno RP, Qin L, Crews FT (2013) Increased receptor for advanced glycation end product expression in the human alcoholic prefrontal cortex is linked to adolescent drinking. Neurobiol Dis 59:52–62PubMedPubMedCentralGoogle Scholar
  182. Volkow ND, Koob GF, McLellan AT (2016) Neurobiologic advances from the brain disease model of addiction. N Engl J Med 374(4):363–371PubMedPubMedCentralGoogle Scholar
  183. Wagley Y et al (2013) Inhibition of c-Jun NH2-terminal kinase stimulates mu opioid receptor expression via p38 MAPK-mediated nuclear NF-kappaB activation in neuronal and non-neuronal cells. Biochim Biophys Acta 1833(6):1476–1488PubMedPubMedCentralGoogle Scholar
  184. Walter TJ, Crews FT (2017) Microglial depletion alters the brain neuroimmune response to acute binge ethanol withdrawal. J Neuroinflammation 14(1):86PubMedPubMedCentralGoogle Scholar
  185. Wang X et al (2013) Rifampin inhibits toll-like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB J 27(7):2713–2722PubMedPubMedCentralGoogle Scholar
  186. Wang X et al (2016) Pharmacological characterization of the opioid inactive isomers (+)-naltrexone and (+)-naloxone as antagonists of toll-like receptor 4. Br J Pharmacol 173(5):856–869PubMedPubMedCentralGoogle Scholar
  187. Ward RJ et al (1996) Identification of the nuclear transcription factor NFkappaB in rat after in vivo ethanol administration. FEBS Lett 389(2):119–122PubMedGoogle Scholar
  188. Ward RJ et al (2009) Neuro-inflammation induced in the hippocampus of ‘binge drinking’ rats may be mediated by elevated extracellular glutamate content. J Neurochem 111(5):1119–1128PubMedGoogle Scholar
  189. Weber MD et al (2015) Stress induces the danger-associated molecular pattern HMGB-1 in the hippocampus of male Sprague Dawley rats: a priming stimulus of microglia and the NLRP3 inflammasome. J Neurosci 35(1):316–324PubMedPubMedCentralGoogle Scholar
  190. Weissenborn R, Duka T (2003) Acute alcohol effects on cognitive function in social drinkers: their relationship to drinking habits. Psychopharmacology 165(3):306–312PubMedGoogle Scholar
  191. Whitman BA et al (2013) The cytokine mRNA increase induced by withdrawal from chronic ethanol in the sterile environment of brain is mediated by CRF and HMGB1 release. Alcohol Clin Exp Res 37(12):2086–2097PubMedGoogle Scholar
  192. Wohleb ES et al (2011) Beta-adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31(17):6277–6288PubMedPubMedCentralGoogle Scholar
  193. Worley MJ et al (2016) Ibudilast attenuates subjective effects of methamphetamine in a placebo-controlled inpatient study. Drug Alcohol Depend 162:245–250PubMedPubMedCentralGoogle Scholar
  194. Yanai H et al (2009) HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462(7269):99–103PubMedGoogle Scholar
  195. Yelamanchili SV et al (2015) MiR-21 in extracellular vesicles leads to neurotoxicity via TLR7 signaling in SIV neurological disease. PLoS Pathog 11(7):e1005032PubMedPubMedCentralGoogle Scholar
  196. Yirmiya R, Goshen I (2011) Immune modulation of learning, memory, neural plasticity and neurogenesis. Brain Behav Immun 25(2):181–213PubMedGoogle Scholar
  197. Zhang B et al (2015) Azithromycin drives alternative macrophage activation and improves recovery and tissue sparing in contusion spinal cord injury. J Neuroinflammation 12:218PubMedPubMedCentralGoogle Scholar
  198. Zhu CB et al (2010) Interleukin-1 receptor activation by systemic lipopolysaccharide induces behavioral despair linked to MAPK regulation of CNS serotonin transporters. Neuropsychopharmacology 35(13):2510–2520PubMedPubMedCentralGoogle Scholar
  199. Zou JY, Crews FT (2005) TNF alpha potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NF kappa B inhibition. Brain Res 1034(1–2):11–24PubMedGoogle Scholar
  200. Zou J, Crews F (2006) CREB and NF-kappaB transcription factors regulate sensitivity to excitotoxic and oxidative stress induced neuronal cell death. Cell Mol Neurobiol 26(4–6):385–405PubMedGoogle Scholar
  201. Zou J, Crews F (2010) Induction of innate immune gene expression cascades in brain slice cultures by ethanol: key role of NF-kappaB and proinflammatory cytokines. Alcohol Clin Exp Res 34(5):777–789PubMedGoogle Scholar
  202. Zou J, Crews FT (2012) Inflammasome-IL-1beta signaling mediates ethanol inhibition of hippocampal neurogenesis. Front Neurosci 6:77PubMedPubMedCentralGoogle Scholar
  203. Zou JY, Crews FT (2014) Release of neuronal HMGB1 by ethanol through decreased HDAC activity activates brain neuroimmune signaling. PLoS One 9(2):e87915PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  1. 1.Bowles Center for Alcohol Studies, Department of PharmacologyUniversity of North Carolina at Chapel Hill School of MedicineChapel HillUSA
  2. 2.Department of PharmacologySchool of Medicine, University of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations