Skip to main content

The Function(s) of Sleep

  • Chapter
  • First Online:
Sleep-Wake Neurobiology and Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 253))

Abstract

Sleep is a highly conserved phenomenon in endotherms, and therefore it must serve at least one basic function across this wide range of species. What that function is remains one of the biggest mysteries in neurobiology. By using the word neurobiology, we do not mean to exclude possible non-neural functions of sleep, but it is difficult to imagine why the brain must be taken offline if the basic function of sleep did not involve the nervous system. In this chapter we discuss several current hypotheses about sleep function. We divide these hypotheses into two categories: ones that propose higher-order cognitive functions and ones that focus on housekeeping or restorative processes. We also pose four aspects of sleep that any successful functional hypothesis has to account for: why do the properties of sleep change across the life span? Why and how is sleep homeostatically regulated? Why must the brain be taken offline to accomplish the proposed function? And, why are there two radically different stages of sleep?

The higher-order cognitive function hypotheses we discuss are essential mechanisms of learning and memory and synaptic plasticity. These are not mutually exclusive hypotheses. Each focuses on specific mechanistic aspects of sleep, and higher-order cognitive processes are likely to involve components of all of these mechanisms. The restorative hypotheses are maintenance of brain energy metabolism, macromolecular biosynthesis, and removal of metabolic waste. Although these three hypotheses seem more different than those related to higher cognitive function, they may each contribute important components to a basic sleep function. Any sleep function will involve specific gene expression and macromolecular biosynthesis, and as we explain there may be important connections between brain energy metabolism and the need to remove metabolic wastes.

A deeper understanding of sleep functions in endotherms will enable us to answer whether or not rest behaviors in species other than endotherms are homologous with mammalian and avian sleep. Currently comparisons across the animal kingdom depend on superficial and phenomenological features of rest states and sleep, but investigations of sleep functions would provide more insight into the evolutionary relationships between EEG-defined sleep in endotherms and rest states in ectotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackermann S, Rasch B (2014) Differential effects of non-REM and REM sleep on memory consolidation? Curr Neurol Neurosci Rep 14(2):430

    Article  PubMed  Google Scholar 

  • Albensi BC et al (2007) Electrical stimulation protocols for hippocampal synaptic plasticity and neuronal hyper-excitability: are they effective or relevant? Exp Neurol 204(1):1–13

    Article  PubMed  Google Scholar 

  • Andersen ML et al (2005) Endocrinological and catecholaminergic alterations during sleep deprivation and recovery in male rats. J Sleep Res 14(1):83–90

    Article  PubMed  Google Scholar 

  • Areal CC et al (2017) Sleep loss and structural plasticity. Curr Opin Neurobiol 44:1–7

    Article  CAS  PubMed  Google Scholar 

  • Arrigoni E et al (2009) Long-term synaptic plasticity is impaired in rats with lesions of the ventrolateral preoptic nucleus. Eur J Neurosci 30(11):2112–2120

    Article  PubMed  PubMed Central  Google Scholar 

  • Aton SJ et al (2009a) The sedating antidepressant trazodone impairs sleep-dependent cortical plasticity. PLoS One 4(7):1–10

    Article  CAS  Google Scholar 

  • Aton SJ et al (2009b) Mechanisms of sleep-dependent consolidation of cortical plasticity. Neuron 61(3):454–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aton SJ et al (2013) Visual experience and subsequent sleep induce sequential plastic changes in putative inhibitory and excitatory cortical neurons. PNAS 110(8):3101–3106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aton SJ et al (2014) Sleep promotes cortical response potentiation following visual experience. Sleep 37(7):1163–1170

    Article  PubMed  PubMed Central  Google Scholar 

  • Basheer R et al (2005) Sleep deprivation-induced protein changes in basal forebrain: implications for synaptic plasticity. J Neurosci Res 82(5):650–658

    Article  CAS  PubMed  Google Scholar 

  • Bellesi M et al (2013) Effects of sleep and wake on oligodendrocytes and their precursors. J Neurosci 33(36):14288–14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benington JH, Heller HC (1994) Does the function of REM sleep concern non-REM sleep or waking? Prog Neurobiol 44(5):433–449

    Article  CAS  PubMed  Google Scholar 

  • Benington J, Heller HC (1995) Restoration of brain energy metabolism as the function of sleep. Prog Neurobiol 45(4):347–360

    Article  CAS  PubMed  Google Scholar 

  • Benington JH et al (1995) Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation. Brain Res 692(1):79–85

    Article  CAS  PubMed  Google Scholar 

  • Blanco W et al (2015) Synaptic homeostasis and restructuring across the sleep-wake cycle. PLoS Comput Biol 11(5):e1004241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bobillier P et al (1971) Deprivation of paradoxical sleep and in vitro cerebral protein synthesis in the rat. Life Sci 10(Part II):1349–1357

    Article  CAS  Google Scholar 

  • Bonhoeffer T, Grinvald A (1996) Optical imaging based on intrinsic signal. The methodology. In: Toga AW, Massiotta HC (eds) Brain mapping: the methods. Academic Press, London, pp 55–97

    Google Scholar 

  • Borbely AA, Achermann P (1992) Concepts and models of sleep regulation: an overview. J Sleep Res 1(2):63–79

    Article  CAS  PubMed  Google Scholar 

  • Born J, Wilhelm I (2012) System consolidation of memory during sleep. Psychol Res 76(2):192–203

    Article  PubMed  Google Scholar 

  • Cai DJ et al (2009) Sleep selectively enhances hippocampus-dependent memory in mice. Behav Neurosci 123(4):713–719

    Article  PubMed  Google Scholar 

  • Campbell IG et al (2002) Sleep deprivation impairs long-term potentiation in the rat hippocampal slices. J Neurophysiol 88:1073–1076

    Article  CAS  PubMed  Google Scholar 

  • Chen C et al (2006) Altered NMDA receptor trafficking contributes to sleep deprivation-induced hippocampal synaptic and cognitive impairments. Biochem Biophys Res Commun 340(2):435–440

    Article  CAS  PubMed  Google Scholar 

  • Cirelli C, Tononi G (2015) Sleep and synaptic homeostasis. Sleep 38(1):161–162

    Article  PubMed  PubMed Central  Google Scholar 

  • Cirelli C et al (2004) Extensive and divergent effects of sleep and wakefulness on brain gene expression. Neuron 41(1):35–43

    Article  CAS  PubMed  Google Scholar 

  • Cooke SF, Bear MF (2010) Visual experience induces long-term potentiation in the primary visual cortex. J Neurosci 30(48):16304–16313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czikk MJ et al (2003) Cerebral leucine uptake and protein synthesis in the near-term ovine fetus: relation to fetal behavioral state. Am J Physiol Regul Integr Comp Physiol 284(1):R200–R207

    Article  CAS  PubMed  Google Scholar 

  • Davidson TJ et al (2009) Hippocampal replay of extended experience. Neuron 63(4):497–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis CJ et al (2003) REM sleep deprivation-induced deficits in the latency-to-peak induction and maintenance of long-term potentiation within the CA1 region of the hippocampus. Brain Res 973(2):293–297

    Article  CAS  PubMed  Google Scholar 

  • Davis CJ et al (2006) REM sleep deprivation attenuates actin-binding protein cortactin: a link between sleep and hippocampal plasticity. Neurosci Lett 400(3):191–196

    Article  CAS  PubMed  Google Scholar 

  • de Sanchez VC et al (1993) Day-night variations of adenosine and its metabolizing enzymes in the brain cortex of the rat – possible physiological significance for the energetic homeostasis and the sleep-wake cycle. Brain Res 612:115–121

    Article  Google Scholar 

  • de Vivo L et al (2017) Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355(6324):507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Denin NN et al (1980) Concentration of proteins and RNA in neurons and gliocytes of the rat locus coeruleus during natural sleep and REM-sleep deprivation. Fiziol ZH SSSR Im I Sechnonovia 66(11):1626–1631

    Google Scholar 

  • Diering GH et al (2017) Homer1a drives homeostatic scaling-down of excitatory synapses during sleep. Science 355(6324):511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumoulin Bridi MC et al (2015) Rapid eye movement sleep promotes cortical plasticity in the developing brain. Sci Adv 1(6):e1500105

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dumoulin MC et al (2015) Extracellular signal-regulated kinase (ERK) activity during sleep consolidates cortical plasticity in vivo. Cereb Cortex 25(2):507–515

    Article  PubMed  Google Scholar 

  • Durkin J, Aton SJ (2016) Sleep-dependent potentiation in the visual system is at odds with the synaptic homeostasis hypothesis. Sleep 39:155–159

    Article  PubMed  PubMed Central  Google Scholar 

  • Durkin J et al (2017) Cortically coordinated NREM thalamocortical oscillations play an essential, instructive role in visual system plasticity. Proc Natl Acad Sci 114(39):10485–10490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20(1):1–10

    PubMed  PubMed Central  Google Scholar 

  • Endo T et al (1997) Selective and total sleep deprivation: effect on the sleep EEG in the rat. Psychiatry Res 66:97–110

    Article  CAS  PubMed  Google Scholar 

  • Endo T et al (1998) Selective REM sleep deprivation in humans: effects on sleep and sleep EEG. Am J Phys 274(4 Pt 2):R1186–R1194

    CAS  Google Scholar 

  • Espinosa JS, Stryker MP (2012) Development and plasticity of the primary visual cortex. Neuron 75(2):230–249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowska A et al (2015) Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci 16(11):25959–25981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraguna U et al (2008) A causal role for brain-derived neurotrophic factor in the homeostatic regulation of sleep. J Neurosci 28(15):4088–4095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faraguna U et al (2010) Unilateral cortical spreading depression affects sleep need and induces molecular and electrophysiological signs of synaptic potentiation in vivo. Cereb Cortex 20(12):2939–2947

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooqui SM et al (1996) Changes in monoamines and their metabolite concentrations in REM sleep-deprived rat forebrain nuclei. Pharmacol Biochem Behav 54(2):385–391

    Article  CAS  PubMed  Google Scholar 

  • Florian C et al (2011) Astrocyte-derived adenosine and A1 receptor activity contribute to sleep loss-induced deficits in hippocampal synaptic plasticity and memory in mice. J Neurosci 31(19):6956–6962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foster DJ (2017) Replay comes of age. Annu Rev Neurosci 40(1):581–602

    Article  CAS  PubMed  Google Scholar 

  • Frank MG (2005) Sleep, synaptic plasticity and the developing brain. In: Luppi P-H (ed) Sleep circuits and functions. CRC Press, Boca Raton, pp 177–192

    Google Scholar 

  • Frank MG (2006) The mystery of sleep function: current perspectives and future directions. Rev Neurosci 17:375–392

    Article  CAS  PubMed  Google Scholar 

  • Frank MG (2010) The functions of sleep. In: Winkelman JW, Plante DT (eds) Foundations of psychiatric sleep medicine. Cambridge University Press, Cambridge, pp 59–78

    Chapter  Google Scholar 

  • Frank MG (2012) Erasing synapses in sleep: is it time to be SHY? Neural Plast 2012:264–378

    Article  Google Scholar 

  • Frank MG (2013) Why I’m not shy: a reply to Tononi and Cirelli. Neural Plast 2013:394946

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank M (2015) Sleep and synaptic plasticity in the developing and adult brain. Curr Top Behav Neurosci 25:123–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Frank MG, Cantera R (2014) Sleep, clocks, and synaptic plasticity. Trends Neurosci 37(9):491–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank M, Issa NP, Stryker MP (2001) Sleep enhances plasticity in the developing visual cortex. Neuron 30:275–287

    Article  CAS  PubMed  Google Scholar 

  • Franken P et al (2003) Changes in brain glycogen after sleep deprivation vary with genotype. Am J Physiol Regul Integr Comp Physiol 285(2):R413–R419

    Article  CAS  PubMed  Google Scholar 

  • Frenkel MY et al (2006) Instructive effect of visual experience in mouse visual cortex. Neuron 51(3):339–349

    Article  CAS  PubMed  Google Scholar 

  • Fujisawa S, Buzsáki G (2011) A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, and hippocampal activities. Neuron 72(1):153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gip P et al (2002) Sleep deprivation decreases glycogen in the cerebellum but not in the cortex of young rats. Am J Physiol Regul Integr Comp Physiol 283(1):R54–R59

    Article  CAS  PubMed  Google Scholar 

  • Girardeau G et al (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A et al (1980a) Influence of synchronized sleep on the biosynthesis of RNA in neuronal and mixed fractions isolated from rabbit cerebral cortex. J Neurochem 35(6):1267–1272

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A et al (1980b) Influence of synchronized sleep on the biosynthesis of RNA in two nuclear classes isolated from rabbit cerebral cortex. J Neurochem 35(6):1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Giuditta A et al (1995) The sequential hypothesis of the function of sleep. Behav Brain Res 69:157–166

    Article  CAS  PubMed  Google Scholar 

  • Graves LA et al (2003) Sleep deprivation selectively impairs memory consolidation for contextual fear conditioning. Learn Mem 10(3):168–176

    Article  PubMed  PubMed Central  Google Scholar 

  • Greene RW et al (2017) The adenosine-mediated, neuronal-glial, homeostatic sleep response. Curr Opin Neurobiol 44:236–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Marin R et al (2003) Sleep deprivation reduces proliferation of cells in the dentate gyrus of the hippocampus in rats. J Physiol Lond 549(2):563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Marin R et al (2005) Sleep deprivation suppresses neurogenesis in the adult hippocampus of rats. Eur J Neurosci 22(8):2111–2116

    Article  PubMed  Google Scholar 

  • Guzman-Marin R et al (2006) Suppression of hippocampal plasticity-related gene expression by sleep deprivation. J Physiol Lond 575(Pt 3):807–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guzman-Marin R et al (2008) Rapid eye movement sleep deprivation contributes to reduction of neurogenesis in the hippocampal dentate gyrus of the adult rat. Sleep 31(2):167–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagewoud R et al (2009) Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res 19(2):280–288

    Article  PubMed  Google Scholar 

  • Hairston IS et al (2005) Sleep restriction suppresses neurogenesis induced by hippocampus-dependent learning. J Neurophysiol 94(6):4224–4233

    Article  PubMed  Google Scholar 

  • Halassa MM et al (2009) Astrocytic modulation of sleep homeostasis and cognitive consequences of sleep loss. Neuron 61(2):213–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall-Porter JM et al (2014) The effect of two benzodiazepine receptor agonist hypnotics on sleep-dependent memory consolidation. J Clin Sleep Med 10(1):27–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Havekes R, Abel T (2017) The tired hippocampus: the molecular impact of sleep deprivation on hippocampal function. Curr Opin Neurobiol 44:13–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Havekes R et al (2007) The tired hippocampus: effects of sleep deprivation on AMPA receptor function and cell proliferation. Sleep Biol Rhythms 5(Supplement 1):A48

    Google Scholar 

  • Havekes R et al (2016) Sleep deprivation causes memory deficits by negatively impacting neuronal connectivity in hippocampal area CA1. elife 5:e13424

    Article  PubMed  PubMed Central  Google Scholar 

  • Heller HC et al (2014) Adaptive and pathological inhibition of neuroplasticity associated with circadian rhythms and sleep. Behav Neurosci 128(3):273–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Hendricks JC et al (2000a) Rest in drosophila is a sleep-like state. Neuron 25(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Hendricks JC et al (2000b) The need for a simple animal model to understand sleep. Prog Neurobiol 61(4):339–351

    Article  CAS  PubMed  Google Scholar 

  • Hengen KB et al (2016) Neuronal firing rate homeostasis is inhibited by sleep and promoted by wake. Cell 165(1):180–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herculano-Houzel S (2013) Sleep it out. Science 342(6156):316–317

    Article  CAS  PubMed  Google Scholar 

  • Hill S et al (2008) Sleep improves the variability of motor performance. Brain Res Bull 76(6):605–611

    Article  PubMed  PubMed Central  Google Scholar 

  • Hipolide DC et al (1998) Heterogeneous effects of rapid eye movement sleep deprivation on binding to [alpha]- and [beta]-adrenergic receptor subtypes in rat brain. Neuroscience 86(3):977–987

    Article  CAS  PubMed  Google Scholar 

  • Hobson JA (1999) Neural control of sleep. In: Turek FW, Zee PC (eds) Regulation of sleep and circadian rhythms, vol 133. Marcel Dekker, New York, pp 81–110

    Google Scholar 

  • Holscher C (1999) Synaptic plasticity and learning and memory: LTP and beyond. J Neurosci Res 58:62–75

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1970) The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol 206:419–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber R (2007) TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS One 2:e276

    Article  PubMed  PubMed Central  Google Scholar 

  • Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430:78–81

    Article  CAS  PubMed  Google Scholar 

  • Huerta PT, Lisman JE (1996) Low-frequency stimulation at the troughs of theta-oscillation induces long-term depression of previously potentiated CA1 synapses. J Neurophysiol 75(2):877–884

    Article  CAS  PubMed  Google Scholar 

  • Hulme SR et al (2014) Mechanisms of heterosynaptic metaplasticity. Philos Trans R Soc Lond B Biol Sci 369(1633):20130148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iliff JJ, Nedergaard M (2013) Is there a cerebral lymphatic system? Stroke 44(6 suppl 1):S93

    PubMed  PubMed Central  Google Scholar 

  • Inoki K et al (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol Toxicol 52(1):381–400

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa A et al (2006) Selective rapid eye movement sleep deprivation impairs the maintenance of long-term potentiation in the rat hippocampus. Eur J Neurosci 24(1):243–248

    Article  PubMed  Google Scholar 

  • Jha SK et al (2005) Sleep-dependent plasticity requires cortical activity. J Neurosci 25(40):9266–9274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji D, Wilson MA (2007) Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10(1):100–106

    Article  CAS  PubMed  Google Scholar 

  • Kaplan ES et al (2016) Contrasting roles for parvalbumin-expressing inhibitory neurons in two forms of adult visual cortical plasticity. elife 5:e11450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khodagholy D et al (2017) Learning-enhanced coupling between ripple oscillations in association cortices and hippocampus. Science 358(6361):369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim E et al (2005) REM sleep deprivation inhibits LTP in vivo in area CA1 of rat hippocampus. Neurosci Lett 388(3):163–167

    Article  CAS  PubMed  Google Scholar 

  • Kong J et al (2002) Brain glycogen decreases with increased periods of wakefulness: implications for homeostatic drive to sleep. J Neurosci 22(13):5581–5587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp C et al (2006) Insufficient sleep reversibly alters bidirectional synaptic plasticity and NMDA receptor function. J Neurosci 26(48):12456–12465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194

    Article  CAS  PubMed  Google Scholar 

  • Li W et al (2017) REM sleep selectively prunes and maintains new synapses in development and learning. Nat Neurosci 20(3):427–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z-W et al (2010) Direct evidence for wake-related increases and sleep-related decreases in synaptic strength in rodent cortex. J Neurosci 30(25):8671–8675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longordo F et al (2009) NR2A at CA1 synapses is obligatory for the susceptibility of hippocampal plasticity to sleep loss. J Neurosci 29(28):9026–9041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louie K, Wilson MA (2001) Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron 29:145–156

    Article  CAS  PubMed  Google Scholar 

  • Lundgaard I et al (2016) Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37(6):2112–2124

    Article  PubMed  PubMed Central  Google Scholar 

  • Mackiewicz M et al (2007) Macromolecule biosynthesis – a key function of sleep. Physiol Genomics 31:441–457

    Article  CAS  PubMed  Google Scholar 

  • Majumdar S, Mallick BN (2005) Cytomorphometric changes in rat brain neurons after rapid eye movement sleep deprivation. Neuroscience 135(3):679–690

    Article  CAS  PubMed  Google Scholar 

  • Maloney KJ et al (2002) c-Fos expression in dopaminergic and GABAergic neurons of the ventral mesencephalic tegmentum after paradoxical sleep deprivation and recovery. Eur J Neurosci 15(4):774–778

    Article  PubMed  Google Scholar 

  • Maret S et al (2011) Sleep and waking modulate spine turnover in the adolescent mouse cortex. Nat Neurosci 14:1418–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marks CA, Wayner MJ (2005) Effects of sleep disruption on rat dentate granule cell LTP in vivo. Brain Res Bull 66(2):114–119

    Article  PubMed  Google Scholar 

  • McDermott CM et al (2003) Sleep deprivation causes behavioral, synaptic, and membrane excitability alterations in hippocampal neurons. J Neurosci 23(29):9687–9695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDermott CM et al (2006) Sleep deprivation-induced alterations in excitatory synaptic transmission in the CA1 region of the rat hippocampus. J Physiol Lond 570(3):553–565

    Article  CAS  PubMed  Google Scholar 

  • Mehta MR (2007) Cortico-hippocampal interaction during up-down states and memory consolidation. Nat Neurosci 10:13

    Article  CAS  PubMed  Google Scholar 

  • Merchant-Nancy H et al (1992) c-fos proto-oncogene changes in relation to REM sleep duration. Brain Res 579(2):342–346

    Article  CAS  PubMed  Google Scholar 

  • Molle M et al (2006) Hippocampal sharp wave-ripples linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96:62–70

    Article  PubMed  Google Scholar 

  • Mueller AD et al (2008) Sleep deprivation can inhibit adult hippocampal neurogenesis independent of adrenal stress hormones. Am J Physiol Regul Integr Comp Physiol 294(5):R1693–R1703

    Article  CAS  PubMed  Google Scholar 

  • Naidoo N et al (2005) Sleep deprivation induces the unfolded protein response in mouse cerebral cortex. J Neurochem 92(5):1150–1157

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H et al (1997) Positive correlations between cerebral protein synthesis rates and deep sleep in Macaca mulatta. Eur J Neurosci 9:271–279

    Article  CAS  PubMed  Google Scholar 

  • Nere AT et al (2013) Sleep dependent synaptic down-selection (I): modeling the benefits of sleep on memory consolidation and integration. Front Neurol 4:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Norimoto H et al (2018) Hippocampal ripples down-regulate synapses. Science 359:1524–1527

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell C, Sejnowski TJ (2014) Selective memory generalization by spatial patterning of protein synthesis. Neuron 82(2):398–412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Olcese U et al (2010) Sleep and synaptic renormalization: a computational study. J Neurophysiol 104(6):3476–3493

    Article  PubMed  PubMed Central  Google Scholar 

  • Oudiette D, Paller KA (2013) Upgrading the sleeping brain with targeted memory reactivation. Trends Cogn Sci 17(3):142–149

    Article  PubMed  Google Scholar 

  • Palchykova S et al (2010) Manipulation of adenosine kinase affects sleep regulation in mice. J Neurosci 30(39):13157–13165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedrazzoli M, Benedito MAC (2004) Rapid eye movement sleep deprivation-induced down-regulation of beta-adrenergic receptors in the rat brainstem and hippocampus. Pharmacol Biochem Behav 79(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Petit J-M et al (2002) Sleep deprivation modulates brain mRNAs encoding genes of glycogen metabolism. Eur J Neurosci 16(6):1163–1167

    Article  PubMed  Google Scholar 

  • Petit J-M et al (2015) Glycogen metabolism and the homeostatic regulation of sleep. Metab Brain Dis 30(1):263–279

    Article  CAS  PubMed  Google Scholar 

  • Poe GR, Nitz DA, McNaughton BL, Barnes DA (2000) Experience-dependent phase-reversal of hippocampal neuron firing during REM sleep. Brain Res 855:176–180

    Article  CAS  PubMed  Google Scholar 

  • Porkka-Heiskanen T et al (1997) Adenosine: a mediator of the sleep-inducing effects of prolonged wakefulness. Science 276(5316):1265–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porrka-Heiskanen T et al (1995) Noradrenergic activity in rat brain during rapid eye movement sleep deprivation and rebound sleep. Am J Physiol 268(37):R1456–R1463

    Google Scholar 

  • Prichard J et al (1991) Lactate rise detected by 1H NMR in human visual cortex during physiological stimulation. PNAS 88:5829–5831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puentes-Mestril C, Aton SJ (2017) Linking network activity to synaptic plasticity during sleep: hypotheses and recent data. Front Neural Circuits 11:61

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Radulovacki M et al (1984) Adenosine analogs and sleep in rats. J Pharmacol Exp Ther 228(2):268–274

    CAS  PubMed  Google Scholar 

  • Ramirez S, Tonegawa D, Liu X (2013) Identification and optogenetic manipulation of memory engrams in the hippocampus. Front Behav Neurosci 7:226

    PubMed  Google Scholar 

  • Ramm P, Smith CT (1990) Rates of cerebral protein synthesis are linked to slow-wave sleep in the rat. Physiol Behav 48:749–753

    Article  CAS  PubMed  Google Scholar 

  • Rasch B, Born J (2007) Maintaining memories by reactivation. Curr Opin Neurobiol 17:698–703

    Article  CAS  PubMed  Google Scholar 

  • Rasch B, Born J (2013) About sleep’s role in memory. Physiol Rev 93(2):681–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravassard P et al (2006) Paradoxical sleep amount modulates neuronal plasticity in adult rat hippocampus. J Sleep Res 15:191–191

    Google Scholar 

  • Ravassard P et al (2009) Paradoxical (REM) sleep deprivation causes a large and rapidly reversible decrease in long-term potentiation, synaptic transmission, glutamate receptor protein levels, and ERK/MAPK activation in the dorsal hippocampus. Sleep 32(2):227–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Ravassard P et al (2015) REM sleep-dependent bidirectional regulation of hippocampal-based emotional memory and LTP. Cereb Cortex 26:1488–1500

    Article  PubMed  Google Scholar 

  • Rechtschaffen A (1998) Current perspectives on the function of sleep. Perspect Biol Med 41(3):359–390

    Article  CAS  PubMed  Google Scholar 

  • Rechtschaffen A et al (2002) Sleep deprivation in the rat: X. Integration and discussion of the findings. 1989. Sleep 25(1):68–87

    Article  PubMed  Google Scholar 

  • Ribeiro S (2011) Sleep and plasticity. Pfluegers Arch Eur J Physiol 463:111–120

    Article  CAS  Google Scholar 

  • Rolls A et al (2013) Sleep to forget: interference of fear memories during sleep. Mol Psychiatry 18:1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romcy-Pereira R, Pavlides C (2004) Distinct modulatory effects of sleep on the maintenance of hippocampal and medial prefrontal cortex LTP. Eur J Neurosci 20(12):3453–3462

    Article  PubMed  Google Scholar 

  • Rudoy JD et al (2009) Strengthening individual memories by reactivating them during sleep. Science 326(5956):1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sadowski JH et al (2016) Sharp-wave ripples orchestrate the induction of synaptic plasticity during reactivation of place cell firing patterns in the hippocampus. Cell Rep 14(8):1916–1929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibt J et al (2008) The non-benzodiazepine hypnotic Zolpidem impairs sleep-dependent cortical plasticity. Sleep 31(10):1381–1392

    PubMed  PubMed Central  Google Scholar 

  • Seibt J et al (2012) Protein synthesis during sleep consolidates cortical plasticity in vivo. Curr Biol 22(8):676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seibt J et al (2017) Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents. Nat Commun 8(1):684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sengpiel F (2001) Cortical plasticity: learning while you sleep? Curr Biol 11(16):R647–R650

    Article  CAS  PubMed  Google Scholar 

  • Shapiro C, Girdwood P (1981) Protein synthesis in rat brain during sleep. Neuropharmacology 20:457–460

    Article  CAS  PubMed  Google Scholar 

  • Shaw PJ et al (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287(5459):1834–1837

    Article  CAS  PubMed  Google Scholar 

  • Siapas AG et al (2005) Prefrontal phase locking to hippocampal theta oscillations. Neuron 46(1):141–151

    Article  CAS  PubMed  Google Scholar 

  • Smith C (2001) Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5:491–506

    Article  CAS  PubMed  Google Scholar 

  • Smith GB et al (2009) Bidirectional synaptic mechanisms of ocular dominance plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 364(1515):357–367

    Article  PubMed  Google Scholar 

  • Soulé J et al (2012) Balancing arc synthesis, mRNA decay, and proteasomal degradation. J Biol Chem 287(26):22354–22366

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spolidoro M et al (2008) Plasticity in the adult brain: lessons from the visual system. Exp Brain Res 192:335–341

    Article  PubMed  Google Scholar 

  • Steriade M, Timofeev I (2003) Neuronal plasticity in thalamocortical networks during sleep and waking oscillations. Neuron 37(4):563–576

    Article  CAS  PubMed  Google Scholar 

  • Stickgold R (2005) Sleep-dependent memory consolidation. Nature 437(7063):1272–1278

    Article  CAS  PubMed  Google Scholar 

  • Taishi P et al (2001) Conditions that affect sleep alter the expression of molecules associated with synaptic plasticity. Am J Phys 281:R839–R845

    CAS  Google Scholar 

  • Tartar JL et al (2006) Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci 23(10):2739–2748

    Article  PubMed  PubMed Central  Google Scholar 

  • Terao A et al (2003) Differential increase in the expression of heat shock protein family members during sleep deprivation and during sleep. Neuroscience 116(1):187–200

    Article  CAS  PubMed  Google Scholar 

  • Timofeev I, Chauvette S (2017) Sleep slow oscillation and plasticity. Curr Opin Neurobiol 44:116–126

    Article  CAS  PubMed  Google Scholar 

  • Tobler I (2005) Phylogeny of sleep regulation. In: Kryger M, Roth T, Dement WC (eds) Principles and practice of sleep medicine. W. B. Saunders, Philadelphia, pp 72–90

    Google Scholar 

  • Tononi G, Cirelli C (2003) Sleep and synaptic homeostasis: a hypothesis. Brain Res Bull 62(2):143–150

    Article  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2006) Sleep function and synaptic homeostasis. Sleep Med Rev 10(1):49–62

    Article  PubMed  Google Scholar 

  • Tononi G, Cirelli C (2014) Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81(1):12–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toppila J et al (1995) REM sleep deprivation induces galanin gene expression in the rat brain. Neurosci Lett 183(3):171–174

    Article  CAS  PubMed  Google Scholar 

  • Tropea D et al (2009) Molecular mechanisms of experience-dependent plasticity in visual cortex. Philos Trans R Soc Lond B Biol Sci 364(1515):341–355

    Article  PubMed  Google Scholar 

  • Tsanov M, Manahan-Vaughan D (2007) The adult visual cortex expresses dynamic synaptic plasticity that is driven by the light/dark cycle. J Neurosci 27(31):8414–8421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tudor JC et al (2016) Sleep deprivation impairs memory by attenuating mTORC1-dependent protein synthesis. Sci Signal 9(425):ra41

    Article  PubMed  PubMed Central  Google Scholar 

  • Tung A et al (2005) Effects of sleep deprivation and recovery sleep upon cell proliferation in adult rat dentate gyrus. Neuroscience 134(3):721–723

    Article  CAS  PubMed  Google Scholar 

  • Turrigiano G (2007) Homeostatic signaling: the positive side of negative feedback. Curr Opin Neurobiol 17:318–324

    Article  CAS  PubMed  Google Scholar 

  • van Dongen EV et al (2012) Memory stabilization with targeted reactivation during human slow-wave sleep. Proc Natl Acad Sci 109(26):10575–10580

    Article  PubMed  PubMed Central  Google Scholar 

  • Vazquez J et al (2008) Rapid alterations in cortical protein profiles underlie spontaneous sleep and wake bouts. J Cell Biochem 105:1472–1484

    Article  CAS  PubMed  Google Scholar 

  • Vecsey CG et al (2009) Sleep deprivation impairs cAMP signalling in the hippocampus. Nature 461(7267):1122–1125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vecsey CG et al (2012) Genomic analysis of sleep deprivation reveals translational regulation in the hippocampus. Physiol Genomics 44(20):981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vyazovskiy VV et al (2008) Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11(2):200–208

    Article  CAS  PubMed  Google Scholar 

  • Vyazovskiy VV et al (2009) Cortical firing and sleep homeostasis. Neuron 63(6):865–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson BO et al (2016) Network homeostasis and state dynamics of neocortical sleep. Neuron 90(4):839–852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wierzynski CM, Lubenov EV, Gu M, Siapas AG (2009) State-dependent spike-timing relationships between hippocampal and prefrontal circuits during sleep. Neuron 61(4):587–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Single cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 28:1029–1040

    Article  Google Scholar 

  • Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–682

    Article  CAS  PubMed  Google Scholar 

  • Xie L et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342(6156):373–377

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Gan W-B (2011) Sleep contributes to dendritic spine formation and elimination in the developing mouse somatosensory cortex. Dev Neurobiol 72:1391–1398

    Article  Google Scholar 

  • Yang G et al (2014) Sleep promotes branch-specific formation of dendritic spines after learning. Science 344(6188):1173–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman JE et al (2004) Glycogen in the brain of Drosophila melanogaster: diurnal rhythm and the effect of rest deprivation. J Neurochem 88(1):32–40

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Craig Heller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frank, M.G., Heller, H.C. (2018). The Function(s) of Sleep. In: Landolt, HP., Dijk, DJ. (eds) Sleep-Wake Neurobiology and Pharmacology . Handbook of Experimental Pharmacology, vol 253. Springer, Cham. https://doi.org/10.1007/164_2018_140

Download citation

Publish with us

Policies and ethics