Lessons from Cre-Mice and Indicator Mice

  • Christian Wolfrum
  • Leon Gabriel StraubEmail author
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 251)


The adult human adipose tissue is predominantly composed of white adipocytes. However, within certain depots, adipose tissue contains thermogenically active brown-like adipocytes, which have been evolutionarily conserved in mammals. This chapter will give a brief overview on the methods used to genetically target and trace both white and brown adipocytes using techniques such as bacterial artificial chromosome (BAC) cloning to create transgenic mouse models and the tools with which genetic recombination is mediated in vivo (e.g., Cre-loxP, CreERT, and Tet-On). The chapter furthermore critically discusses the strength and limitation of the various systems used to target mature white and brown adipocytes (ap2-Cre, Adipoq-Cre, and Ucp1-Cre). Based on these systems, it is evident that our knowledge of mature adipocyte categorization into brown, white, brite, or beige adipocytes is strongly influenced by the use of the various genetic mouse models described in this chapter. Our evaluation of different studies using the aforementioned systems focuses on key genes, which have been reported to maintain adipocyte’s function (insulin receptor, Raptor, or Atgl).


AdipoChaser Adipocytes Adiponectin aP2 Atgl BAT Beige Brite Brown Cre Doxycycline FABP4 Indicator mouse Interconversion IR mTORC1 Raptor Rptor Tamoxifen Tet-On ThermoMouse Transdifferentiation Ucp1 Ucp1-Cre Ucp1-CreERT White 


  1. Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H, Peldschus K, Kaul MG, Tromsdorf UI, Weller H, Waurisch C (2011) Brown adipose tissue activity controls triglyceride clearance. Nat Med 17:200PubMedGoogle Scholar
  2. Bartelt A, Heeren J (2012) The holy grail of metabolic disease: brown adipose tissue. Curr Opin Lipidol 23:190–195PubMedGoogle Scholar
  3. Bartelt A, Heeren J (2014) Adipose tissue browning and metabolic health. Nat Rev Endocrinol 10:24PubMedGoogle Scholar
  4. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359PubMedGoogle Scholar
  5. Cassard-Doulcier A-M, Gelly C, Bouillaud F, Ricquier D (1998) A 211-bp enhancer of the rat uncoupling protein-1 (UCP-1) gene controls specific and regulated expression in brown adipose tissue. Biochem J 333:243PubMedPubMedCentralGoogle Scholar
  6. Cassard-Doulcier A-M, Gelly C, Fox N, Schrementi J, Raimbault S, Klaus S, Forest C, Bouillaud F, Ricquier D (1993) Tissue-specific and beta-adrenergic regulation of the mitochondrial uncoupling protein gene: control by cis-acting elements in the 5′-flanking region. Mol Endocrinol 7:497–506PubMedGoogle Scholar
  7. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ (2014) Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316PubMedPubMedCentralGoogle Scholar
  8. Copeland NG, Jenkins NA (2001) Recombineering: a powerful new tool for mouse functional genomics. Nat Rev Genet 2:769PubMedGoogle Scholar
  9. Corish P, Tyler-Smith C (1999) Attenuation of green fluorescent protein half-life in mammalian cells. Protein Eng 12:1035–1040PubMedGoogle Scholar
  10. Das K, Lin Y, Widen E, Zhang Y, Scherer PE (2001) Chromosomal localization, expression pattern, and promoter analysis of the mouse gene encoding adipocyte-specific secretory protein Acrp30. Biochem Biophys Res Commun 280:1120–1129PubMedGoogle Scholar
  11. Deroo BJ, Korach KS (2006) Estrogen receptors and human disease. J Clin Invest 116:561–570PubMedPubMedCentralGoogle Scholar
  12. Duteil D, Tosic M, Lausecker F, Nenseth HZ, Müller JM, Urban S, Willmann D, Petroll K, Messaddeq N, Arrigoni L (2016) Lsd1 ablation triggers metabolic reprogramming of brown adipose tissue. Cell Rep 17:1008–1021PubMedPubMedCentralGoogle Scholar
  13. Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J, Estall JL, Klein U, Maratos-Flier E, Rosen ED (2011) Transcriptional control of adipose lipid handling by IRF4. Cell Metab 13:249–259PubMedPubMedCentralGoogle Scholar
  14. Elmasri H, Karaaslan C, Teper Y, Ghelfi E, Weng M, Ince TA, Kozakewich H, Bischoff J, Cataltepe S (2009) Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. FASEB J 23:3865–3873PubMedPubMedCentralGoogle Scholar
  15. Feil R, Wagner J, Metzger D, Chambon P (1997) Regulation of Cre recombinase activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys Res Commun 237:752–757PubMedGoogle Scholar
  16. Flemming W (1870) On the histogenesis of fixed cells and fat cells in connective tissue. Centrabl Med Wiss 31:481–483Google Scholar
  17. Fu Y, Luo N, Lopes-Virella MF (2000) Oxidized LDL induces the expression of ALBP/aP2 mRNA and protein in human THP-1 macrophages. J Lipid Res 41:2017–2023PubMedGoogle Scholar
  18. Furuhashi M, Tuncman G, Görgün CZ, Makowski L, Atsumi G, Vaillancourt E, Kono K, Babaev VR, Fazio S, Linton MF (2007) Treatment of diabetes and atherosclerosis by inhibiting fatty-acid-binding protein aP2. Nature 447:959PubMedPubMedCentralGoogle Scholar
  19. Galmozzi A, Sonne SB, Altshuler-Keylin S, Hasegawa Y, Shinoda K, Luijten IH, Chang JW, Sharp LZ, Cravatt BF, Saez E (2014) ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue. Cell Rep 9:1584–1593PubMedPubMedCentralGoogle Scholar
  20. Gessner K (1551) Conradi Gesneri medici Tigurine Historiae Animalium: Lib. I De Quadrupedibus viviparis, 842Google Scholar
  21. Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769PubMedGoogle Scholar
  22. Guerra C, Navarro P, Valverde AM, Arribas M, Brüning J, Kozak LP, Kahn CR, Benito M (2001) Brown adipose tissue–specific insulin receptor knockout shows diabetic phenotype without insulin resistance. J Clin Invest 108:1205–1213PubMedPubMedCentralGoogle Scholar
  23. Harms MJ, Ishibashi J, Wang W, Lim H-W, Goyama S, Sato T, Kurokawa M, Won K-J, Seale P (2014) Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 19:593–604PubMedPubMedCentralGoogle Scholar
  24. Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called hibernating gland of lower mammals. Anat Anz 21:369–373Google Scholar
  25. Hepler C, Gupta RK (2017) The expanding problem of adipose depot remodeling and postnatal adipocyte progenitor recruitment. Mol Cell Endocrinol 445:95–108PubMedGoogle Scholar
  26. Hepler C, Vishvanath L, Gupta RK (2017) Sorting out adipocyte precursors and their role in physiology and disease. Genes Dev 31:127–140PubMedPubMedCentralGoogle Scholar
  27. Himms-Hagen J, Melnyk A, Zingaretti M, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Phys Cell Phys 279:C670–C681Google Scholar
  28. Holland WL, Xia JY, Johnson JA, Sun K, Pearson MJ, Sharma AX, Quittner-Strom E, Tippetts TS, Gordillo R, Scherer PE (2017) Inducible overexpression of adiponectin receptors highlight the roles of adiponectin-induced ceramidase signaling in lipid and glucose homeostasis. Mol Metab 6:267–275PubMedPubMedCentralGoogle Scholar
  29. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91PubMedGoogle Scholar
  30. Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, Shimomura I (2003) Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 52:1655–1663PubMedGoogle Scholar
  31. Jimenez V, Muñoz S, Casana E, Mallol C, Elias I, Jambrina C, Ribera A, Ferre T, Franckhauser S, Bosch F (2013) In vivo adeno-associated viral vector–mediated genetic engineering of white and brown adipose tissue in adult mice. Diabetes 62:4012–4022PubMedPubMedCentralGoogle Scholar
  32. Jo J, Gavrilova O, Pack S, Jou W, Mullen S, Sumner AE, Cushman SW, Periwal V (2009) Hypertrophy and/or hyperplasia: dynamics of adipose tissue growth. PLoS Comput Biol 5:e1000324PubMedPubMedCentralGoogle Scholar
  33. Johansson T, Broll I, Frenz T, Hemmers S, Becher B, Zeilhofer HU, Buch T (2010) Building a zoo of mice for genetic analyses: a comprehensive protocol for the rapid generation of BAC transgenic mice. Genesis 48:264–280PubMedGoogle Scholar
  34. Johnson P, Hirsch J (1972) Cellularity of adipose depots in six strains of genetically obese mice. J Lipid Res 13:2–11PubMedGoogle Scholar
  35. Jopling C, Boue S, Belmonte JCI (2011) Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nat Rev Mol Cell Biol 12:79PubMedPubMedCentralGoogle Scholar
  36. Kahn SE, Hull RL, Utzschneider KM (2006) Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature 444:840Google Scholar
  37. Kim HB, Kong M, Kim TM, Suh YH, Kim W-H, Lim JH, Song JH, Jung MH (2006) NFATc4 and ATF3 negatively regulate adiponectin gene expression in 3T3-L1 adipocytes. Diabetes 55:1342–1352PubMedGoogle Scholar
  38. Kong X, Banks A, Liu T, Kazak L, Rao RR, Cohen P, Wang X, Yu S, Lo JC, Tseng Y-H (2014) IRF4 is a key thermogenic transcriptional partner of PGC-1α. Cell 158:69–83PubMedPubMedCentralGoogle Scholar
  39. Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, Mirtschink P, Ukropcova B, Gasperikova D, Pedrazzini T (2012) Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 26:259–270PubMedPubMedCentralGoogle Scholar
  40. Krombach F, Münzing S, Allmeling A-M, Gerlach JT, Behr J, Dörger M (1997) Cell size of alveolar macrophages: an interspecies comparison. Environ Health Perspect 105:1261PubMedPubMedCentralGoogle Scholar
  41. Labbé SM, Mouchiroud M, Caron A, Secco B, Freinkman E, Lamoureux G, Gélinas Y, Lecomte R, Bossé Y, Chimin P (2016) mTORC1 is required for brown adipose tissue recruitment and metabolic adaptation to cold. Sci Rep 6:37223PubMedPubMedCentralGoogle Scholar
  42. Lasar D, Rosenwald M, Kiehlmann E, Balaz M, Tall B, Opitz L, Lidell ME, Zamboni N, Krznar P, Sun W (2018) Peroxisome proliferator activated receptor gamma controls mature brown adipocyte inducibility through glycerol kinase. Cell Rep 22:760–773PubMedGoogle Scholar
  43. Lee MY, Tse H-F, Siu C-W, Zhu S-G, Man RY, Vanhoutte PM (2007) Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 27:2443–2449PubMedGoogle Scholar
  44. Lee PL, Tang Y, Li H, Guertin DA (2016) Raptor/mTORC1 loss in adipocytes causes progressive lipodystrophy and fatty liver disease. Mol Metab 5:422–432PubMedPubMedCentralGoogle Scholar
  45. Lee Y-K, Cowan CA (2013) White to brite adipocyte transition and back again. Nat Cell Biol 15:568PubMedGoogle Scholar
  46. Liu P, Ji Y, Yuen T, Rendina-Ruedy E, DeMambro VE, Dhawan S, Abu-Amer W, Izadmehr S, Zhou B, Shin AC (2017) Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546:107–112PubMedPubMedCentralGoogle Scholar
  47. Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS (2001) Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7:699PubMedPubMedCentralGoogle Scholar
  48. Mao L, Nie B, Nie T, Hui X, Gao X, Lin X, Liu X, Xu Y, Tang X, Yuan R (2017) Visualization and quantification of browning using a Ucp1-2A-Luciferase knock-in mouse model. Diabetes 66:407–417PubMedGoogle Scholar
  49. Mitsui Y, Schneider EL (1976) Relationship between cell replication and volume in senescent human diploid fibroblasts. Mech Ageing Dev 5:45–56PubMedGoogle Scholar
  50. Moulin K, Truel N, André M, Arnauld E, Nibbelink M, Cousin B, Dani C, Pénicaud L, Casteilla L (2001) Emergence during development of the white-adipocyte cell phenotype is independent of the brown-adipocyte cell phenotype. Biochem J 356:659PubMedPubMedCentralGoogle Scholar
  51. Moullan N, Mouchiroud L, Wang X, Ryu D, Williams EG, Mottis A, Jovaisaite V, Frochaux MV, Quiros PM, Deplancke B (2015) Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research. Cell Rep 10:1681–1691PubMedPubMedCentralGoogle Scholar
  52. Müller S, Kulenkampff E, Wolfrum C (2015) Adipose tissue stem cells. Metabolic control. Springer, Berlin, pp 251–263Google Scholar
  53. O’Neill SM, Hinkle C, Chen S-J, Sandhu A, Hovhannisyan R, Stephan S, Lagor WR, Ahima RS, Johnston JC, Reilly MP (2014) Targeting adipose tissue via systemic gene therapy. Gene Ther 21:653PubMedPubMedCentralGoogle Scholar
  54. Orban PC, Chui D, Marth JD (1992) Tissue-and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865PubMedPubMedCentralGoogle Scholar
  55. Osoegawa K, Tateno M, Woon PY, Frengen E, Mammoser AG, Catanese JJ, Hayashizaki Y, de Jong PJ (2000) Bacterial artificial chromosome libraries for mouse sequencing and functional analysis. Genome Res 10:116–128PubMedPubMedCentralGoogle Scholar
  56. Park S-K, Oh S-Y, Lee M-Y, Yoon S, Kim K-S, Kim J-W (2004) CCAAT/enhancer binding protein and nuclear factor-Y regulate adiponectin gene expression in adipose tissue. Diabetes 53:2757–2766PubMedGoogle Scholar
  57. Qiang G, Kong HW, Xu S, Pham HA, Parlee SD, Burr AA, Gil V, Pang J, Hughes A, Gu X (2016) Lipodystrophy and severe metabolic dysfunction in mice with adipose tissue-specific insulin receptor ablation. Mol Metab 5:480–490PubMedPubMedCentralGoogle Scholar
  58. Rajakumari S, Wu J, Ishibashi J, Lim H-W, Giang A-H, Won K-J, Reed RR, Seale P (2013) EBF2 determines and maintains brown adipocyte identity. Cell Metab 17:562–574PubMedPubMedCentralGoogle Scholar
  59. Rajewsky K, Gu H, Kühn R, Betz UA, Müller W, Roes J, Schwenk F (1996) Conditional gene targeting. J Clin Invest 98:600–603PubMedPubMedCentralGoogle Scholar
  60. Rickert RC, Roes J, Rajewsky K (1997) B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res 25:1317–1318PubMedPubMedCentralGoogle Scholar
  61. Rosengren S, Henson PM, Worthen GS (1994) Migration-associated volume changes in neutrophils facilitate the migratory process in vitro. Am J Phys Cell Phys 267:C1623–C1632Google Scholar
  62. Rosenwald M, Perdikari A, Rülicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659PubMedGoogle Scholar
  63. Sakaguchi M, Fujisaka S, Cai W, Winnay JN, Konishi M, O’Neill BT, Li M, García-Martín R, Takahashi H, Hu J (2017) Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte-specific deletion of the insulin receptor. Cell Metab 25:448–462PubMedPubMedCentralGoogle Scholar
  64. Sambeat A, Gulyaeva O, Dempersmier J, Tharp KM, Stahl A, Paul SM, Sul HS (2016) LSD1 interacts with Zfp516 to promote UCP1 transcription and brown fat program. Cell Rep 15:2536–2549PubMedPubMedCentralGoogle Scholar
  65. Sanchez-Gurmaches J, Guertin DA (2014) Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat Commun 5:4099PubMedPubMedCentralGoogle Scholar
  66. Sanchez-Gurmaches J, Hung C-M, Sparks CA, Tang Y, Li H, Guertin DA (2012) PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab 16:348–362PubMedPubMedCentralGoogle Scholar
  67. Sanchez-Gurmaches J, Tang Y, Jespersen NZ, Wallace M, Calejman CM, Gujja S, Li H, Edwards YJ, Wolfrum C, Metallo CM (2018) Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de Novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metab 27:195–209.e6PubMedGoogle Scholar
  68. Schmid-Schonbein G, Shih YY, Chien S (1980) Morphometry of human leukocytes. Blood 56:866–875PubMedGoogle Scholar
  69. Schreiber R, Diwoky C, Schoiswohl G, Feiler U, Wongsiriroj N, Abdellatif M, Kolb D, Hoeks J, Kershaw EE, Sedej S (2017) Cold-induced thermogenesis depends on ATGL-mediated lipolysis in cardiac muscle, but not brown adipose tissue. Cell Metab 26:753–763.e7PubMedPubMedCentralGoogle Scholar
  70. Segawa K, Matsuda M, Fukuhara A, Morita K, Okuno Y, Komuro R, Shimomura I (2009) Identification of a novel distal enhancer in human adiponectin gene. J Endocrinol 200:107–116PubMedGoogle Scholar
  71. Shan T, Liu W, Kuang S (2013) Fatty acid binding protein 4 expression marks a population of adipocyte progenitors in white and brown adipose tissues. FASEB J 27:277–287PubMedPubMedCentralGoogle Scholar
  72. Shao M, Ishibashi J, Kusminski CM, Wang QA, Hepler C, Vishvanath L, MacPherson KA, Spurgin SB, Sun K, Holland WL (2016) Zfp423 maintains white adipocyte identity through suppression of the beige cell thermogenic gene program. Cell Metab 23:1167–1184PubMedPubMedCentralGoogle Scholar
  73. Shaw HB (1901) A contribution to the study of the morphology of adipose tissue. J Anat Physiol 36:1PubMedPubMedCentralGoogle Scholar
  74. Spalding KL, Arner E, Westermark PO, Bernard S, Buchholz BA, Bergmann O, Blomqvist L, Hoffstedt J, Näslund E, Britton T (2008) Dynamics of fat cell turnover in humans. Nature 453:783PubMedGoogle Scholar
  75. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination: I. Recombination between loxP sites. J Mol Biol 150:467–486PubMedGoogle Scholar
  76. Sun K, Kusminski CM, Luby-Phelps K, Spurgin SB, An YA, Wang QA, Holland WL, Scherer PE (2014) Brown adipose tissue derived VEGF-A modulates cold tolerance and energy expenditure. Mol Metab 3:474–483PubMedPubMedCentralGoogle Scholar
  77. Turpin SM, Nicholls HT, Willmes DM, Mourier A, Brodesser S, Wunderlich CM, Mauer J, Xu E, Hammerschmidt P, Brönneke HS (2014) Obesity-induced CerS6-dependent C 16: 0 ceramide production promotes weight gain and glucose intolerance. Cell Metab 20:678–686PubMedGoogle Scholar
  78. Urs S, Harrington A, Liaw L, Small D (2006) Selective expression of an aP2/fatty acid binding Protein4-Cre transgene in non-adipogenic tissues during embryonic development. Transgenic Res 15:647–653PubMedGoogle Scholar
  79. Vitali A, Murano I, Zingaretti MC, Frontini A, Ricquier D, Cinti S (2012) The adipose organ of obesity-prone C57BL/6J mice is composed of mixed white and brown adipocytes. J Lipid Res 53:619–629PubMedPubMedCentralGoogle Scholar
  80. Wang QA, Scherer PE (2014) The AdipoChaser mouse: a model tracking adipogenesis in vivo. Adipocytes 3:146–150Google Scholar
  81. Wang QA, Scherer PE, Gupta RK (2014) Improved methodologies for the study of adipose biology: insights gained and opportunities ahead. J Lipid Res 55:605–624PubMedPubMedCentralGoogle Scholar
  82. Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338PubMedPubMedCentralGoogle Scholar
  83. Wang ZV, Deng Y, Wang QA, Sun K, Scherer PE (2010) Identification and characterization of a promoter cassette conferring adipocyte-specific gene expression. Endocrinology 151:2933–2939PubMedPubMedCentralGoogle Scholar
  84. Warming S, Costantino N, Court DL, Jenkins NA, Copeland NG (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res 33:e36PubMedPubMedCentralGoogle Scholar
  85. Widdowson EM (1976) The response of the sexes to nutritional stress. Proc Nutr Soc 35:175–180PubMedGoogle Scholar
  86. Xia JY, Sun K, Hepler C, Ghaben AL, Gupta RK, An YA, Holland WL, Morley TS, Adams AC, Gordillo R (2017) Acute loss of adipose tissue-derived adiponectin triggers immediate metabolic deterioration in mice. Diabetologia:1–10Google Scholar
  87. Yang M, Baranov E, Jiang P, Sun F-X, Li X-M, Li L, Hasegawa S, Bouvet M, Al-Tuwaijri M, Chishima T (2000) Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc Natl Acad Sci 97:1206–1211PubMedGoogle Scholar
  88. Ye R, Wang QA, Tao C, Vishvanath L, Shao M, McDonald JG, Gupta RK, Scherer PE (2015) Impact of tamoxifen on adipocyte lineage tracing: inducer of adipogenesis and prolonged nuclear translocation of Cre recombinase. Mol Metab 4:771–778PubMedPubMedCentralGoogle Scholar
  89. Zhang F, Hao G, Shao M, Nham K, An Y, Wang Q, Zhu Y, Kusminski CM, Hassan G, Gupta RK (2018) An adipose tissue atlas: an image-guided identification of human-like BAT and beige depots in rodents. Cell Metab 27:252–262.e3PubMedPubMedCentralGoogle Scholar
  90. Zhu Y, Gao Y, Tao C, Shao M, Zhao S, Huang W, Yao T, Johnson JA, Liu T, Cypess AM (2016) Connexin 43 mediates white adipose tissue beiging by facilitating the propagation of sympathetic neuronal signals. Cell Metab 24:420–433PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Food, Nutrition, and Health, ETH ZurichZürichSwitzerland

Personalised recommendations